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MAXIMAL DENUMERANT OF A NUMERICAL SEMIGROUP
WITH EMBEDDING DIMENSION LESS THAN FOUR

LANCE BRYANT, JAMES HAMBLIN, AND LENNY JONES

ABSTRACT. Given a numerical semigroup S = 〈a1, a2, . . .,
at〉 and s ∈ S, we consider the factorization s = c1a1+c2a2+
· · · + ctat where ci ≥ 0. Such a factorization is maximal if
c1 + c2 + · · · + ct is a maximum over all such factorizations
of s. We show that the number of maximal factorizations,
varying over the elements in S, is always bounded. Thus, we
define dmax(S) to be the maximum number of maximal fac-
torizations of elements in S. We study maximal factorizations
in depth when S has embedding dimension less than four, and
establish formulas for dmax(S) in this case.

1. Introduction. Let N denote the nonnegative integers. A
numerical semigroup S is a subsemigroup of N that contains 0 and
has a finite complement in N. For two elements u and u′ in S, u � u′

if there exists an s ∈ S such that u + s = u′. This defines a partial
ordering on S. The minimal elements in S \ {0} with respect to this
ordering form the unique minimal set of generators of S, which is
denoted by {a1, a2, . . . , at〉 where a1 < a2 < · · · < at. The numerical
semigroup S = {∑t

i=1 ciai | ci ≥ 0} is represented using the notation
S = 〈a1, . . . , at〉. Since the minimal generators of S are distinct modulo
a1, the set of minimal generators is finite. Furthermore, S having a
finite complement in N is equivalent to gcd (a1, a2, . . . , at) = 1. The
cardinality, t, of the set of minimal generators of a semigroup S is called
the embedding dimension of S. The element a1 is called the multiplicity
of S. When S �= N, we have 2 ≤ t ≤ a1.

By definition, if s ∈ S, then there exists a t-tuple of nonnegative
integers (c1, c2, . . . , ct) such that s = c1a1 + c2a2 + · · ·+ ctat. We call
(c1, c2, . . . , ct) a factorization of s. For two factorizations (c1, c2, . . . , ct)
and (d1, d2, . . . , dt) of s, we say they are different if ci �= di for some
1 ≤ i ≤ t. The length of a factorization (c1, c2, . . . , ct) is defined as
c1 + c2 + · · · + ct. The set of factorizations of s, denoted by F(s),
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is precisely the set of nonnegative integer solutions of the equation
x1a1 + x2a2 + · · ·+ xtat = s and is therefore finite.

A basic arithmetic constant that measures the behavior of factor-
izations in a numerical semigroup is the cardinality of F(s), which is
called the denumerant of s in S. See [13] for an exhaustive view of
results related to the denumerant. Recently, there has been interest
in the factorization theory of numerical semigroups and the insight it
provides into the general theory of commutative monoids; for example,
see [1 4, 7, 8, 10]. Here we consider a variation of the denumerant.

Definition 1.1. The maximal denumerant of s in S is the number
of factorizations of s that have maximal length and is denoted by
dmax(s;S).

Certainly, the maximal denumerant of s in S is less than or equal
to its denumerant in S and thus also finite. On the other hand,
unlike the denumerant, as we vary over the elements in S, the maximal
denumerant is always bounded. This is not difficult to see and will be
proven in Theorem 2.3. Thus, we have the well-defined quantity given
in the next definition.

Definition 1.2. The maximal denumerant of S is

dmax(S) = max
s∈S

{dmax(s;S)}.

We will focus on computing dmax(S) when S can be generated by three
elements; in particular, when S has embedding dimension 3. When
S is (perhaps non-minimally) generated by a1, a2 and a3, by letting
g = gcd (a2 − a1, a3 − a1), m = (a2 − a1)/g and n = (a3 − a1) = g, we
can write

S = 〈a1, a1 + gm, a1 + gn〉,
which leads to unexpectedly nice formulas. Theorems 3.5 and 3.6 will
be proven in Section 3.

