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ALMOST COHEN-MACAULAY AND
ALMOST REGULAR ALGEBRAS
VIA ALMOST FLAT EXTENSIONS

MOHSEN ASGHARZADEH AND KAZUMA SHIMOMOTO

ABSTRACT. The present paper deals with various aspects
of the notion of almost Cohen-Macaulay property, which was
introduced and studied by Roberts, Singh and Srinivas. For
example, we prove that, if the local cohomology modules of
an algebra T of a certain type over a local Noetherian ring are
almost zero, T maps to a big Cohen-Macaulay algebra.

1. Introduction. Let (R,m) be a d-dimensional Noetherian local
ring with a system of parameters x := x1, . . . , xd. Hochster’sMonomial
Conjecture states that xt

1 · · ·xt
d /∈ (xt+1

1 , . . . , xt+1
d ) for all t ≥ 0.

The Monomial Conjecture is known to hold for all equicharacteristic
local rings and for all local rings of dimension at most 3. A recent
proof of this conjecture in dimension 3 due to Heitmann has opened
a new approach to the study of homological conjectures in mixed
characteristic, and this approach is a sample of Almost Ring Theory.
We direct the reader to [9] for a systematic study of almost ring theory.

Let R+ denote the integral closure of a domain R in an algebraic clo-
sure of the fraction field of R. Using extraordinarily difficult methods,
Heitmann [12] recently proved that R+ is almost Cohen-Macaulay for
a complete local domain R of mixed characteristic in dimension 3. Let
T be an R-algebra equipped with a value map v (this term together
with its normalized version is explained below, but we warn the reader
that the value map is defined on algebras that are not necessarily inte-
gral domains). We recall from [18] that T is almost Cohen-Macaulay,
if every fixed element of the local cohomology module Hi

m(T ) is anni-
hilated by elements of arbitrarily small valuations with respect to v for
all i �= d, and T/(x)T is not almost zero for every system of parameters
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x of R (see also [17, 19, 23]). In the graded case of characteristic zero,
some intricate calculations and examples may be found in [19]. The
organization of this paper is as follows.

In Section 2, we summarize some known results which will be used
throughout this work. Also, we discuss basic properties of almost zero
modules. The central flow of Section 3 is closely connected with the
following question:

Question 1.1. Under what conditions does an R-algebra T map
to a big Cohen-Macaulay R-algebra? Is it possible to provide such
conditions in terms of the annihilator of local cohomology modules?

The answer to Question 1.1 is stated as follows (see Theorem 3.18
and Theorem 3.16):

Theorem 1.2. Let (R,m) be a d-dimensional Noetherian local ring,
and let B be a big R-algebra equipped with a sequence {cn ∈ B | n ∈ N}
such that there exists a non-zero divisor c ∈ B for which cn is a root
of zn − c = 0 for all n and ckm = cn, whenever kn = m. Suppose
that cn · Hi

m(B) = 0 for all n > 0 and i �= d. Then B maps to a big
Cohen-Macaulay R-algebra.

The importance of the above question arises from an attempt to find
a well-behaved closure operation of ideals in Noetherian rings. For an
ideal I of a Noetherian local ring (R,m), we set

ICM :={x ∈ R | x ∈ IB for some big Cohen-Macaulay R−algebra B}.

An R-algebra T is called a seed, if it maps to a big Cohen-Macaulay
R-algebra. Seed algebras over local rings have been studied in [7]
extensively, where it was shown that ICM defines a closure operation
satisfying a series of certain axioms for complete local domains in
positive characteristic. In fact, in order to verify that ICM defines an
ideal, we need the existence of weakly functorial big Cohen-Macaulay
algebras. In a sense, if there are sufficiently many big Cohen-Macaulay
algebras, then ICM could be a candidate of closure operation which
makes sense in all characteristics (see [7] for more details).
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In Section 4, we prove some results inspired by Roberts’ results on
Fontaine rings [18] and by new ideas of Faltings [8, Section 2]. In
particular, the notion of almost faithfully flatness (see Definition 4.1)
plays an important role in studying almost Cohen-Macaulay property in
various aspects. Let S be a reduced local ring that is module-finite over
a regular local ring R of characteristic p > 0. Then, in Theorem 4.6,
we show that the minimal perfect S-algebra S∞ is an almost flat R∞-
module. Let T be an almost Cohen-Macaulay algebra over a local
ring (R,m), and let M be an almost faithfully flat T -module. In
Theorem 4.3 below, we show that Hd−i

m (M) ≈ Hd−i
m (T ) ⊗T M . In

particular, M is almost Cohen-Macaulay.

In Section 5, we first introduce the notion of almost regular algebras
(see Definition 5.1 below). Then we relate almost regularity to the
structure of F -coherent rings which is defined in [22]. As a main
consequence, we prove a structure theorem on almost regular algebras
(see Theorem 5.8 and Corollary 5.10). Namely, if R is a complete local
domain of characteristic p > 0, then ExtnR∞(M,N) is almost zero for
all R∞-modules M and N and n > dimR+1, where R∞ is the perfect
closure of R.

2. Preliminary notation. The notation (R,m) denotes a Noethe-
rian local ring. In this section, we set notation and discuss some facts
which will be used throughout the paper. Let A be a general com-
mutative ring (may not be Noetherian). Let M be an A-module and
x = x1, . . . , xt a sequence in A. The notation xi = x1, . . . , xi will also
be used for 1 ≤ i ≤ t. A sequence x is M -regular, if xi+1 is a non-zero
divisor on M/(xi)M for i ≥ 0 and M/(x)M �= 0. A module M over
a local ring (R,m) is strict, if M �= mM . A strict R-module M is
called a big Cohen-Macaulay module, if there is a system of parameters
x = x1, . . . , xd of R such that x is M -regular and M is a balanced
big Cohen-Macaulay module, if every system of parameters of R is M -
regular. For an ideal a = (x1, . . . , xn) of A, the notation K•(x;M)
stands for the Koszul complex of M with respect to x. Hi(x;M) stands
for the ith cohomology module of HomA(K•(x),M). The Koszul grade
of a on M is defined by

K.gradeA(a,M) := inf {i ∈ N ∪ {0} | Hi(x;M) �= 0}.
In view of [3, Lemma 3.2], K.gradeA(a,M) ≤ htM (a). The extension
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grade of an ideal b of A on M is defined by

E.gradeA(b,M) := inf {i ∈ N ∪ {0} | ExtiA(A/b,M) �= 0}.

According to [3, Example 2.4 (i)], there is a ring A such that
E.gradeA(b, A) > ht(b). However, K.gradeA(b,M) = E.gradeA(b,M),
if b is finitely generated [3, Proposition 2.3]. The notation Hi

a(M)
stands for the ith cohomology of the Čech complex of M with respect
to x. The Čech grade of a on M is defined by

Č.gradeA(a,M) := Č.gradeA(x;M)

:= inf {i ∈ N ∪ {0} | Hi
a(M) �= 0}.

If a ⊆ A is not finitely generated, then the Koszul grade of a on M is
defined by

K.gradeA(a,M) := sup{K.gradeA(b,M) |
b is a finitely generated subideal of a}.

The Čech grade for general ideals may be defined in a similar way.
For a quasilocal ring (A,m), we use the notation K.depthA(M) for
K.gradeA(m,M).

Remark 2.1. As seen above, there are several definitions of “grade”
over non-Noetherian rings. We recall from [3, Proposition 2.3] that
K.gradeA(a,M) = Č.gradeA(a,M).

We define a map of A-modules Φ : M/(x)M [X1, . . . , Xt] → grxM by
the rule Φ(Xi) = xi ∈ (x)/(x)2. Then x is called M -quasi-regular, if Φ
is an isomorphism.

Lemma 2.2. Let (R,m) be a local ring of dimension d, and let N
be an R-module. For a system of parameters x = x1, . . . , xd, consider
the following assertions:

(i) Hi
m(N) = 0 for all i �= d and N/mN �= 0.

(ii) Hi(x;N) = 0 for all i �= 0 and N/mN �= 0.

(iii) x is N -quasi-regular.
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(iv) x is a regular sequence on N̂ , where N̂ is the m-adic completion
of N .

