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VERONESE ALGEBRAS AND MODULES OF RINGS
WITH STRAIGHTENING LAWS

ALEXANDRU CONSTANTINESCU

ABSTRACT. Do the Veronese rings of an algebra with
straightening laws (ASL) still have an ASL structure? We
give positive answers to this question in some particular cases,
namely, for the second Veronese algebra of Hibi rings and of
discrete ASLs. We also prove that Veronese modules of the
polynomial ring have a structure of module with straightening
laws. In dimension at most three we present a poset construc-
tion that has the required combinatorial properties to support
such a structure.

1. Introduction. The notion of algebra with straightening laws
(ASL for short) was introduced in the early 80’s by De Concini, Eisen-
bud and Procesi in [9]. These algebras give a unified treatment of both
algebraic and geometric objects that have a combinatorial nature. The
coordinate rings of some classical algebraic varieties, such as determi-
nantal rings (in particular the coordinate ring of Grassmannians) and
Pfaffian rings, are examples of ASL’s. In [3], Bruns generalizes this
notion in a natural way, by introducing the concept of module with
straightening laws (MSL) over an ASL. For a general overview on this
subject the reader may consult [9], the books of Bruns and Vetter [7]
and of Bruns and Herzog [5].

One interesting question regarding ASLs is whether their Veronese
algebras still have a structure of algebra with straightening laws. So
far, the only positive answer to this question was given in [8] by Conca
in the case of the polynomial ring. The ASL structure described in [8]
indicates that this question cannot have a simple answer. The main idea
behind the ASL structure is to give a partial order on a set of K-algebra
generators in such a way that the relations among these generators are
“compatible” with the partial order. As we will see in this paper, one
of the main obstacles to overcome in the search for an answer to the
above question is of combinatorial nature. In particular, one needs to
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construct a new poset that should support the ASL structure of the
Veronese algebra.

In the first section of this paper we will introduce the terminology and
notation that we will use later on. We will also present a few known
results that will turn out to be useful.

In Section 2 we will extend Conca’s result, namely, we will prove that
the Veronese modules of the polynomial ring have a structure of MSL.
Here, the ASL structure of the polynomial ring given in [8] plays an
important role. As a corollary we will obtain the result of Aramova,
Bărcănescu and Herzog (see [1]) which states that the Veronese modules
have a linear resolution. Using the results of Bruns from [4] on MSL’s,
we will be able to give an upper bound for the rate of a finitely generated
MSL.

In the third section we will study the Veronese algebra of a homo-
geneous ASL. The first step towards proving that it is again an ASL
is to construct a new poset. Using the translation of algebraic prop-
erties into combinatorial ones, we can sketch the profile of the poset
that needs to be constructed. Unfortunately, we were not able to find
a construction that works in general. However, we will prove that the
second Veronese algebra of a discrete ASL and of a Hibi ring is again
an ASL. The poset that we construct is the second zig-zag poset.

In the last section of this paper, we will construct a new poset
starting from a poset of rank three. Then we will prove that it has the
combinatorial properties to support an ASL structure of the Veronese
algebra.

1. Preliminaries. Let us summarize the basic definitions and
terminology that we will use. Throughout this paper we will consider
only finite partially ordered sets (posets). Let P be a poset, and let
C : α1 < · · · < αt be a chain in P (i.e., a totally ordered subset of P ).
With this notation we say that C is a chain descending from αt. The
length of C will be the cardinality of the set C. The rank of a poset
P , denoted by rank (P ), is the supremum of the lengths of all chains
contained in P . A poset is called pure if all maximal chains have the
same length. The height of an element α ∈ P , denoted ht (α) is:

ht (α) = sup{length of chains descending from α} − 1.
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Given a natural number m ≥ 1, an m-multichain in P is a weakly
increasing sequence of m elements of P : α1 ≤ · · · ≤ αm. A poset ideal
of P is a subset I such that, if α ∈ I, β ∈ P and β ≤ α, then β ∈ I.

Let K be a field, A a ring and P ⊂ A a poset. We call a monomial a
product of the form α1, α2 . . . , αt where αi ∈ P , for all i. A monomial
α1, α2, . . . , αt is called standard if α1 ≤ α2 ≤ · · · ≤ αt. We will use the
definition of an ASL which is also used by Bruns in [3]. This definition
is given for graded K-algebras, but one can define an ASL also in the
non-graded case (see [9, 10]).