Theorem 3.5. Let 0 ≤ α < mn be such that α ≡ −a1 mod mn. We
have the following formula:

dmax(S) =

{⌈
a1

mn

⌉
if α ∈ 〈m,n〉⌈

a1

mn

⌉
+ 1 otherwise.



MAXIMAL DENUMERANT OF A NUMERICAL SEMIGROUP 491

Theorem 3.6. If x and y are integers such that mx+ny = a1, then
we have the following formula:

dmax(S) =
⌈x
n

⌉
+
⌈ y

m

⌉
.

The motivation for such a variation of the denumerant is the con-
sideration of length-preserving restrictions. For example, perhaps we
are interested in factorizations of an element that have either maxi-
mal or minimal length. This might happen when working with the
numerical semigroup ring R = k[[ta1 , ta2 , . . . tad ]], where k is a field and
m = (ta1 , ta2 , . . . , tad)R is the unique maximal ideal. In this case, the
maximal length of the factorizations of s ∈ S is the m-adic order of
ts ∈ R, i.e., the largest power of m that contains ts, see [5]. Another
instance occurs in money-changing problems where the minimal length
of the factorizations of s ∈ S is the fewest number of coins needed
to make change for s using the denominations a1, a2, . . . , at, see [6].
Of course, the overarching concern is changing from one factorization
to another in a numerical semigroup. The minimal presentation of a
numerical semigroup (see [12]) is helpful when studying all factoriza-
tions; however, we note that it is not as useful for our current endeavor
because these “basic trades” do not generally preserve length. With
the appropriate modifications, an approach via a minimal presentation
may be fruitful, and we leave this as an avenue for further research.

In the next section, we show that the maximal denumerant is always
finite and that, for semigroups with embedding dimension less than
3, dmax(S) = 1. In Section 3, we focus on numerical semigroups
with embedding dimension exactly equal to 3. In the last section,
we demonstrate the utility of our results by explicitly computing the
maximal denumerant of semigroups with multiplicity 7 and embedding
dimension 3.

2. The finiteness of dmax(S). For a given numerical semigroup
S = 〈a1, a2, . . . , at〉, we need only find a finite set U ⊂ S such that
dmax(S) = maxs∈U{dmax(s;S)} to establish the finiteness of dmax(S).
To this end, we make the following definition.

Definition 2.1. An element u ∈ S is called maximally reduced if,
for each i, with 1 ≤ i ≤ t, there exists a factorization (c1, c2, . . . , ct) of
u with maximal length such that ci = 0.
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We do not need t distinct factorizations with maximal length to
satisfy the definition of maximally reduced, as the next example shows.

Example 2.2. In S = 〈7, 8, 13〉, the element 48 has the following
factorizations:

• (0, 6, 0)

• (5, 0, 1)

• (2, 1, 2).

Notice that only the first two have maximal length. The first factoriza-
tion with maximal length has a 0 in the first and third entries, and the
second factorization with maximal length has a 0 in the second entry.
Thus, 48 is a maximally reduced element.

Theorem 2.3. Let U be the set of maximally reduced elements in S.
Then we have the following:

1. U is a finite set,

2. dmax(S) = maxs∈U{dmax(s;S)}.
Thus, dmax(S) is finite.

Proof. To show that U is a finite set, it suffices to prove that
the maximally reduced elements are bounded above. To see this, set
N = (a1−1)

∑t
i=2 ai. Suppose that s > N and that C = (0, c2, . . . , ct)

is a representation of s. Then there exists a j, with 2 ≤ j ≤ t, such
that cj ≥ a1, and so (aj , c2, . . . , cj − a1, . . . , ct) is a representation of s
with greater length than C. Therefore, every maximal representation
has a first component that is nonzero and s is not maximally reduced.