Then (i) is equivalent to (ii), (iii) is equivalent to (iv) and (i) implies
(iii).

Proof. (i) ⇔ (ii). This follows from Remark 2.1.

(iii) ⇔ (iv). This is [5, Theorem 8.5.1].

(i) ⇒ (iii). This is [5, Exercise 8.1.7].

Definition 2.3. Let T be a commutative algebra (not necessarily an
integral domain).

(i) We say that T is equipped with a value map, if there is a map
v : T → R ∪ {∞} satisfying the following conditions:

1) v(ab) = v(a) + v(b) for all a, b ∈ T ;

2) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ T ;

3) v(a) = ∞ if a = 0.

(ii) Let the notation be as in (i). If v(c) ≥ 0 for every c ∈ T and
v(c) > 0 for every non-unit c ∈ T , then we say that v is normalized.

Remark 2.4. (i) In the above definition, it is not assumed that
v(a) = ∞ if and only if a = 0, but we use the convention that∞ = 0·∞.
Note that v(c) = ∞ for every nilpotent element c ∈ T . It might,
however, be better to call it a semi-value map; our notation is in effect
only for the present article, so it will not cause any confusion.

(ii) An example of a normalized value map appears in the following
way. Let (R,m) be a complete local domain, and let v be a valuation
on R with center m. Then v is positive on m and v extends to any
integral extension domain R → T and T is quasilocal and the extended
valuation is positive on the unique maximal ideal of T .

Proposition 2.5 (Separability lemma). Let T be a strict algebra
over a local ring (R,m) equipped with a normalized value map with
the property that v(a) = ∞ if and only if a = 0, and let a := {x ∈
T | v(x) > ε} for some fixed ε > 0. Then a is an ideal of T and
∩∞
n=1a

n = 0.
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Proof. As the valuation is normalized, a is an ideal of T . Write
a =

∑
ti1···ijx

i1
1 · · ·xij

j for a ∈ ∩∞
i=1a

n, where the sum runs over
ti1···ij ∈ T and xi ∈ a, n = i1 + · · · + ij , and we have v(xi) > ε
by assumption. Keeping in mind that v(ti1···ij ) ≥ 0, we have:

v(a) ≥ min{v(ti1···ijxi1
1 · · ·xij

j )}
= min{v(ti1···ij ) + v(xi1

1 · · ·xij
j )}

≥ min{v(xi1
1 · · ·xij

j )}
≥ nε,

for all n > 0. Consequently, v(a) = ∞, and thus a = 0.

Definition 2.6. Let M be a module over an algebra T which is
equipped with a value map. Then we say that M is almost zero with
respect to v, if m ∈ M and ε > 0 are given, then there exists b ∈ T
such that b ·m = 0 and v(b) < ε.

We note the following fact (an easy exercise). Let 0 → L → M →
N → 0 be a short exact sequence of T -modules. Then M is almost
zero if and only if both L and N are so. Also, the class of almost
zero modules is closed under taking direct limit. The source of the
study of almost zero modules is [9], where the theory is developed in
a manner different from ours. We will indicate the place where it is
necessary to assume that the valuation is normalized. As a precaution,
it is always assumed that the relevant algebra when we deal with almost
zero modules comes with a value map.

Example 2.7. (i) Let T be an algebra equipped with a normalized
value map v.

(a) Let n ⊆ T be a finitely generated proper ideal. Then we claim
that T/n is not almost zero. Indeed, suppose that T/n is almost zero
for a contradiction. Then, in particular, 1 ∈ T/n is almost zero. For
any given ε > 0, there exists a b ∈ T such that b ∈ n and v(b) < n.
This implies that infb∈nv(b) = 0. Let n = (a1, . . . , an), a ∈ n, and write
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a = Σn
i=1tiai for some ti ∈ T . Then we find that, for some δ > 0,

v(a) ≥ min{v(tiai) : 1 ≤ i ≤ n}
= min{v(ti) + v(ai) : 1 ≤ i ≤ n}
≥ min{v(ai) : 1 ≤ i ≤ n}
> δ,

which shows that the valuation v(a) is bounded from below by some
positive constant. This is a contradiction, since T/n is assumed to be
almost zero.

(b) Let M be a coherent almost zero T -module. Then we claim that
M = 0. For a contradiction, let x ∈ M be a non-zero element. Since
M is weakly coherent, Tx = T/(0 :T x) is finitely presented. Thus, we
have infc∈(0:Tx)v(c) > 0 by Part (a). Therefore, the cyclic module Tx
is not almost zero, a contradiction.

(ii) Let T be a perfect domain of characteristic p > 0, equipped with
a normalized value map v, and let n ⊆ T be a proper and non-zero
radical ideal. Then T/n is almost zero as a T -module. Indeed, fix
t ∈ T/n and a ∈ n such that v(a) > 0. For any given ε > 0 and
sufficiently large n > 0, we have v(a) < pnε. Keeping in mind that n
is radical and T is closed under taking p-power roots of elements, we
have ap

−n · t = 0 and v(ap
−n

) < ε. This yields the claim.

(iii) It is necessary to assume that the valuation v is normalized
in Part (i). To see an example, take T := k[X0, X1, X2, . . . ] =
∪∞
i=0k[X0, . . . , Xi], a polynomial algebra in countably many variables

over a field k. Define a (non-normalized) valuation v on T in the
following way. Set v(X0) := 0 and v(Xt) := t−1 for t > 0. For a
polynomial f ∈ A, let v(f) be such that v(f) equals the minimum of
all v(Xμ) as Xμ varies over all the monomials appearing in f with non-
zero coefficients. Then we have infb∈nv(b) = 0 for n := (X0)T . Hence
T/n is coherent and almost zero.

Remark 2.8. Let T be a coherent perfect domain of characteristic
p > 0 equipped with a normalized value map, and let n ⊆ T be a
proper and non-zero radical ideal. Such a ring exists. T/n is almost
zero in light of Example 2.7 (ii). In view of Example 2.7 (i), any finitely
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presented submodule of T/n is trivial. Hence T/n cannot be presented
as the direct limit of its finitely presented submodules.

3. Almost Cohen-Macaulay modules. Throughout this section,
(R,m) is a Noetherian local ring with d = dimR, and T is a strict
algebra over R together with a value map v.

Definition 3.1. Let T be an algebra equipped with a value map.
Then we say that a T -module M is almost Cohen-Macaulay over R, if
Hi

m(M) is almost zero for all i �= d, but M/mM is not almost zero.

Definition 3.2. Let T be an algebra equipped with a value map v.
Then we say that T -modules M and N are:

(i) almost isomorphic, if there is a T -homomorphism f : M → N
(or g : N → M) such that both Ker f and coker f (or both Ker g and
coker g) are almost zero.

(ii) in the same class, if there is a T -module L such that there exist
T -homomorphisms L → M and L → N , both of which are almost
isomorphic in the above sense, which we denote by M ≈ N .

Remark 3.3. (i) In general, an almost isomorphism is not an equiv-
alence relation. For example, let R be a complete local domain of
dimension ≥ 1. Then it is known that R+ is quasilocal with its unique
maximal ideal m+. It is easy to see that the natural inclusion m+ → R+

is an almost isomorphism. Conversely, let R+ → m+ be a map of R+-
modules. Then such a map is just a multiplication by some a ∈ m+. If
m+/aR+ is almost zero, then for any ε > 0, there is an element b ∈ R+

such that ba1/2 ∈ aR+ and v(b) < ε. From this, we have

ε+
1

2
v(a) > v(ba1/2) = v(b) +

1

2
v(a) ≥ v(a).

But then, if we choose ε so that ε < 1/2v(a), this yields a contradiction.
However, we have the following result. Let both f : M → N and
g : N → L be almost isomorphisms. Then M and L are almost
isomorphic to each other. Indeed, by replacing N with im f and N
with N/ker g, we may assume that f is surjective and g is injective.
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Then the claim follows from the following exact sequence:

0 → ker f → ker (g◦f) → ker g → coker f → coker (g◦f) → coker g → 0

by the Snake Lemma.