Definition 1.1. Let A be a K-algebra and P ⊂ A a finite poset. We
say that A is a (graded) algebra with straightening laws on P over K if
the following conditions are satisfied:

(ASL 0) A = ⊕i≥0Ai is a graded K-algebra such that A0 = K, the
elements of P are homogeneous of positive degree and they generate A
as a K-algebra.

(ASL 1) The set of standard monomials is a basis of A as a K-vector
space.

(ASL 2) (Straightening laws) If α, β ∈ P are incomparable elements
(written α �∼ β), and if

(1) αβ =
∑
i

riCi1Ci2 · · ·Citi ,

with 0 �= ri ∈ K and Ci1 ≤ Ci2 ≤ · · · ≤ Citi , is the unique linear
combination of standard monomials given by (ASL 1), then Ci1 < α
and Ci1 < β for every i.

When P ⊂ A1 we say that A is a homogeneous ASL over P .

Note that in (1) the right hand side can be equal to 0, but that, even
though 1 is a standard monomial, no Ci1Ci2 · · ·Citi can be 1. These
relations are called the straightening laws (or straightening relations)
of A.

An ASL A on P , can be presented as K[P ]/I, where K[P ] is the
polynomial ring whose variables are the elements of P and I is the
homogeneous ideal generated by the straightening laws. Denote by IP
the monomial ideal of K[P ] generated by αβ with α, β ∈ P and α �∼ β.
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A linear extension of (P,<) is a total order <1 on P such that α < β
implies α <1 β for any α, β ∈ P . When A is a homogeneous ASL on P
and τ is the reverse lexicographic term ordering with respect to a linear
extension of <, the polynomials given in (ASL 2) form a Gröbner basis
of I and, the initial ideal of I with respect to τ is inτ (I) = IP . The
algebra K[P ]/IP is an ASL on P , and it is called the discrete ASL.

The discrete ASL over a poset P can also be seen as the Stanley-
Reisner ring of the simplicial complex ΔP , where ΔP is the complex
whose vertices are the elements of P and whose facets are the maximal
chains of P . This is a useful remark, as it allows one to compute the
Hilbert function of any ASL on P by looking at the f -vector of ΔP .

The following proposition is easy to check, but nevertheless very
useful:

Proposition 1.2. Let A be an ASL on P over K and H ⊂ P a poset
ideal of P . Then the ideal AH is generated as a K-vector space by the
standard monomials containing a factor α ∈ H, and A/AH is an ASL
on P \H (where P \H is embedded in A/AH in a natural way).

This proposition allows one to prove results on ASLs using induction
on the cardinality of P . Also the ASL structure in many examples is
established in this way.

The notion of ASL has a natural generalization to modules in the
following sense. For a module M over an ASL A we want the generators
ofM to be partially ordered, a distinguished set of “standard elements”
should form a K-basis of M and the multiplication A×M → M should
satisfy a straightening law similar to the straightening law of A. We
have the following definition due to Bruns:

Definition 1.3. Let A be an ASL on P over a field K. An A-module
M is called a module with straightening laws on a finite poset Q ⊂ M
if the following conditions are satisfied:

(MSL 1) For every x ∈ Q there exists a poset ideal I(x) ⊂ P such
that the elements

α1α2 · · ·αix, with α1 /∈ I(x), α1 ≤ α2 ≤ · · · ≤ αi and i ≥ 0,

form a basis of M as a K-vector space. These elements are called
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standard elements.

(MSL 2) For every x ∈ Q and α ∈ I(x), one has

(2) αx ∈
∑
y<x

Ay.

An MSL on a poset Q over a homogeneous ASL, say A, is called
homogeneous if it is a graded A-module in which Q consists of elements
of degree 0. From (MSL 1) and (MSL 2) it follows immediately by
induction on the rank of x that each element αx with α ∈ I(x) has a
standard representation

αx =
∑
y<x

(∑
rαxμyμ

)
y, with 0 �= rαxμy ∈ K,

in which every μy is a standard element.

Remark 1.4. a) If M is a MSL on a poset Q and Q′ ⊂ Q is a poset
ideal, then the submodule of M generated by Q′ is an MSL too. This
allows one to prove theorems on MSLs by Noetherian induction on the
set of ideals of Q.

b) In the definition of MSL it would have been enough to require
that the standard elements be linearly independent, because (MSL 2)
and the induction principle above guarantee that M is generated as a
K-vector space by the standard elements.

Given a graded K-algebra A = ⊕i≥0Ai and d ≥ 2 a positive integer,
the d-Veronese algebra of A is by definition

A(d) =
⊕
i≥0

Adi.