Now we need to show that dmax(S) = maxs∈U{dmax(s;S)}. For
s ∈ S, with maximal representations {Cj = (cj,1, cj,2, . . . , cj,t)}, let

ci = minj{cj, i}, and consider the element s∗ = s − ∑t
i=1 ciai ∈ S.

Then it is not difficult to see that s∗ is maximally reduced and that
dmax(s;S) = dmax(s

∗;S).

Theorem 2.3 outlines an algorithm for computing dmax(S): We check
to see which elements up to N = (a1 − 1)

∑t
i=2 ai are maximally
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reduced, and then take the maximum of the dmax(s;S) where s is a
maximally reduced element of S.

Example 2.4. Let S = 〈7, 11, 13, 15〉. Checking up to 234, the
maximally reduced elements along with their maximal factorizations
are

• 0; (0, 0, 0, 0)

• 22; (0, 2, 0, 0), (1, 0, 0, 1)

• 26; (0, 0, 2, 0), (0, 1, 0, 1)

• 33; (0, 3, 0, 0), (1, 0, 2, 0), (1, 1, 0, 1)

• 37; (0, 1, 2, 0), (0, 2, 0, 1), (1, 0, 0, 2)

• 44; (1, 2, 0, 1), (1, 1, 2, 0), (0, 4, 0, 0), (2, 0, 0, 2).

Therefore, dmax(S) = 4.

We see from the example that we can potentially improve this
algorithm since we only need to check up to 44 to find the maximally
reduced elements. We leave this improvement as an open question.

Question 2.5. Can we improve the algorithm described in Theorem
2.3?

In the next section we will focus on numerical semigroups with
embedding dimension less than 4, but first we consider the case when
S has embedding dimension strictly less than 3. When S = N, then
every element s ∈ S has a unique factorization, namely, s = s ·1. Thus,
dmax(N) = 1. We show that, when S has embedding dimension 2, we
also have that dmax(S) = 1.

Proposition 2.6. If S = 〈a1, a2〉, then dmax(S) = 1.

Proof. We will show that every element of S has only one maximal
factorization. Suppose that

s = c1a1 + c2a2 and s = d1a1 + d2a2,

where c1 + c2 = d1 + d2. If c1 = d1 or c2 = d2, then it follows that
both c1 = d1 and c2 = d2. If this is not the case, then we may
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assume without loss of generality that c1 > d1. But then we have
(c1 − d1)a1 + c2a2 = d2a2 and

(c1 − d1)a1 + c2a2 < (c1 − d1)a2 + c2a2

= (c1 − d1 + c2)a2

= d2a2.

This is a contradiction. Since we cannot have two factorizations of an
element of S with the same length, we certainly cannot have two with
maximal length.

3. The maximal denumerant of a semigroup with embedding
dimension less than four. Throughout this section, unless otherwise
stated, we assume that S = 〈a1, a2, a3〉 is a numerical semigroup with
embedding dimension 3. Set g = gcd (a2−a1, a3−a1), m = (a2−a1)/g
and n = (a3 − a1)/g. Then

(1) S = 〈a1, a1 +mg, a1 + ng〉,

where gcd (m,n) = gcd (a1, g) = 1. In the following lemma, we
determine the maximally reduced elements of S and their maximal
factorizations.

Lemma 3.1. Let s be a maximally reduced element of S. Then
s is a multiple of na2. Moreover, if s = kna2, then {pU + qV |
p, q ≥ 0 and p+ q = k} is the set of maximal factorizations of s where
U = (0, n, 0) and V = (n −m, 0,m) (using the standard addition and
scalar multiplication of vectors).