(ii) If M ≈ N , it does not imply that there is a map M → N
(or N → M). In order to prove results on almost ring theory, it is
convenient to have an actual map to take its kernel and cokernel, and
so on. Also, if we say that a module M is almost isomorphic to a flat
module N , we have an almost isomorphism M → N (or N → M). If a
theorem is proved for M → N , then we need to verify, if the theorem
holds for N → M as well (for example, see Lemma 4.2), since an
almost isomorphism cannot be inverted in a naive sense. An exact way
of doing this is to go through the localization of the abelian category
of R-modules with respect to the class of almost isomorphisms (see [9]
for details). However, if the valuation is not normalized, some peculiar
phenomena can happen in general. In the final section, we will see an
example of A-modules K,L such that L is almost zero but ExtiA(K,L)
is not.

We cite the following easy lemmas without proofs.

Lemma 3.4. Let (Er, dr) be a first quadrant spectral sequence, which
converges to a graded module {H(n) | n ∈ N}. The following assertions
hold:

(i) If E2
p,q is almost zero for all q �= q0, then H(n) ≈ E2

n−q0,q0 .

(ii) If E2
p,q is almost zero for all p �= p0, then H(n) ≈ E2

p0,n−p0
.

Lemma 3.5. Let M be an almost zero T -module. Then TorTi (M,N) ≈
0 for all i ≥ 0 and all T -modules N .

Proposition 3.6. Let T be an algebra equipped with a value map.
Suppose that T is almost Cohen-Macaulay over a d-dimensional local
ring (R,m) and M is a T -module. Then TorTn (H

d
m(T ),M) ≈ Hd−n

m (M)
for all n ≥ 0. In particular, Hd

m(T ) is not almost zero as a T -module.



454 M. ASGHARZADEH AND K. SHIMOMOTO

Proof. Let x = x1, . . . , xd be a system of parameters of R, and let

K• : 0 � Kd � · · · � K1 � K0 � 0

be the Čech complex of T with respect to x, whereKj :=⊕1≤i1<···<in−j≤d

Txi1 ···xin−j
. Note that, for each T -module L, we have

Hi(K• ⊗T L) = Hd−i
m (L).

Let us take a projective resolution of the T -module M :

P• : · · · � Pn � · · · � P1 � P0 � 0.

Form the tensor product P• ⊗T K•, which is the first quadrant bicom-
plex. First we take vertical and then horizontal homology. Note that
K• consists of flat modules, and keep in mind that exactness is pre-
served upon taking tensor product with flat modules. Thus, IE2

p,q = 0
for all p �= 0 and

IE2
0,q = Hq(K• ⊗T M) � Hd−q

m (M).

By [20, Theorem 11.17], there is the following spectral sequence:

IE2
p,q =⇒

p
Hn(Tot (P• ⊗T K•)).

Since the spectral sequence collapses, we have

(∗) Hi(Tot (P• ⊗T K•)) � IE2
0,i = Hd−i

m (M).

Now we take horizontal and then vertical homology and recall that the
flat functor commutes with homology functors. Then

IIE2
p,q = Hp[H

d−q
m (Pp−1) −→ Hd−q

m (Pp) −→ Hd−q
m (Pp+1)]

� Hp[H
d−q
m (T )⊗T Pp−1 −→ Hd−q

m (T )⊗T Pp −→ Hd−q
m (T )

⊗T Pp+1]

� TorTp (H
d−q
m (T ),M).

Recall from [20, Theorem 11.17] that

IIE2
p,q =⇒

p
Hi(Tot (P• ⊗T K•)).
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Keeping in mind thatHd−q
m (T ) ≈ 0 for all q �= 0, we have TorTp (H

d−q
m (T ),

M) ≈ 0 by Lemma 3.5 for all q �= 0. It follows from Lemma 3.4 that

IIE2
i,0 ≈ Hi(Tot (P• ⊗T K•)).

Combining the last observation with (∗), we see that TorTi (Hd
m(T ),M) ≈

Hd−i
m (M), which is our first claim.

Now we prove the second claim. Suppose that Hd
m(T ) ≈ 0. Then,

in view of Lemma 3.5 and the first claim, we see that H0
m(M) ≈

TorTd (H
d
m(T ),M) ≈ 0. Applying this for M = T/mT , we have

H0
m(T/mT ) � T/mT ≈ 0, which is a contradiction.

Remark 3.7. Although we are concerned with algebras rather than
modules, we would like to address the following question: Let T be an
algebra equipped with a value map over a local ring (R,m), and let
M be an almost Cohen-Macaulay T -module. Then is HdimR

m (M) not
almost zero? For an affirmative answer, see [4].

Lemma 3.8. Let B be a coherent ring, and let M be a finitely
presented B-module. Then we have the following assertions:

(i) The Koszul (co)homology modules of M are finitely presented.

(ii) Let x� = x1, . . . , x� be a sequence of elements in the Jacobson
radical of B such that K.gradeB(x�;M) = �. Then K.gradeB(xi;M) =
i for all 1 ≤ i ≤ �.

(iii) Let x� = x1, . . . , x� be a sequence of elements in the Jacobson
radical of B such that Č.gradeB(x�;M) = �. Then Č.gradeB(xi;M) = i
for all 1 ≤ i ≤ �.

Proof. (i) Let

0 � · · · � Ki
�

ϕi

Ki+1
� · · · � 0

be the Koszul complex of M with respect to x. Since imϕi is finitely
presented over a coherent ring B, it is coherent. Combining this with
the following short exact sequence

0 � kerϕi
� Ki

� imϕi
� 0,
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we find that kerϕi is finitely presented by [10, Theorem 2.2.1]. The
claim follows from this.

(ii) Let 1 ≤ i < �, and consider the following long exact sequence:

· · · −→ Hk(xi;M)
xi+1−→ Hk(xi;M) −→ Hk+1(xi+1;M) −→ · · · .

Then Hk(xi;M) is finitely presented in view of (i), and Nakayama’s
lemma yields that

K.gradeB(xi+1;M) ≤ K.gradeB(xi;M) + 1.

By using an induction, we get K.gradeB(x�;M) ≤ K.gradeB(xi;M) +
(�− i), which implies that K.gradeB(xi;M) = i, as claimed.

(iii) In view of (ii), it suffices to recall from Remark 2.1 that Koszul
grade coincides with Čech grade.

Example 3.9. While Čech grade has many common properties with
classical grade for Noetherian rings, one difference is that a ring A may
contain a finite sequence x� = x1, . . . , x� such that Č.gradeA(x�;A) = �,
but Č.gradeA(xi;A) �= i. Let R = Q[[x, y]], X(1) = {p ∈ SpecR |
htp ≤ 1}, M1 = ⊕p∈X(1)Rp/pRp, and let A = R � M1, the trivial
extension of R by M1. Then A is quasilocal with a unique maximal
ideal n = ((x, y)R,M1). Note that polynomial grade coincides with
Čech grade [3, Proposition 2.3 (i)]. In light of [11, Example 2.10], we
see that Č.gradeA(a, A) = 0 for all ideals a ⊆ A with the property
that rad (a) �= n. Set x1 = (x, 0) and x2 = (y, 0). It follows that
Č.gradeA(x1, x2;A) = 2 and Č.gradeA(xi;A) = 0 for i = 1, 2.

A permutation of a regular sequence is not necessarily regular. How-
ever, we have the following result:

Corollary 3.10. Let B be a coherent ring, let M be a finitely
presented B-module, and let x = x1, . . . , x� be a sequence of elements
in the Jacobson radical of B such that x is an M -regular sequence.
Then any permutation of x is M -regular. In particular, any quasilocal
coherent big Cohen-Macaulay algebra is a balanced big Cohen-Macaulay
algebra.
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Proof. Let σ be a permutation on the set {1, . . . , �}, and set
σ(x) := xσ(1), . . . , xσ(�). Then K.gradeB(x;M) = �. Since Koszul
grade of a finitely generated ideal is independent of the choice of the
generators of the ideal, we have K.gradeB(σ(x);M) = �. In view of
Lemma 3.8 (ii), we find for each 1 ≤ i ≤ � that

K.gradeB(σ(xi);M) = i

for σ(xi) = xσ(1), . . . , xσ(i). It then turns out that

(∗) K.gradeB

(
σ(x);

M

(σ(xi))M

)
= �− i

By induction on �, we show that σ(x) is M -regular. If � = 1, then in
view of

H0(xσ(1);M) = (0 :M xσ(1)),

there is nothing to prove. To conclude the claim in the general case,
apply (∗).