For every d ≥ 2, one can consider for every 0 ≤ j ≤ d − 1 the j-

th Veronese module of A: M
(d)
j = ⊕i≥0Adi+j . The module M

(d)
j is

obviously an A(d)-module.

The polynomial ring in n variables R = κn has an ASL structure
by taking x1, . . . , xn as generators and the order: x1 ≤ · · · ≤ xn.
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In [8], the author proves that the Veronese algebra of the polynomial
ring is still an ASL when the field K is infinite. The monomials in n
variables of degree d are a natural choice for the generators of R(d).
Unfortunately, already when n = 2 and d = 3, one cannot partially
order the set {x3

1, x
2
1x2, x1x

2
2, x

3
2} in a compatible way with an ASL

structure for K[x1, x2]
(3).

In order to find an ASL structure for R(d), one has to proceed as
follows. For i = 1, . . . , n and j = 1, . . . , d, take �i,j to be generic
linear forms such that, for any j1, . . . , jn ∈ {1, . . . , d}, the linear
forms �1,j1 , . . . , �n,jn are linearly independent. The assumption on the
cardinality of the field K is needed for the existence of such forms.
Take as generators of R(d) all products �s11 · · · �sdd with the property

that
∑i=d

i=1 si ≤ n− d+ 1. Order these generators as follows:

�s11 · · · �sdd ≤ �t11 · · · �tdd ⇐⇒ si ≤ ti for every i.

The abstract poset Hn(d) corresponding to the partial order defined
on this set of generators is obtained as follows. Denote by H(d) =
{1, . . . , n}d and order its elements component-wise, i.e., (α1, . . . , αd) ≤
(β1, . . . , βd) ⇐⇒ αi ≤ βi, for all i. Denote by Hn(d) the subposet of
H(d) of elements of rank ≤ n, that is,

Hn(d) =
{
(α1, . . . , αd) ∈ H(d) :

d∑
i=1

αi ≤ n+ d− 1
}
.

For our goals we will not need a description of the straightening
relations on these generators. We will only use the fact that R(d) has
an ASL structure on Hn(d). For more details, see Conca’s paper [8].
Here is a graphical representation (Hasse diagram) of the poset Hn(d)
for d = 2 and d = 3, when n = 3:
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A useful remark is that the second Veronese algebra of polynomial
ring R also has an ASL structure with the usual monomials as gener-
ators. In this case the field K may have any cardinality. Consider the
following order on the set of variables: x1 < x2 < · · · < xn. We can
order the degree two monomials as follows:

xixj ≤ xkxl ⇐⇒ xi ≤ xk and xj ≥ xl.

The straightening laws will be given in the following way. If xixj �∼
xkxl, then rearrange the indices i, j, k, l in increasing order, say i1 ≤
j1 ≤ k1 ≤ l1 (i.e., {i, j, k, l} = {i1, j1, k1, l1} as multisets) and define:

(xixj)(xkxl) = (xi1xl1)(xj1xk1 ).

It is clear that (xi1xl1)(xj1xk1) is a standard monomial. Also one can
easily check that these relations are exactly the relations of the second
Veronese algebra. In this case the new poset is the second zig-zag poset
Z2(P ) (see Section 3 for definition), but it is also isomorphic to Hn(2).
For example, if n = 3, the poset will look like this:

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�

�
�

�

�

x1x3

�x1x2 � x2x3

�

x21
�

x22
�

x23

with (x1x2)(x2x3) = (x1x3)(x
2
2), (x1x2)(x

2
3) = (x1x3)(x2x3), (x2x3)

(x2
1) = (x1x3)(x1x2) and (x2

i )(x
2
j ) = (xixj)

2, where i �= j and
i, j ∈ {1, 2, 3}.

2. The MSL structure of the Veronese modules. In this section
we will prove that the Veronese modules of the polynomial ring have a
structure of MSLs as R(d)-modules. For this part only we will assume
that the field K is infinite. We will then see that the MSL structure
implies that the Veronese modules have a linear resolution. Finally we
will find an upper bound for the rate of a finitely generated MSL. The
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bound is given in terms of the degrees of its generators and the degrees
of the generators of the ASL.

Let d ≥ 2 be a positive integer, j ∈ {0, . . . , d− 1}, and assume that
the field K is infinite. Consider the same generic linear forms that give
the ASL structure of R(d), presented in the previous section. Choose

as generators of M
(d)
j products of the form:

�i11 · · · �ijj , with i1 + · · ·+ ij ≤ n+ j − 1.