Proof. The element s = 0, which is always maximally reduced, has
the unique (maximal) factorization (0, 0, 0). Certainly, s is a multiple
of na2. It is also easy to verify that the rest of the theorem is satisfied
in this case. Now we assume that s > 0. Since s is maximally reduced,
there exists a maximal representation of s with the first component
equal to 0, say D = (0, d2, d3). Suppose that d3 �= 0. Since there exists
another maximal factorization C = (c1, c2, 0) of s, we have

s = d2a2 + d3a3 > (d2 + d3)a2 = (c1 + c2)a2 ≥ c1a1 + c2a2 = s,

which is impossible. Thus, d3 = 0 and D = (0, d2, 0).
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The element s > 0 also has another maximal factorization E =
(e1, 0, e3) distinct from D. We now have

d2a2 = e1a1 + e3a3,(2)

and

d2a1 = e1a1 + e3a1.(3)

Subtracting equation (3) from equation (2) and dividing by g yields
md2 = ne3. Since m and n are relatively prime, we have that d2 = kn
for some k > 0, and so s = d2a2 = kna2. Therefore, s is a multiple of
na2.

Next we show that {pU + qV | p, q ≥ 0 and p + q = k} is the set of
maximal representations of the maximally reduced element s = kna2.
Notice that our proof of the first statement of the theorem shows that
kU = (0, kn, 0) is a maximal factorization of s. It is not difficult to see
that pU + qV , where p, q ≥ 0 and p + q = k is also a factorization of
s having the same length as kU . Thus, all of these factorizations are
maximal. We still need to show that no other maximal factorizations
exist.

Let C = (c1, c2, c3) be a maximal factorization of s. Similar to before,
using that (0, kn, 0) is a maximal factorization, we have

(kn− c2)a2 = c1a1 + c3a3,(4)

and

(kn− c2)a1 = c1a1 + c3a1.(5)

Subtracting equation (4) from equation (5) and dividing by g yields
m(kn − c2) = nc3. Since m and n are relatively prime, we have
that kn − c2 = k′n and c3 = k′m for some 0 ≤ k′ ≤ k. It follows
that c2 = (k − k′)n and c1 = k′(n − m). Therefore, we have that
C = (k − k′)U + k′V .

From Lemma 3.1, we can precisely describe the set of maximally
reduced elements. This is the content of the next theorem.
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Theorem 3.2. There exists an integer k ≥ 0 such that {0, na2, 2na2,
. . ., kna2} is the set of maximally reduced elements in S. Furthermore,
dmax(ina2;S) = i+ 1 for 0 ≤ i ≤ k.

Proof. We already know that every maximally reduced element in S
is a multiple of na2. Thus, for the first statement it suffices to assume
that s = hna2 is maximally reduced and show that this implies that
s′ = (h− 1)na2 is also maximally reduced.

If (0, (h − 1)n, 0) is not a maximal factorization of s′, then s′ has a
factorization C = (c1, c2, c3) such that c1+c2+c3 > (h−1)n. It follows
that (c1, c2 + n, c3) would be a factorization of s with length greater
than hn. Therefore, (0, hn, 0) is not a maximal factorization of s, and
s is not maximally reduced by Theorem 3.1. From this contradiction,
we conclude that indeed (0, (h−)n, 0) is a maximal factorization of s′.
Clearly, we also have that ((h − 1)(n − m), 0, (h − 1)m) is a maximal
factorization of s′ since it is a factorization with length (h− 1)n. This
shows that s′ is maximally reduced.

Now, if 0 ≤ i ≤ k, then ina2 is maximally reduced and, by
Theorem 3.1, its maximal factorizations are {p(0, n, 0)+q(n−m, 0,m) |
p, q ≥ 0 and p+q = i}. Since p can range from 0 to i (with q depending
on p), it follows that dmax(ina2;S) = i+ 1.

Our main results, the formulas provided in Theorems 3.5 and 3.6,
are both dependent upon Lemma 3.3. Notice that, since m and n are
relatively prime, U = 〈m,n〉 is a semigroup with embedding dimension
less than three. It is well known that U is a symmetric semigroup,
i.e., for every z ∈ Z, exactly one of z or f − z is in U , where f is
the Frobenius number of U . The Frobenius number of U is the largest
integer not in U , and we have f = mn−m− n. See [11, 12] for more
information concerning symmetric semigroups.