Remark 3.11. Let T be a class of B-modules. Then T is called
a torsion theory if it is closed under taking submodules, quotients,
extensions and the direct limit. Let T be a torsion theory, and let M
be a B-module. For an ideal a ⊆ B generated by x = x1, . . . , xd, set:

(i) T− Č.gradeB(a,M) := inf {i ∈ N0 | Hi
a(M) /∈ T},

(ii) T−K.gradeB(a,M) := inf {i ∈ N0 | Hi(K•(x;M)) /∈ T}.
Then [4, Theorem 1.1 (i)] states that T − Č.gradeB(a,M) = T −
K.gradeB(a,M).

The next proposition gives a partial answer to a question of Roberts,
Singh and Srinivas in [19, page 239] (also, see Theorems 3.16 and 3.18
below).

Proposition 3.12. Let B be a strict algebra over a local ring (R,m)
with d = dimR such that B is equipped with a value map, and consider
the following statements:

(a) ((xi−1)B :B xi)/(xi−1)B ≈ 0 for 1 ≤ i ≤ d and any system of
parameters x = x1, . . . , xd of R.
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(b) Hi(x;B) ≈ 0 for i > 0 and any system of parameters x =
x1, . . . , xd of R.

(c) Hi
m(B) ≈ 0 for i < d.

Then we have the following assertions:

(i) (a) ⇒ (b) ⇒ (c).

(ii) If v is normalized and B is quasilocal and coherent, then (c)
implies that B is a balanced big Cohen-Macaulay R-algebra.

Proof. We keep the notation as in the proposition.

(i) (a) ⇒ (b). Assume that we have

c · ((xi−1)B :B xi)

(xi−1)B
= 0.

Then the standard inductive argument as in [7, Lemma 4.2] shows that
c2·dimR−1 ·Hi(x;B) = 0, from which we get the desired claim.

(b) ⇒ (c). Let us recall that almost zero modules are closed under
taking the direct limit. Now Hi

m(B) � lim−→n
Hd−i(x

n;B) finishes the

proof.

(ii) Note that B is almost Cohen-Macaulay, because B/(x)B is not
almost zero due to Example 2.7 (i). Then, in view of Proposition 3.6,
Hd

m(B) is not almost zero. Let Tv denote the torsion theory of
almost zero modules. By Remark 3.11, Tv − Č.gradeB(m, B) = d
and Tv − K.gradeB(m, B) = d. Hence, we have Hi(x;B) ≈ 0 for
all 0 ≤ i < d and any system of parameters x = x1, . . . , xd of R.
The Koszul cohomology modules of M with respect to x are finitely
presented by Lemma 3.8 (i). Note that finitely presented modules over
coherent rings are coherent. Thus, Hi(x;M) is coherent for all i ≥ 0.
In view of Example 2.7 (i), the Koszul complex of B with respect to
x is acyclic and, hence, K.gradeB(x;M) = d. By Lemma 3.8 (ii),
K.gradeB(xi;M) = i for all i ≥ 0. Then we find that

K.gradeB

(
x;

M

(xi)M

)
= d− i.

To conclude, it suffices to apply the usual induction as in Corollary
3.10.
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Our next main results are Theorems 3.16 and 3.18.

Definition 3.13. Let T be a strict algebra over a local ring (R,m),
equipped with a normalized value map. Then T is called big if there
exists a sequence of non-zero divisors {cn ∈ T | n ∈ N} together with
a sequence {εn ∈ R>0 | n ∈ N} such that limn→∞ εn = 0, v(cn) = εn
and, if m < n, then cmc−1

n ∈ T [c−1
n ] is contained in cnT ⊆ T [c−1

n ].

Example 3.14. Let us give some examples of big algebras that are
constructed by taking integral extensions.

(i) If R is any domain of characteristic p > 0, then the perfect closure

of R is defined as R∞ := ∪n>0R
p−n

. If R is a complete local domain,
then

((xi−1)R∞ :R∞ xi)

(xi−1)R∞
≈ 0

for all 1 ≤ i ≤ dimR and every system of parameters x = x1, . . . , xd

of R ([19] for a proof). We will discuss various properties of algebras
of this type later.

(ii) In the mixed characteristic case, we want to consider the ring T
such that R ⊆ T ⊆ R+ and sufficiently many p-power roots of elements
of T are contained in T . To be precise, let R be a complete local
domain of mixed characteristic p > 0 with perfect residue field, and let
A := V [[x1, . . . , xn]] � R be a surjection from a complete regular local
ring, where n is the number of generators of the maximal ideal of R.
Then this surjection extends to a ring homomorphism A+ � R+. For
a regular system of parameters πV , x1, . . . , xn of A, we form a ring

A∞ :=
⋃
k>0

A[πp−k

V , xp−k

1 , . . . , xp−k

n ] ⊆ A+,

and define R∞ to be the image of A∞ under the surjection A+ � R+.
The Frobenius map on R∞/pR∞ is surjective, as the same holds for
A∞.

(iii) The construction of the perfect closure can be extended to
reduced rings. Let R be a reduced Noetherian ring of characteristic
p > 0. Then the total ring of fractions of R is a finite product of
fields:

∏n
i=1 Ki. Denote by Ki the algebraic closure of Ki, and define
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Rn := Rp−n ⊆ ∏n
i=1 Ki. Then R∞ := ∪n>0Rn is called the minimal

perfect closure of R.

In what follows, we write JB := ∪n>0cnB for a big algebra B. The
following lemma is in the same spirit of Proposition 2.5, so we omit the
proof.

Lemma 3.15. Let the notation be as above. Then we have JB �=
mJB. Moreover, let I be a finitely generated ideal of B. Then, for any
given integer N > 0, there exists a k > 0 such that cNk /∈ I.

Let B̂ be the m-adic completion of an algebra B over a local ring
(R,m). The following theorem may be seen as an almost version of
Lemma 2.2. However, it is not clear at all, if the local cohomology
modules of B are almost zero but their annihilators are quite compli-
cated; then B maps to a big Cohen-Macaulay algebra.

Theorem 3.16. Let B be a big algebra equipped with a sequence
{cn ∈ B | n ∈ N} satisfying the given conditions of Definition 3.13
over a d-dimensional local ring (R,m), and let x := x1, . . . , xd be a
system of parameters for R. Suppose that cn ·Hi

m(B) = 0 for all n > 0
and i �= d. Then

cn · ((x1, . . . , xk−1)B̂ :
B̂
xk

) ⊆ (x1, . . . , xk−1)B̂

for all k ≤ d.

Proof. Recall that B is equipped with a normalized value map and
{cn ∈ B | n ∈ N} consists of non-zero divisors of B. Then there is a
commutative diagram:

B �

cnc
−1
n+1

�

cn �

B

�

cn+1 �

cnB � cn+1B

in which the second horizontal map is the natural inclusion. Then we
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have

JB = lim−→
n∈N

( · · · � B �

cnc
−1
n+1

B �

cn+1c
−1
n+2

B � · · · ).
Keep in mind that B is big. In view of Definition 3.13, there is a

sequence {εn ∈ R>0 | n ∈ N} such that limn→∞ εn = 0, v(cn) = εn,
and, if m < n, then cmc−1

n ∈ T [c−1
n ] is contained in cnT ⊆ T [c−1

n ].
Recall that cn ·Hi

m(B) = 0 for all n > 0 and i �= d. By incorporating
these observations, we see that

Hk
m(JB) = lim−→

n∈N

( · · · −→ Hk
m(B)

cnc
−1
n+1−→ Hk

m(B)

cn+1c
−1
n+2−→ Hk

m(B) −→ · · · ) = 0,

for all k �= d. By Lemma 2.2, it follows that the sequence x1, . . . , xd

is quasi-regular on the B-module JB, and JB �= mJB by Lemma 3.15.
Hence, the m-adic completion ĴB is a balanced big Cohen-Macaulay
R-module by Lemma 2.2. For every cn ∈ JB , we have a well-defined
map cn : B → JB, which extends to an injective map cn : B̂ → ĴB.
Now let z ∈ B̂ be such that xi · z ∈ (x1, . . . , xi−1)B̂. Then we have

cn·z ∈ (
(x1, . . . , xi−1)ĴB :

ĴB
xi

)
= (x1, . . . , xi−1)ĴB ⊆ (x1, . . . , xi−1)B̂,

for all n > 0. Then this proves the theorem.