Order them component-wise, just as in the case of the Veronese algebra
of R. So the poset supporting the MSL structure will be Hn(j). To
simplify notation, we will denote the generators of R(d), respectively

the generators of M
(d)
j , by:

fα1...αd
= �α11 . . . �αdd,

for all (α1, . . . , αd) with

d∑
i=1

αi ≤ n+ d− 1,

gi1...ij = �i11 . . . �ijj ,

for all (i1, . . . , ij) with

j∑
k=1

ik ≤ n+ d− 1.

As R(d) is generated as a K-algebra by the fα1···αd
-s for every d, we

get that the gi1···ij -s generate M
(d)
j as an R(d)-module. To every such

generator we associate a poset ideal of Hn(d) as follows:

I(gi1···ij ) = {fα1···αd
: (α1, . . . , αj , . . . , αd) �≥ (i1, . . . , ij , 1, . . . , 1)}.

It is clear that I(gi1···ij ) is a poset ideal for any gi1···ij . We will prove
the following:

Theorem 2.1. Let R = K[x1, . . . , xn] be the polynomial ring in n
variables. For every d ≥ 2 and for every j ∈ {0, . . . , d − 1}, the j-th

Veronese module M
(d)
j is a homogenous MSL on Hn(j) over R(d) with

the structure defined above.

Proof. If j = 0, then M
(d)
0 = R(d) as R(d)-modules. In this case, we

have a trivial MSL structure over the poset Q = {1}, with I(1) = φ
(see [3]). So we will suppose from now on that j ≥ 1.
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In order to prove that we have an MSL structure for M
(d)
j we have

to check the following:

1. For all gi1···ij and for all fα1···αd
∈ I(gi1···ij ), we have:

fα1···αd
· gi1···ij ∈

∑
gk1···kj<gi1···ij

R(d) · gk1···kj .

2. The standard elements are linearly independent over K.

To prove 1, let us choose gi1···ij for some (i1, . . . , ij) ∈ Hn(j)
and some fα1···αd

∈ I(gi1···ij ). This means that (α1, . . . , αd) �≥
(i1, . . . , ij, 1, . . . , 1). So there exists an index s ∈ {1, . . . , j} such that
αs < is. We have:

fα1···αd
· gi1···ij = �α11 · · · �αdd · (�i11 · · · �ijj)

= �α11 · · · �iss · · · �αdd · (�i11 · · · �αss · · · �ijj)
= �α11 · · · �iss · · · �αdd · gi1··· ,αs,...ij .

As αs < is, we also have that gi1···αs···ij < gi1···is···ij , so part 1 holds
true.

As all standard elements are homogeneous polynomials, in order to
prove the second part, we only have to look at linear combinations of
standard elements of the same degree. Let F be a linear combination
of standard elements of degree md+ j:

F =
∑

λμgi1···ij ,

where not all λ ∈ K are zero and every μ = fα11···α1d
· . . . · fαm1···αmd

is
a standard monomial in R(d) with fα11···α1d

/∈ I(gi1···ij ). In particular,
(α11, . . . , α1j , . . . , α1d) ≥ (i1, . . . , ij, 1, . . . , 1) for all gi1···ij . If F = 0,
then also F · �1j+1 · · · �1d = 0. But, for all gi1···ij , we have

gi1···ij · �1j+1 · · · �1d = fi1···ij1···1.

As fi1···ij1···1 ≤ fα11···α1d
≤ · · · ≤ fαm1···αmd

, we have that

F · �1j+1 · · · �1d =
∑

λfi1···ij1···1fα11···α1d
· · · fαm1···αmd

= 0
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is a linear combination of standard monomials in R(d). So, as the
standard monomials form a K-basis of R(d), all the coefficients λ must
be zero.

As R(d) is a homogenous ASL, M
(d)
j is a graded R(d)-module, and

we choose generators of degree zero for M
(d)
j , by definition we obtain

a homogenous MSL.

As a consequence of the homogeneous MSL structure, by [6, Theorem
1.1], we obtain the following result of Aramova, Bărcănescu and Herzog
[1, Theorem 2.1]:

Corollary 2.2. The R(d)-module M
(d)
j has a linear resolution for

every j ∈ {0, . . . , d− 1}.