Lemma 3.3. The following are equivalent:

(a) hna2 is not a maximally reduced element of S,

(b) (0, hn, 0) is not a maximal factorization of hna2,

(c) hmn− a1 ∈ 〈m,n〉.
Moreover, dmax(S) = min{h | hmn− a1 ∈ 〈m,n〉}.
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Proof. For (a) implies (b), if (0, hn, 0) is a maximal factorization,
then so is (h(n−m), 0, hm). Thus, hna2 is maximally reduced. For (b)
implies (a), if hna2 is maximally reduced, then by Lemma 3.1, (0, hn, 0)
is a maximal factorization of hna2.

For (b) implies (c), we may assume that a1 ∈ 〈m,n〉, since otherwise
we would have a1 − m − n(h − 1)mn /∈ 〈m,n〉. By the symmetry of
〈m,n〉, it follows that hmn− a1 ∈ 〈m,n〉. By assumption we have that

(6) hna2 = c1a1 + c2a2 + c3a3,

where hn < c1 + c2 + c3. Write k = hn − (c1 + c2 + c3). Subtracting
(c1 + c2 + c3)a1 from both sides of (6), we have

hngm− ka1 = c2gm+ c3gn.

Since gcd (a1, g) = 1, it follows that k is divisible by g and so

c2m+ c3n = hmn− k′a1,

for some k′ > 0. Thus, hmn − k′a1 ∈ 〈m,n〉, and since a1 is as well,
we have hmn− a1 ∈ 〈m,n〉.
For (c) implies (b), we essentially reverse these steps. Since hmn −

a1 ∈ 〈m,n〉, we have hmn − a1 = c2m + c3n where c2, c3 ≥ 0.
Multiplying both sides by g, adding c2a1 + c3a1 to both sides and
rearranging gives

hna2 = (hn+ g − c1 − c2)a1 + c2a2 + c3a3.

If we can verify that hn+g−c1−c2 ≥ 0, then (0, hn, 0) is not a maximal
factorization of hna2. To do this, suppose that hn + g − c1 − c2 < 0.
Then, using the fact that m < n, we get mhn + mg < mc2 + mc3 <
mc2 + nc3 = hmn − a1. It follows that a2 = a1 +mg < 0, which is a
contradiction.

Before we prove the main results, we consider when S is generated by
three elements, a1, a2 and a3, that do not form the minimal generating
set. In this case, S has embedding dimension less than three, and we
have seen that dmax(S) = 1. The next lemma shows that we still have
dmax(S) = min{h | hmn− a1 ∈ 〈m,n〉}.
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Lemma 3.4. Let S be a numerical semigroup generated by a1, a2
and a3 such that these elements do not form the minimal generating
set of S. Then min{h | hmn − a1 ∈ 〈m,n〉} = 1, or equivalently,
mn− a1 ∈ 〈m,n〉.

Proof. Since a1, a2 and a3 do not form the minimal generating set,
we have either a2 = ka1 for k ≥ 2 or a3 = pa1 + qa2 where p+ q ≥ 2.
In both case we can show that a1 < m+ n.

For the former case, we have a1 + gm = ka1. Thus, gm = (k − 1)a1,
and since (a1, g) = 1, it follows that m = k′a1, where 1 ≤ k′ =
(k − 1)/g ∈ Z. Therefore, a1 < m + n. For the latter case, we
have a1 + gn = pa1 + q(a1 + gm). Thus, g(n − qm) = (p + q − 1)a1
and, since (a1, g) = 1, it follows that (n − qm) = k′a1, where
1 ≤ k′ = (p+ q − 1)/g ∈ Z. Therefore, a1 < m+ n.