Lemma 3.17 ([13, Lemma 5.1]). Let M be a module over a local ring
(R,m), and let x1, . . . , xd be a system of parameters for R. Suppose
that T is an R-algebra, that c is a non-zero divisor of T , while there is
an R-linear map α : M → T [c−1]. Let M → M ′ be a partial algebra
modification of M with respect to an initial segment of x1, . . . , xd, with
degree bound D. Suppose that, for every relation xk+1tk+1 =

∑k
i=1 xiti,

ti ∈ T , we have that ctk+1 ∈ (x1, . . . , xk)T . Finally, suppose that
α(M) ⊆ c−NT for some integer N > 0. Then the map α : M → T [c−1]
fits into the commutative square:

T [c−1] T [c−1]

M

�

α

� M ′

�

β
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in which β : M ′ → T [c−1] is an R-linear map with image contained in
c−(ND+D+N)T .

Now we are ready to prove:

Theorem 3.18. Let (R,m) be a d-dimensional Noetherian local ring,
and let B be a big R-algebra equipped with a sequence {cn ∈ B | n ∈ N}
such that there exists a non-zero divisor c ∈ B for which cn is a root
of zn − c = 0 for all n and ckm = cn, whenever kn = m. Suppose
that cn · Hi

m(B) = 0 for all n > 0 and i �= d. Then B maps to a big
Cohen-Macaulay R-algebra.

Proof. First, we show that the sequence {cn ∈ B}n∈N is not

nilpotent in B̂. We fix integers n > 0, N > 0. Since the valuation
is strictly positive on mB, we may find sufficiently large k > 0 such
that cNn /∈ mkB. Hence cn is not nilpotent in B̂. Now we prove the
assertion by contradiction. In view of [5, Section 8.3], there is a bad

sequence of algebra modifications of B̂. Keep Theorem 3.16 in mind.
Under the stated hypothesis, applying Lemma 3.17 successively, we get
the following commutative diagram:

B̂[c−1] B̂[c−1] · · · B̂[c−1]

B̂

�

� T1

�

� · · · � Ts

�

in which we have, as stated in [13, Theorem 5.2], that the leftmost
vertical arrow is the natural map, the image of each Ti is contained in
the cyclic module c−Nkt

−1

B̂ for 0 ≤ k ≤ s and some integer Nk > 0.
A diagram-chase yields that 1 ∈ mc−Nt−1

B̂ for arbitrarily large t > 0,
while N > 0 is a fixed integer. Then this is just cNt−1 ∈ mB̂, or
cN ∈ mtB̂. Thus we have 0 �= cN ∈ ∩t>0m

tB̂ = 0, which is a
contradiction.

4. Almost Cohen-Macaulayness via almost flat extension. In
this section, we assume that T is an R-algebra equipped with a value
map.
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Definition 4.1. Let T be an algebra equipped with a value map,
and let M be a T -module. Then M is said to be:

(i) almost flat, if TorTi (M,N) ≈ 0 for all i > 0 and all T -modules
N ;

(ii) almost faithfully flat, if M is almost flat and for each T -module
N , M ⊗T N ≈ 0 implies that N ≈ 0.

Lemma 4.2. Let M be a T -module which is almost isomorphic to a
flat T -module F . Then M is almost flat.

Proof. The proof is easy, and we leave it to the reader.

Theorem 4.3. Let T be an almost Cohen-Macaulay algebra over
a local ring (R,m), and let M be an almost faithfully flat T -module.
Then Hd−i

m (M) ≈ Hd−i
m (T )⊗T M . In particular, M is almost Cohen-

Macaulay.

Proof. Let x = x1, . . . , xd be a system of parameters of R, and let

K• : 0 � Kd � · · · � K1 � K0 � 0

be the Čech complex of T with respect to x, whereKj :=⊕1≤i1<···<in−j≤d

Txi1 ···xin−j
. Let us take a projective resolution of M over T :

P• : · · · � Pn � · · · � P1 � P0 � 0.

Form the tensor product P•⊗T K•. By a similar computation as in the
proof of Proposition 3.6, we have

Hi(Tot (P• ⊗T K•)) � IE2
0,i = Hd−i

m (M).

Again, by Proposition 3.6,

IIE2
p,q � TorTp (H

d−q
m (T ),M),

which is almost zero for all p �= 0, because M is almost flat. It follows
from Lemma 3.4 that

Hd−i
m (M) � Hi(Tot (P• ⊗T K•)) ≈ Hd−i

m (T )⊗T M.



464 M. ASGHARZADEH AND K. SHIMOMOTO

Hence, Hi
m(M) ≈ 0 for all i �= d, because Hi

m(T ) ≈ 0 for all i �= d.

It remains to show that M/mM is not almost zero. For a contradic-
tion, suppose that M/mM ≈ 0. In view of M/mM � M ⊗T T/mT and
almost faithful flatness of M , we have T/mT ≈ 0, which is a contradic-
tion.

We need the following almost flatness criterion.

Lemma 4.4. Let T be an algebra equipped with a value map, and
let M be a T -module. Then M is almost flat, if TorTi (M,T/I) ≈ 0 for
every finitely generated ideal I ⊆ T and i > 0.

Proof. We need to show that TorTi (M,N) ≈ 0 for every T -module
N . Since N is the direct limit of finitely generated modules and the
Tor functor commutes with direct limit, we may assume that N is
finitely generated. We prove the lemma by induction on the number
of generators of N . First, consider the case where N is generated by
one element. Then T/J � N for some ideal J ⊆ T and J is the
direct limit of its finitely generated subideals {Jγ | γ ∈ Γ}. Then we
have an isomorphism lim−→γ∈Γ

T/Jγ � T/J . Again, since the Tor functor

commutes with direct limit, we get the claim in the case where N is
generated by one element, because almost zero modules are preserved
under direct limits.

Now suppose that N is generated by k elements, where k ≥ 2. Then
N can be written as N ′ +Tu where N ′ is generated by k− 1 elements.
Consider the short exact sequence:

0 � N ′
� N � Tu/(Tu∩N ′) � 0.

Then since both N ′ and Tu/(Tu ∩ N ′) are generated by less than k
elements, taking Tor exact sequence and using induction hypothesis
will complete the proof.

Corollary 4.5. Let T be a coherent ring equipped with a normalized
value map, and let M be a finitely presented almost flat T -module.
Then M is projective.
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Proof. First, we show that M is flat. To show this, it suffices
to prove that TorT1 (T/J,M) = 0 for any finitely generated ideal J .
By Lemma 4.4, TorT1 (T/J,M) ≈ 0 for any finitely generated ideal
J . Note that T/J is finitely presented and, thus, both M and T/J
are coherent. Recall from [10, Corollary 2.5.3] that TorT1 (T/J,M) is
finitely presented. In view of Example 2.7 (i), we have TorT1 (T/J,M) =
0, indicating thatM is flat. It suffices to recall from [10, Theorem 2.1.4]
that every finitely presented flat module is projective.

Theorem 4.6. Let S be a reduced local ring that is module-finite
over a regular local ring R of characteristic p > 0. Then the minimal
perfect S-algebra S∞ is an almost flat R∞-module.