In the last part of this section we will prove a result regarding the
Betti numbers of a module with straightening laws. We will then see
that this result has a nice consequence for the rate of the module. From
this point on, field K may have any cardinality. For any ASL A (not
necessarily homogeneous) on a poset P and any MSL M on a poset Q
over A, we know by [4, (2.6)] that there exists a filtration of M :

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M,

with Ml+1/Ml
∼= A/AI(q), for some q ∈ Q. The modules Ml are

actually the A-modules generated by q1, . . . , ql, where q1 ≤ q2 ≤ · · · ≤
qr are all the elements of Q ordered by a linear extension of the partial
order on Q. Using this filtration and the fact that AI(q) is an MSL
over A (see [3, Example 3.1]), we are able to prove the following.

Proposition 2.3. Let A be an ASL on P over a field K, and let M
be an MSL on Q over A. Denote by d = max{deg (p) : p ∈ P} and by
m = max{deg (q) : q ∈ Q}. We have:

βi,j(M) = 0, for all i, j with j − i ≥ i(d− 1) +m+ 1,

where βi,j(M) = dimKTorAi (M,K)j denote the graded Betti numbers
of M .
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Proof. We will use induction on i and on the cardinality |Q| of the
poset. If i = 0, everything is clear. We will see in the proof that, for
each i, the case |Q| = 1 follows only from inductive hypothesis on i−1.

Let i > 0, and let Q = {q1, . . . , ql} with 0 < l be a poset with its
elements written in an order given by a linear extension of the partial
order. Suppose that for i − 1 the assumption holds for any poset Q′

and that for i the assumption holds if |Q′| < l. For simplicity we will
denote throughout this proof Iql := I(ql) and ml := deg (ql). In order
to make the following exact sequence homogenous, we have to twist
A/AIql by deg (ql):

0 −→ Ml−1 −→ Ml −→ Ml/Ml−1
∼= A/AIql(−ml) −→ 0.

So we obtain the exact sequence

(3) TorAi (Ml−1,K)j −→ TorAi (Ml,K)j −→ TorAi (A/AIql(−ml),K)j.

From the short exact sequence

0 −→ AIql −→ A −→ A/AIql(−ml) −→ 0,

we obtain that

TorAi (A/AIql (−ml),K)j = TorAi−1(AIql (−ml),K)j

(this is why the case |Q| = 1 follows only from induction on i). From
[3, Example 3.1] we know that AIql is an ASL on the subposet Iql ⊂ P .
So, by induction on i, we get that

TorAi (A/AIql (−ml),K)j = 0,

if j − ml − (i − 1) ≥ (i − 1)(d − 1) + d + 1. It is clear that this is
equivalent to j − i ≥ i(d− 1) +ml + 1, so as ml ≤ m we obtain:

TorAi (A/AIql(−ml),K)j = 0, if j − i ≥ i(d− 1) +m+ 1.

To the left of TorAi (Ml,K)j in (3), by induction on the cardinality of
the poset, we have that:

TorAi (Ml−1,K)j = 0, if j − i ≥ i(d− 1) +m+ 1,

and this completes the proof.
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In [2], Backelin introduced for any homogenousK-algebraA a numer-
ical invariant called the rate of A. This invariant measures how much
A deviates from being Koszul. In [1], the authors define the rate for
any finitely generated A-module in the following way. As TorAi (M,K)
is a finitely generated K-vector space, one may set

ti(M) = sup{j : TorAi (M,K)j �= 0};

and then define the rate of M as

rateA(M) = sup
i≥1

{
ti(M)

i

}
.

Note that ti(M) is the highest shift in the i-th position of the minimal
free homogenous resolution of M . With this definition, Proposition 2.3
has the following corollary:

Corollary 2.4. If M is an MSL over the ASL A, with the above
notations we have:

rateA(M) ≤ d+m.

3. The Veronese algebra of an ASL. In this section we will
study whether the Veronese algebra of a homogeneous ASL still has a
structure of algebra with straightening laws. We have seen that, so far,
the only known case is that of the polynomial ring. The complicated
structure of its Veronese algebra as an ASL indicates that this question
does not have an easy answer.

Let us first see what we should be looking for. GivenA a homogeneous
ASL on P over K, we want to find poset P (d) such that A(d) has an
ASL structure on P (d) over K. Translating the algebraic properties of
A(d) into combinatorial properties, we can outline the characteristics
that a possible candidate for P (d) should have. Here are some known
facts about ASLs:

(1a) If A is an ASL on a poset P over K and A is integral, then P
has a unique minimal element.