Notice that, if a1 < m+n, then a1−m−n /∈ 〈m,n〉. By the symmetry
of 〈m,n〉, we have mn−m− n− (a1 −m− n) = mn− a1 ∈ 〈m,n〉.

Next, we prove our main results with the following setting: Numerical
semigroup S is (perhaps non-minimally) generated by a1, a2 and a3.
Moreover, we set g = gcd (a2 − a1, a3 − a1), m = (a2 − a − 1)/g and
n = (a3 − a1)/g such that

(7) S = 〈a1, a1 +mg, a1 + ng〉,

where gcd (m,n) = gcd (a1, g) = 1.

Theorem 3.5. Let 0 ≤ α < mn be such that α ≡ −a1 mod mn. We
have the following formula:

dmax(S) =

{⌈
a1

mn

⌉
if α ∈ 〈m,n〉⌈

a1

mn

⌉
+ 1 otherwise.

Proof. First note that α = �a1/mn�mn− a1 and 0 ≤ �a1/mn�mn−
a1 < mn. Thus, if h < �a1/mn�, then hmn − a1 /∈ 〈m,n〉. On the
other hand, if h > �a1/mn�, then hmn− a1 > mn and thus hmn− a1
is an element of 〈m,n〉.
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The result now follows from Lemmas 3.3 and 3.4. If �a1/mn�mn−
a1 ∈ 〈m,n〉, then dmax(S) = min{h | hmn− a1 ∈ 〈m,n〉} = �a1/mn�.
Otherwise, dmax(S) = min{h | hmn− a1 ∈ 〈m,n〉} = �a1/mn�+ 1.

Theorem 3.6. If x and y are integers such that mx+ny = a1, then

dmax(S) =
⌈x
n

⌉
+
⌈ y

m

⌉
.

Proof. Note that a1 = mx+ ny = mu+ nv implies that m(x− u) =
n(v−y). Since gcd (m,n) = 1, we have that x−u = kn and v−y = km
for some integer k.

Thus, we see that

⌈u
n

⌉
+
⌈ v

m

⌉
=

⌈
x+ kn

n

⌉
+

⌈
y − km

m

⌉

=
⌈x
n
+ k

⌉
+
⌈ y

m
− k

⌉
=

⌈x
n

⌉
+ k +

⌈ y

m

⌉
− k

=
⌈x
n

⌉
+
⌈ y

m

⌉
.

In other words, the formula is independent of the linear combination
that we choose.

Now let k = dmax(S), so that, by Lemmas 3.3 and 3.4, we have
k = min{h | hmn − a1 ∈ 〈m,n〉}. Thus, kmn − a1 = c1m + c2n for
some c1, c2 ≥ 0. Furthermore, c1 < n and c2 < m since, otherwise,
(k − 1)mn− a1 ∈ 〈m,n〉. We now have that

⌈x
n

⌉
+
⌈ y

m

⌉
=

⌈
kn− c1

n

⌉
+

⌈−c2
m

⌉

= k +

⌈−c1
n

⌉
+

⌈−c2
m

⌉
= k

= dmax(S).
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Of course, the formulas presented in Theorems 3.5 and 3.6 are most
interesting when S has embedding dimension 3 since, otherwise, we
know that dmax(S) = 1. However, the fact that these formulas work
for all numerical semigroups with embedding dimension less than 4
naturally raises the following question:

Question 3.7. When S has embedding dimension less than t +
1, where t ≥ 4, do there exist formulas dependent upon a set of t
generators analogous to those in Theorems 3.5 and 3.6 that yield the
maximal denumerant of S?

4. The maximal denumerant of basic semigroups. We begin
with the following proposition that will aid in some computations.

Proposition 4.1. Let S = 〈a1, a2, a3〉 be a semigroup. If either m
or n divides a1, then dmax(S) = �a1/mn�.

Proof. Assume that m divides a1. Then a1 = km for some k > 0 and,
by Theorem 3.6, we have dmax(S) = �k/n� = �km/nm� = �a1/mn�.
We have a similar proof whenever n divides a1.