Proof. By a result of Kunz [5, Corollary 8.2.8], Rm := Rp−m

is flat

over Rn := Rp−n

for all n < m. By Lemma 4.4, it suffices to consider
the case when N := R∞/JR∞ for an ideal J of Rn for some n and,
thus, we may assume J ⊆ R for simplicity, and then N � R/J ⊗R R∞.
We prove the theorem by constructing a projective resolution of an
Rn-module Sn via the Frobenius map. Let

PS
• : 0 � R⊕ms

�

ϕs · · · �

ϕ0 R⊕m0
� S � 0

be a projective resolution of the R-module S. Let F
(n)
Rn

: Rn → R

(respectively, F
(n)
Sn

: Sn → S) denote the nth iterates of the Frobenius
map, respectively [5, Section 8.2]. Then the projective resolution of Sn

is given by

PSn• : 0 −→ R⊕ms
n

ϕ−n
s−→ · · · ϕ−n

0−→ R⊕m0
n −→ Sn −→ 0

where each horizontal map is given by ϕ−n
k = (ap

−n

ij,k ) with ϕk = (aij,k)
and aij,k ∈ R. By flatness of Rn over R, the homology of the complex
(PS

• ⊗R Rn)⊗Rn Rn/JRn is

(4.6.0)
TorRn

i (S ⊗R Rn, Rn/JRn) � TorRn

i (S ⊗R Rn, R/J ⊗R Rn)

� TorRi (S,R/J)⊗R Rn.

Let FRn denote the Peskine-Szpiro functor with respect to Rn. Then
since Rn is regular, FRn is faithfully exact. Denote this property by
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(4.6.1). There is an isomorphism of complexes:

(4.6.2) F
(n)
Rn

(PSn• ) � (PS
• ⊗R Rn),

together with an isomorphism of complexes:

(4.6.3) F
(n)
Rn

(PSn• ⊗Rn Rn/JRn) � F
(n)
Rn

(PSn• )⊗Rn Rn/JRn.

Let c ∈ R be a non-zero element. Then it follows from (4.6.0) that:

c · ker (ϕi ⊗Rn idRn/JRn
) ⊆ im (ϕi+1 ⊗Rn idRn/JRn

)

4.6.2⇐⇒ c · ker (F(n)
Rn

(ϕ−n
i )⊗Rn idRn/JRn

)⊆ im (F
(n)
Rn

(ϕ−n
i+1)⊗Rn idRn/JRn

)

4.6.3⇐⇒ c · ker (F(n)
Rn

(ϕ−n
i ⊗Rn idRn/JRn

))⊆ im (F
(n)
Rn

(ϕ−n
i+1 ⊗Rn idRn/JRn

))

4.6.1⇐⇒ F
(n)
Rn

(cp
−n·ker (ϕ−n

i ⊗Rn idRn/JRn
))⊆F

(n)
Rn

(im (ϕ−n
i+1⊗Rn idRn/JRn

))

4.6.1⇐⇒ cp
−n · ker (ϕ−n

i ⊗Rn idRn/JRn
) ⊆ im (ϕ−n

i+1 ⊗Rn idRn/JRn
).

This implies that, if c · TorRi (S,R/J) = 0, then cp
−n · TorRn

i (Sn, Rn/
JRn) = 0. So it is sufficient to find such an element. By generic
flatness, there exists a c ∈ R such that Sc is free over Rc. Hence, we
have TorRc

i (Sc, (R/J)c) = 0 for i ≥ 1, which implies that there is some
power cN such that cN ·TorRi (S,R/J) = 0. Replacing cN by c, we have

cp
−n · TorRn

i (Sn, Rn/JRn) = 0 for all n ≥ 0. Taking direct limit, we
deduce that

cp
−n · TorR∞

i (S∞, N) = 0

for all n ≥ 0 and i �= 0.

If T is finite étale over S, then one can show that T∞ is finite étale
over S∞. In fact, the natural map Sn ⊗S T → Tn is an isomorphism
for all n ≥ 0. Taking direct limit, we get the claim.1

Remark 4.7. (i) There is a version of Auslander-Buchsbaum formula
for ring homomorphisms, due to Schoutens [21, Theorem 1.2]. For a
local homomorphism R → S of local Noetherian rings, we have an
equality

fl.dimR(S) + E.depthR(S) = E.depthR(R),
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provided that S has finite projective dimension over R.

(ii) There is a version of the Auslander-Buchsbaum formula for non-
Noetherian rings, due to Northcott [16, Chapter 6, Theorem 2]. Let
(A,m) be a quasilocal ring, and let M be an A-module admitting a
resolution of finite length consisting of finitely generated free modules
in each degree. Then

pdA(M) + K.depthA(M) = K.depthA(A).

Note that polynomial grade coincides with Koszul grade (see [3, Propo-
sition 2.3]).

Let R be a Noetherian domain. A ring homomorphism R → S is
generically étale if its generic fiber is étale over Frac (R), that is to say,
S ⊗R Frac (R) is a finite product of finite separable extension fields of
Frac (R).

Corollary 4.8. Assume that S is a reduced local algebra which is
generically étale over a regular local ring R of characteristic p > 0.
Then S∞ is module-finite over R∞ if and only if R → S is étale.

Proof. Assume that R∞ → S∞ is module-finite. Note that Rm is flat
over Rn for m ≥ n and R∞ and S∞ are perfect algebras. Then there
is the commutative diagram induced by the Frobenius map on S∞:

S∞

�

d

�

∼
FS∞

S∞

�

d

ΩS∞/R∞ �
∼ ΩS∞/R∞ ,

where d : S∞ → ΩS∞/R∞ is the canonical derivation. Then ΩS∞/R∞ =
0 by a diagram-chase and Sn is generically étale overRn by assumption.
By injecting Sn into its total ring of fractions and by Maclane’s
criterion, Sn and R∞ are linearly disjoint over R for all n ≥ 0 (see
[15, Example 20.13]). Thus, Sn ⊗Rn R∞ � R∞[Sn] ⊆ S∞. Since
R∞ → S∞ is module-finite, we have Sn ⊗Rn R∞ � R∞[Sn] = S∞ for
n � 0. Then

ΩS∞/R∞ � ΩSn⊗RnR∞/R∞ � ΩSn/Rn
⊗Rn R∞ = 0
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for n � 0. So we have ΩSn/Rn
= 0 by faithful flatness of R∞ over Rn.

Thus, mRnSn = mSn (both Rn and Sn are local) for n � 0. Since Rn is
regular, Sn is so. By the Auslander-Buchsbaum formula, Sn is flat over
Rn for n � 0 and so Rn → Sn is étale. Finally, R → S is isomorphic
to Rn → Sn via the nth iterates of the Frobenius map, R → S is étale.
The converse is obvious.

Corollary 4.9. Let R be a complete local domain of characteristic
p > 0. Then R+ is almost flat over R∞.

Proof. By Cohen’s structure theorem [5, Theorem A.22], there is a
regular local ring (A,m) such that R is module-finite over A. Let M
be an R∞-module. Take the following spectral sequence [20, Theorem
11.62]

E2
p,q = TorR∞

p (R+,TorA∞
q (R∞,M)) =⇒

p
TorA∞

n (R+,M).

In view of Theorem 4.6 and Lemma 3.4, we have

TorA∞
n (R+,M) ≈ TorR∞

n (R+, R∞ ⊗A∞ M)

as A∞-modules. There is a submodule N ⊆ R such that it is A-free of
finite rank � and the quotient R/N is A-torsion. Then c · R ⊆ N for
some 0 �= c ∈ A. By applying the Frobenius, we see that J ·R∞ ⊆ N∞
for all n > 0 and N∞ � A⊕�

∞ , where J := ∪n>0c
p−n

A∞. Take the short
exact sequence:

0 � N∞ � R∞ � R∞/N∞ � 0,

together with the induced exact sequence:

TorA∞
1 (R∞/N∞,M) −→ N∞ ⊗A∞ M

f−→ R∞ ⊗A∞ M

−→ (R∞/N∞)⊗A∞ M.

Then f is an almost isomorphism in view of Lemma 3.5 and J ·R∞ ⊆
N∞, and thus,

TorR∞
n (R+, R∞ ⊗A∞ M) ≈ TorR∞

n (R+,M)⊕�
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and TorA∞
n (R+,M) ≈ TorR∞

n (R+,M)⊕� as A∞-modules. Thus,

TorA∞
n (R+,M) ≈ 0 ⇐⇒ TorR∞

n (R+,M) ≈ 0.

It suffices to show that R+ is flat over A∞. For n > 0, An := {x ∈
A∞ | xpn ∈ A} is a regular local ring. By Lemma 4.4, it suffices
to show that TorA∞

i (A∞/JA∞, R+) = 0 for a finitely generated ideal
J ⊆ A∞. Without loss of generality, we may assume that J ⊆ A. Then
it suffices to note that TorA∞

i (A∞/JA∞, R+) is the direct limit of all

TorAn

i (An/JAn, R
+) for all i ≥ 0 by [1, Remark 3.2] and (An)

+ is flat
over An by [14, 6.7, Flatness].