(2a) The Krull dimension of A is equal to the rank of P .
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(3a) The Hilbert function of a homogeneous ASL A on P can be
computed directly from the poset P in the following way:

dimKAi = |{multichains of length i in P}|.

The first property is true because if P were to have two different
minimal elements, say α and β, then (ASL 2) forces αβ = 0. For a
proof of the second property, see [7, (5.10)]. The third remark is the
immediate consequence of the fact that the standard monomials (which
correspond to the multichains of P ) generate A as a K-vector space.

The Veronese algebra of an integral algebra is again a domain; we
know that dimA = dimA(d) and, by definition, (A(d))i = Adi, so a
candidate for P (d) should have the following properties:

(1c) If P has a unique minimal element, so should P (d).

(2c) rank (P ) = rank (Pd).

(3c) |{md-multichains in P}| = |{m-multichains in P (d)}| for all
m ≥ 1.

A poset construction with the above properties that works for every
poset is not known to us. A construction that has properties (2c) and
(3c) is the zig-zag poset Zd(P ), which is obtained in the following way.
Let P = {α1, . . . , αn} be a poset. Given d ≥ 2 a positive integer, one
can define:

Zd(P ) = {(αi1 , . . . , αid) : αj ∈ P, for all j and αi1 ≤ · · · ≤ αid}

and say that:

(αi1 , . . . , αid) ≤ (βi1 , . . . , βid) ⇐⇒ αi1 ≤ βi1 ,

and αi2 ≥ βi2 , and αi3 ≤ βi3 , and αi4 ≥ βi4 , etc.

The correspondence between the md-multichains of P and the m-
multichains in P (d) can be easily seen in the following picture. Suppose
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m = 3 and d = 4:
α1 ≤β1 ≤C1

∧ I∧I ∧ I

α2 ≥β2 ≥C2

∧ I∧I ∧ I

α3 ≤β3 ≤C3

∧ I∧I ∧ I

α4 ≥β4 ≥C4

The md-multichain of P that can be associated to the d-multichain of
Zd(P ), α ≤ β ≤ C is: α1 ≤ β1 ≤ C1 ≤ C2 ≤ β2 ≤ · · · ≤ C3 ≤ C4 ≤
β4 ≤ α4. The other way around should also be clear now. So Zd(P )
satisfies (3c). It is easy to see that (2c) is also satisfied. Unfortunately
(1c) is almost never satisfied in the sense that, if d ≥ 3, then Zd(P )
has at least two minimal elements. The only case in which Zd(P ) also
satisfies (1c) is when d = 2 and P also has a unique maximal element.
However, we will show in the remaining part of this section that in two
particular cases Z2(P ) is the right choice for the supporting poset of
the second Veronese. These cases are the discrete ASLs over any poset
and the Hibi rings over a distributive lattice.

Let us first fix some more terminology. Let P be a poset and α, β ∈ P .
Whenever the right hand side exists, we use the following notation

α ∧ β = sup{m ∈ P : m ≤ α and m ≤ β},
α ∨ β = inf {M ∈ P : M ≥ α and M ≥ β}.

When these elements exist, they are called the greatest lower bound or
infimum, respectively the least upper bound or supremum. A poset P
in which, for any two α, β ∈ P , the elements α ∧ β and α ∨ β exist
is called a lattice. A lattice P is called distributive if the operations
defined by ∧ and ∨ are distributive to each other. In other words if,
for any α, β,C ∈ P we have

α ∧ (β ∨C) = (α ∧ β) ∨ (α ∧C) and

α ∨ (β ∧C) = (α ∨ β) ∧ (α ∨C).

As we already said in the first section, on every poset P we can
construct the discrete ASL K[P ]/IP . The straightening relations of
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this algebra are

xixj = 0, for all xi, xj ∈ P with xi �∼ xj .

This algebra plays a special role as, for any other ASL on P presented
as K[P ]/I and for any reversed lexicographic term ordering τ corre-
sponding to a linear extension of the partial order on P , we have

inτ (I) = IP = (xixj : xi �∼ xj).

We will prove the following theorem regarding the discrete ASL of any
poset P .

Theorem 3.1. Let P be a poset and A the discrete ASL on P over
a field K. The second Veronese algebra A(2) is a homogeneous ASL on
Z2(P ) over K.