Recall our setting: S = 〈a1, a1 +mg, a1 + ng〉, where g = gcd (a2 −
a1, a3 − a1), m = (a2 − a1)/g and n = (a3 − a1)/g. From Theorems 3.5
and 3.6, we see that if T = 〈a1, a1+m, a1+n〉, then dmax(S) = dmax(T ).
Thus, we will restrict our attention to the following class of numerical
semigroups.

Definition 4.2. The semigroup S = 〈a1, a2, a3〉 is called basic if
gcd (a2 − a1, a3 − a1) = 1.

Proposition 4.3. Let S = 〈a1, a2, a3〉 be a basic semigroup. Then:

1. If 4a1 = 2a2 + a3, then dmax(S) = 2.

2. If 3a1 = a2 + a3, then dmax(S) = 2.

3. If 4a1 < 2a2 + a3 and 3a1 �= a2 + a3, then dmax(S) = 1.
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Proof. For the first case, by subtracting 3a1, we have a1 = 2m+ n.
Thus, dmax(S) = �2/n� + �1/m�. Since 1 ≤ m < n, we have
dmax(S) = 2. Similarly, for the second case, we obtain a1 = m + n.
Thus, dmax(S) = �1/n�+ �1/m� = 2.

For the third case, consider when a1 < m + n. Then a1 −m − n <
0, and hence, is not in 〈m,n〉. By the symmetry of S, we have
mn − m − n − (a1 − m − n) = mn − a1 ∈ 〈m,n〉. By Lemma 3.3,
dmax(S) = 1. On the other hand, if we have m + n < a1 < 2m + n,
then 0 < a1 −m− n < m. Again, we have that a1 −m − n /∈ 〈m,n〉,
and it follows that dmax(S) = 1.

Remark 4.4. Note that Proposition 4.3 is not exhaustive in the sense
that, when 4a1 > 2a2 + a3, there are more possibilities to consider.
Nevertheless, for a given a1, Proposition 4.3 does address all but finitely
many situations.

The next example demonstrates how we can easily compute the
maximal denumerant of all basic semigroups with a fixed multiplicity.

Example 4.5. Let S = 〈7, a2, a3〉 be a basic semigroup with
multiplicity a1 = 7. Using Proposition 4.3, we carry out the following
steps:

1. Solve 28 = 2a2+a3 to get the pairs of solutions (8, 12) and (9, 10).

2. Solve 21 = a2 + a3 to get the pairs of solutions (8, 13), (9, 12) and
(10, 11).

3. Solve 4a1 > 2a2+a3 to get the pairs of solutions (8, 9), (8, 10) and
(8, 11).

The semigroups from the first two steps will have maximal denu-
merant equal to 2. The maximal denumerant of the semigroups in the
third step can be computed using Proposition 4.1. All other basic semi-
groups with multiplicity 7 have maximal denumerant equal to 1. The
list below summarizes our computations.

1. dmax(〈7, 8, 9〉) = 4,

2. dmax(〈7, 8, 10〉) = 3,

3. dmax(S) = 2 if S is one of the following:
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(a) 〈7, 8, 11〉,
(b) 〈7, 8, 12〉,
(c) 〈7, 9, 10〉,
(d) 〈7, 8, 13〉,
(e) 〈7, 9, 12〉,
(f) 〈7, 10, 11〉,
4. dmax(S) = 1 otherwise.

This example raises a natural question: for which values of m and n
is dmax(〈a1, a1 +m, a1 + n〉) maximized? Considering Theorem 3.5, if
m = 1, then 〈m,n〉 = N and dmax(S) = �a1/n�. This is maximized
when n = 2. If m > 1, then since a1 ≥ 3, we have �a1/mn� + 1 ≤
�a1/2�. Hence, dmax(S) is largest when m = 1 and n = 2.
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