The following result is an immediate application of Theorems 4.3 and
4.6.

Corollary 4.10. Let S be a reduced local ring that is module-finite
over a regular local ring R. Then S∞ is an almost Cohen-Macaulay
R-algebra.

Remark 4.11. (i) The proof of Theorem 4.3 becomes more sim-
ple if T is a balanced big Cohen-Macaulay R-algebra. Indeed, let
x = x1, . . . , xd be a system of parameters of R. Then K•(x;T ) pro-
vides a projective resolution for T/(x)T , and there are the following
isomorphisms:

Hi(K•(x;M)) � Hi(K•(x;T )⊗T M) � TorTi (T/(x)T,M),

which is almost zero for all i �= 0. Since Hi
m(M) � lim−→n

Hd−i(x
n;M),

we have Hi
m(M) ≈ 0 for all i �= d.

(ii) The proof of Theorem 4.6 becomes more simple if S is a torsion-
free R-module. Indeed, by an inspection of the proof of Corollary 4.9,
S∞ is almost isomorphic to a free R∞-module of finite rank. Now
Lemma 4.2 completes the argument.

(iii) Adopt the assumption of Corollary 4.9. Then R+ is not flat over
R∞ in general. To see an example, let R be a complete local F -pure
domain which is not Cohen-Macaulay. Such a ring is known to exist.
R∞ is not Cohen-Macaulay since R is not and R ↪→ R∞ is pure. A
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system of parameters x = x1, . . . , xd of R is not a regular sequence on
R∞. Assume that R+ is flat over R∞. Then it needs to be faithfully
flat and, thus, x is not regular on R+. By [14, Theorem 5.5], R+ is a
big Cohen-Macaulay R-algebra. This contradiction shows that R+ is
not flat over R∞.

5. F -coherent rings and almost regularity. In this section, we
introduce the notion of almost regular algebras and prove Theorem 5.8
and some corollaries. Besides, we would like to study the structure
of F -coherent rings defined in [22] in connection with almost regular
algebras. First of all, we begin with the definition of almost regularity.

Definition 5.1. Let A be an algebra equipped with a value map.
We say that A is almost regular if there exists an integer k such that
ExtnA(M,N) ≈ 0 for all n > k and all A-modules M and N .

In what follows, we freely use the following homological properties of
coherent rings.

Lemma 5.2. The following assertions hold.

(i) [10, Theorem 2.3.3]. A flat colimit of coherent rings is coherent.

(ii) [10, Theorem 6.3.4]. A domain of global dimension less than 3
is coherent.

(iii) [10, Lemma 4.2.3]. A quasilocal coherent ring with the property
that every principal ideal has finite projective dimension is a domain.2

(iv) [10, Theorem 7.3.14]. Let A be a coherent ring of global dimen-
sion less than three. Then the polynomial algebra A[X1, . . . , Xn] is
coherent.

(v) [10, Corollary 4.2.6]. A ring of weak dimension less than 2 is
locally a valuation domain.

(vi) [1, Proposition 4.1]. Let a be a finitely generated ideal of a perfect
coherent ring A that is an integral extension of a Noetherian ring. Then
pdA(A/a) ≤ dimA.
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(vii) [10, Theorem 2.6.2]. A ring A is coherent if and only if

lim−→γ∈Γ
ExtnA(P,Mγ) −→ ExtnA(P, lim−→γ∈Γ

Mγ)

is an isomorphism for every finitely presented module P and every
direct system of A-modules {Mγ | γ ∈ Γ} and all n ≥ 1.

Corollary 5.3. We have the following assertions:

(i) In addition to the assumption of Lemma 5.2 (vi), assume that a
perfect quasilocal coherent ring of finite Krull dimension is a domain.

(ii) In addition to the assumption of Lemma 5.2 (vi), assume that
(A,m) is quasilocal and of finite Krull dimension. Then pdA(A/a) ≤
K.depthA(A) ≤ dimA.

Proof. (i) This follows by applying parts (iii) and (vi) of Lemma 5.2.

(ii) In view of Lemma 5.2 (vi), any finitely generated ideal a admits
a resolution of finite length by finitely generated free modules. In view
of Remark 4.7 (ii), we get

pdA(A/a) + K.depthA(A/a) = K.depthA(A),

which yields the claim.

We recall from [22, Definition 3.1] that a Noetherian ring R of
characteristic p > 0 is F -coherent if its perfect closure R∞ is coherent.
This notion, as its name suggests, is related to tight closure theory. As
shown in [22], it is easy to verify that a ring is F -coherent in certain
cases, in which F -purity, F -regularity or F -rationality can be checked
as well. The following question is one of the important ones in the
study of F -coherent rings.

Question 5.4. Let R be an F -coherent ring of characteristic p > 0.
Then does the perfect closure R∞ coincide with the perfect closure of
some regular Noetherian ring?

Unfortunately, we are still far from answering this question at present.
Due to the difficulty of finding good characterizations of coherent
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property in high Krull dimension, it is worth trying to find an approach
to the above question by relating it to regularity.

Proposition 5.5 [2, Theorem 1.2 (iii)]. Let R be an F -coherent
reduced ring of characteristic p > 0. Then the following hold:

(i) w.dim (R∞) := sup{fl.dim (M) | M is an R∞-module} ≤ dimR.

(ii) gl.dim (R∞) ≤ dimR+ 1.

Proof. Let us prove both assertions at the same time. Then we
may assume that d := dimR = dimR∞ is finite. Let a ⊆ R∞
be a finitely generated ideal. Then Lemma 5.2 (vi) implies that
pdR∞(R∞/a) ≤ d < ∞. If the projective dimension of all finitely
generated ideals of a ring A with only countably generated ideals is
less than d, then the projective dimension of an arbitrary A-module
is less than d + 2 (see [2, Lemma 3.2]). Now we show that any
ideal of R∞ is countably generated. Indeed, for each n > 0, set
Rn := {x ∈ R∞ | xpn ∈ R}, which is a Noetherian ring. Since
R∞ = ∪n>0Rn, any ideal of R∞ is countably generated.

Corollary 5.6. Let (R,m) be a local ring of characteristic p > 0.
Then we have the following:

(i) Assume that R is reduced and F -coherent. Then R is a domain.

(ii) Assume that R is one-dimensional and F -coherent. Then R[X ]
is also F -coherent.

(iii) Let t ∈ R be a non-zero divisor such that R/tR is reduced and
F -coherent. Then R is a domain.

Proof. (i) Since R∞ is a domain by Corollary 5.3 (i), R ⊆ R∞ implies
that R is a domain.

(ii) The perfect closure of R[X ] is just ∪n>0R∞[Xp−n

]. Since

Proposition 5.5 shows that gd (R∞) ≤ 2, the ring R∞[Xp−n

] is coherent

by Lemma 5.2 (iv). Then, since R∞[Xp−m

] → R∞[Xp−n

] is flat for
m ≤ n, the ring R[X ]∞ is coherent by Lemma 5.2 (i).
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(iii) The ideal P := tR is prime by Corollary 5.6. Now, since

0 � R �
t R � R/tR � 0

is a minimal free resolution of the R-module R/P , we have

pdRP (RP /PRP ) ≤ pdR(R/P ) < ∞,

showing that RP is regular and, thus, it is a domain. If we assume to
have x ·y = 0 in R, the equality x ·y = 0 in RP yields an element r ∈ R,
but r /∈ P such that either r · x = 0 or r · y = 0. For simplicity, assume
that r·x = 0. By Auslander’s zero-divisor conjecture [5, Theorem 9.4.7]
applied for the R-module R/P , it follows that r ∈ R is regular, since r
is evidently R/P -regular. Hence, we get x = 0, and R is a domain.

Example 5.7. It is necessary to assume that R is F -coherent in
Proposition 5.5. Take

R := F3[x, y]/(y
2 − x3 − x2) � F3[t, t

√
t+ 1]

whose normalization in its field of fractions is F3[t,
√
t+ 1], and it is

not purely inseparable over R. In view of [22, Theorem 3.7], R∞ is
not coherent. Combined with Lemma 5.2 (ii), we get gl.dim (R∞) >
dimR + 1. The proof of Proposition 5.5 shows that Wdim (R∞) >
dimR.