Proof. Let us denote P = {x1, . . . , xn}, so the straightening relations
of A are xixj = 0 if xi �∼ xj . The vertices of Z2(P ) are the standard
monomials of P of degree two, which clearly generate A(2) as a K-
algebra. As the standard monomials in Z2(P ) can also be seen as
standard monomials in A, it is again clear that they form a K-vector
space basis of A(2). For any two incomparable elements xixj �∼ xkxl of
Z2(P ), we define the straightening laws in the following way:

(xixj)(xkxl)

=

{
0 if {xi, xj , xk, xl} is not totally ordered,

(xi1xl1)(xj1xk1 ) if {xi, xj , xk, xl} is totally ordered,

where xi1 ≤ xl1 ≤ xj1 ≤ xk1 and {xi1 , xl1 , xj1 , xk1} = {xi, xj , xk, xl}
as multisets. We now just need to check that the ASL we defined is
actually the second Veronese subring of A.

It is easy to see that the relations among the canonical algebra
generators of A(2) are given by the 2 × 2 minors of the symmetric
matrix

X =

⎛
⎜⎜⎝

x2
1 x1x2 . . . x1xn

x1x2 x2
2 . . . x2xn

...
...

...
x1xn x2xn . . . x2

n

⎞
⎟⎟⎠ ,
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where the monomials that are not standard are replaced by 0. For
a fixed set of four different variables (elements of P ) there are three
different minors involving precisely those variables. It is easy to check
that two of them correspond to straightening relations as above and
the third one is superfluous, in the sense that it can be obtained as a
linear combination of the other two. With this in mind and noticing
that if two of the variables coincide, only one relation exists, it is
straightforward to check that the theorem holds.

We now present an example of the ASL structure given in Theo-
rem 3.1.

Example 3.2. In the following picture we can see on the left the
non-pure poset P and on the right hand side Z2(P ):
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P Z2(P )

�x1 �x1x6

�x2 �x3 �x1x4 �x2x6 �x3x6

�x4 �x5 �x1x2 �x2x4 �x4x6 �x3x4
�x5x6 �x3x5

�x6 �x2
1 �x2

2 �x2
4 �x2

6 �x2
5 �x2

3

It is easy to see that each of the straightening relations defined in
the proof of Theorem 3.1 can be found as a 2 × 2 minor of matrix X
below. For instance, (x1x4)(x2x6) = (x1x6)(x2x4) corresponds to the
minor [1, 2|4, 6] (that is, the minor obtained by taking rows 1 and 2 and
columns 4 and 6), or [4, 6|1, 2]. Notice that the straightening laws that
have zero on the right hand side are actually forced by partial order on
Z2(P ). For example, (x1x2)(x3x4) = 0 by definition because x1 �∼ x3,
but there also is no other choice as no element of Z2(P ) is less than or
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equal to both (x1x2) and (x3x4) simultaneously.

X =

⎛
⎜⎜⎜⎜⎜⎝

x2
1 x1x2 0 x1x4 0 x1x6

x1x2 x2
2 0 x2x4 0 x2x6

0 0 x2
3 x3x4 x3x5 x3x6

x1x4 x2x4 x3x4 x2
4 0 x4x6

0 0 x3x5 0 x2
5 x4x6

x1x6 x2x6 x3x6 x4x6 x5x6 x2
6

⎞
⎟⎟⎟⎟⎟⎠

Considering the set of variables {x1, x2, x4, x6}, the different minors
that involve them are [1, 2|4, 6], [1, 4|2, 6] and [1, 6|2, 4]. The first one
corresponds to the straightening relation for (x1x4)(x2x6), the second
one to the straightening of (x1x2)(x4x6). The third one is not a
straightening relation, but we have

[1, 6|2, 4] = [1, 4|2, 6]− [1, 2|4, 6].

Another interesting and at the same time difficult problem regarding
ASLs is to give a description of the integral posets. We say that a poset
P is integral if there exists an ASL on P that is an integral algebra. We
have seen that a necessary condition for P is to have a unique minimal
element. In [10], Hibi shows that every distributive lattice is integral.
He constructs for any distributive lattice P an ASL that is integral as
an algebra, which is now called the Hibi ring on P . The generators of
this K-algebra are the vertices of the lattice P , and the straightening
laws are the so-called Hibi relations:

xαxβ = xα∧βxα∨β , ∀ xa �∼ xβ ∈ P.

From this point on, in order to simplify notation, we will use only
Greek letters α, β, γ, . . . for the elements of P and for the variables of
the polynomial ring. We will prove the following.