Theorem 5.8. Let R be an F -coherent domain of finite Krull
dimension. Let S be a torsion-free, module-finite, and reduced R-
algebra. Then S∞ is almost regular.

Proof. As in the proof of Corollary 4.9, we can take a free R-
submodule R⊕� � N ⊆ S such that c · S ⊆ N for some nonzero
c ∈ R. Let J := ∪n>0c

p−n

R∞ and R⊕�
∞ � N∞. Then J · S∞ ⊆ N∞.

In particular, J · ExtqR∞(S∞/N∞,−) = 0 for all q ≥ 0 by taking an
injective resolution. Take the following short exact sequence:

0 � N∞ � S∞ � S∞/N∞ � 0,



474 M. ASGHARZADEH AND K. SHIMOMOTO

with its induced long exact sequence:

· · · −→ ExtiR∞(S∞/N∞,−) −→ ExtiR∞(S∞,−)

−→ ExtiR∞(N∞,−) −→ · · · .

Then we find that J ·ExtqR∞(S∞,−) = 0 for all q > 0. Now, for an S∞-
module M , we have J ·ExtpS∞(M,ExtqR∞(S∞,−)) = 0 for all p ≥ 0 and
q > 0 by taking a projective resolution. Consider the spectral sequence
[20, Theorem 11.66]:

E2
p,q := ExtpS∞(M,ExtqR∞(S∞,−)) =⇒

p
ExtnR∞(M,−).

By the above computation, E2
p,q ≈ 0 for all p ≥ 0 and q > 0. Thus,

Lemma 3.4 yields an R∞-isomorphism:

ExtnS∞(M,HomR∞(S∞,−)) ≈ ExtnR∞(M,−).

Again, by the fact that J · S∞ ⊆ N∞, for S∞-modules, we obtain

ExtnR∞(M,−) ≈ ExtnS∞(M,HomR∞(S∞,−))

≈ ExtnS∞(M,HomR∞(N∞,−))

� ExtnS∞(M,HomR∞(R⊕�
∞ ,−))

� ExtnS∞(M,−)⊕�.

By Proposition 5.5, pdR∞(M) ≤ dimR+1 and thus, ExtnS∞(M,−)⊕� ≈
0 for all n > dimR + 1. In particular, ExtnS∞(M,−) ≈ 0 for all
n > dimR+ 1, as claimed.

Corollary 5.9. Let S be a reduced ring. Assume that S is either:

(i) a complete local ring of characteristic p > 0, or

(ii) an affine algebra over a field of characteristic p > 0.

Then S∞ is almost regular.

Proof. (i) By Cohen’s structure theorem, there is a regular local ring
(R,m) such that R → S is module-finite. By [22, Proposition 3.2 (i)],
regular rings are F -coherent. Theorem 5.8 completes the argument.
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(ii) By Noether’s normalization [5, Theorem A.14], there exists a
polynomial ring R over a field such that R → S is module-finite. Hence
S∞ is almost regular.

Corollary 5.10. Let R be a Noetherian complete local domain
of characteristic p > 0. Then TorR

+

i (M,N) is almost zero for all
i > dimR and all R+-modules M and N .

Proof. First note that R+ = ∪γ∈ΓRγ , where Rγ is a module-finite
extension of R. So Rγ is a complete local domain. By Cohen’s structure
theorem, there is a regular local ring (A,m) such that Rγ is module-
finite over A. For each (Rγ)∞-modules M and N , look at the following
spectral sequence:

Tor(Rγ)∞
p (M,TorA∞

q ((Rγ)∞, N)) =⇒
p

TorA∞
n (M,N).

Then, as in the proof of Corollary 4.9, together with almost flatness of
(Rγ)∞ over A∞,

(∗) TorA∞
n (M,N) ≈ 0 ⇐⇒ Tor(Rγ)∞

n (M,N) ≈ 0

Keep in mind that A is F -coherent, since it is regular. Then by
Proposition 5.5,

w.dim (A∞) ≤ dimA = dimR.

Thus, TorA∞
i (M,N) = 0 for all i > dimR. In view of (∗), we see that

Tor
(Rγ)∞
i (M,N) ≈ 0

for all i > dimR and all γ. Note that R+ = lim−→Rγ ⊆ lim−→(Rγ)∞ ⊆ R+,

and so R+ = lim−→(Rγ)∞. Let M and N be two R+-modules. Keep in

mind that almost zero modules are closed under taking direct limits.
To conclude, it remains to recall from [6, VI, Exercise 17] that

TorR
+

i (M,N) � lim−→Tor
(Rγ)∞
i (M,N),

which is almost zero for all i > dimR, as desired.
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Remark 5.11. (i) Recall that a ring A is regular if every finitely
generated ideal of A has finite projective dimension. Suppose that A is
coherent and almost regular with respect to a normalized value map.
Then A is regular. Indeed, let a ⊆ A be a finitely generated ideal. Then
there exists an integer k such that ExtnA(a,−) ≈ 0 for all n > k. Let
M be an A-module. Then M is the direct limit of finitely presented
modules {Mγ | γ ∈ Γ}. Keep in mind that a finitely presented module
over a coherent ring is coherent. So a and Mγ are coherent A-modules
and ExtnA(a,Mγ) is finitely presented. Note that ExtnA(a,Mγ) ≈ 0 for
all n > k. Example 2.7 (i) shows that ExtnA(a,Mγ) = 0 and

ExtnA(a, lim−→γ∈Γ
Mγ) � lim−→γ∈Γ

ExtnA(a,Mγ) = 0

for all n > n0 in view of Lemma 5.2 (vii), which is the claim.

(ii) Let A be an algebra equipped with a value map. One might ask
whether an analogue of Lemma 3.5 holds for Ext-modules, or not. Here
we present the following examples showing that this is not the case in
general:

(a) Assume that L is an almost zero A-module and K is a finitely
presented A-module. Then we claim that ExtiA(K,L) ≈ 0 for all
i ≥ 0. Indeed, L is the direct limit of its finitely generated submodules
{Lγ | γ ∈ Γ}. Now, recall from [10, Theorem 2.1.5] that

ExtiA(K,L) � lim−→
γ∈Γ

ExtiA(K,Lγ).

Since almost zero modules are closed under taking both direct limit
and submodules, we may assume that L is almost zero and finitely
generated. Thus, we have ExtiA(K,L) ≈ 0 for all i ≥ 0 by taking a
projective resolution of K.

(b) Assume that L is an almost zero A-module. Then ExtiA(K,L) is
not necessarily almost zero. To see an example, let

A := k[X0, X1, X2, . . . ] = ∪∞
i=0k[X0, . . . , Xi]

be a polynomial algebra over a field k. Define a (non-normalized)
valuation v on A as follows. Set v(Xt) := t−1 for t > 0. For a
polynomial f ∈ A, let v(f) be such that v(f) equals the minimum of
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all v(Xμ) as Xμ varies over all the monomials appearing in f with
non-zero coefficients. Let K := ⊕∞

i=1A and L := ⊕∞
i=1A/m

i with
m := (X1, X2, . . . ). Then L ≈ 0. Now assume that

HomA(K,L) �
∞∏
k=1

HomA(A,L) �
∞∏
k=1

L

is almost zero. Define an injective map
∏∞

i=1 A/m
i ↪→ ∏∞

k=1 L ≈ 0 as
follows. An element of A/mi in

∏∞
i=1 A/m

i is sent to an element in the
component A/mi of L, where L is the ith component of

∏∞
k=1 L. It

is easy to see that A is m-adically separated: ∩n>0m
n = 0. Hence, A

injects into
∏

A/mi ≈ 0 and A is almost zero. But this is false.

Acknowledgments. We thank the anonymous referee for the
detailed review.

ENDNOTES

1. In particular, if one takes S = R, then T is even regular. In this
case, it suffices to assume that S → T is only unramified.

2. According to [10, 7.3.13], there exists a quasilocal ring of finite
global dimension with a nonzero zero-divisor.
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