Theorem 3.3. Let P be a distributive lattice and A the ASL on P
given by the Hibi relations. Then A(2) is an ASL over Z2(P ) with the
following structure. The vertices of Z2(P ) are the standard monomials
of degree 2 in A and the straightening laws are:

(4) (αβ)(γδ) = [(α ∧ γ)(β ∨ δ)][((α ∧ δ) ∨ (β ∧ γ))((α ∨ δ) ∧ (β ∨ γ))],

for all α, β, γ, δ ∈ P , with α ≤ β, C ≤ δ and αβ �∼ γδ.
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In many cases the right hand side in (4) can be presented in a shorter
form, but this presentation has the advantage of including all cases.
For example, if the set {α, β, γ, δ} is totally ordered, but (αβ) �∼ (γδ),
then it is easy to check that (4) gives us:

(αβ)(γδ) = (α0δ0)(β0γ0),

where α0 ≤ β0 ≤ c0 ≤ δ0 and {α, β, γ, δ} = {α0, β0, γ0, δ0} as multisets.
Also if α ∨ γ and β ∧ δ are comparable, then (4) is actually:

(αβ)(γδ) = [(α ∧ γ)(β ∨ δ)][(α ∨ γ)(β ∧ δ)].

Proof. We have to check first that the structure described above is an
ASL structure and second that this ASL is A(2). The condition (ASL
0) is satisfied by definition. The fact that the standard monomials in
Z2(P ) are the standard monomials in P of even degree follows from the
correspondence between m-multichains in Z2(P ) and 2m-multichains
in P , so (ASL 1) is satisfied. To prove that (ASL 2) holds, we have to
check that:

1. (α∧γ)(β ∨ δ) and
(
(α∧ δ)∨ (β ∧γ)

)(
(α∨ δ)∧ (β ∨γ)

)
are actually

vertices in Z2(P ), (that is multichains of length 2 in P ),

2. that the right hand side is a standard monomial in Z2(P ), that is,

(α ∧ γ)(β ∨ δ) ≤
(
(α ∧ δ) ∨ (β ∧ γ)

)(
(α ∨ δ) ∧ (β ∨ γ)

)
,

3. (α ∧ γ)(β ∨ δ) ≤ (αβ) and (α ∧ γ)(β ∨ δ) ≤ (γδ).

Here is a picture of the elements of P that we are interested in and
the order relations between them that always hold:
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μ = (α∧δ)∨ (β ∧C), ν = (β∨C)∧ (α∨δ). To check the first point, we
will show how this straightening law came up. Suppose that, similar
to the above picture, α �∼ γ and β �∼ δ. Notice that this is not a
restriction, as in general αγ = (α ∧ γ)(α ∨ γ) also when α and γ are
comparable. We use the Hibi relations in A to “straighten” αγ and βδ.
It is easy to see that α∧γ ≤ β∨ δ. The problem is that α∨γ and β ∧ δ
are not always comparable, which means (α∨γ)(β∧δ) is not always an
element of Z2(P ). Suppose they are not comparable. We “straighten”
also this product using the Hibi relations. So we get the following:

(α ∨ γ)(β ∧ δ) =
(
(α ∨ γ) ∧ (β ∧ δ)

)(
(α ∨ γ) ∨ (β ∧ δ)

)
.

Now we just have to show that the first element on the right hand side
is μ and the second one ν. Just by using distributivity and the fact
that α ≤ β and γ ≤ δ we get:

(α ∨ γ) ∧ (β ∧ δ) =
(
(β ∧ δ) ∧ α

)
∨
(
(β ∧ δ) ∧ γ

)
= (δ ∧ α) ∨ (β ∧ γ)

= μ

(α ∨ γ) ∨ (β ∧ δ) =
(
(α ∨ γ) ∨ β

)
∧
(
(α ∨ γ) ∨ δ

)
= (γ ∨ β) ∧ (α ∨ δ)

= ν

So μν is also a standard monomial, and the law that we gave is actually
a relation in A.

To prove 2, we just have to look at the Hasse diagram above and
notice that as

α ∧ γ ≤ α ∧ δ and α ∧ γ ≤ β ∧ γ,

we get that α ∧ γ ≤ μ. Using the same way of reasoning we also get
that β ∨ δ ≥ ν, so item 2 holds. It is clear that the third point also
holds.

The straightening laws that we have defined in (4) can be divided
into two types:

Type 1. Straightening relations in A, when {α, β, γ, δ} is not totally
ordered.
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Type 2. Veronese type relations, which are 0 when seen as elements
of A, when {α, β, γ, δ} is totally ordered.

As these are also exactly the relations that define A(2), we can conclude
that the ASL we have constructed is actually A(2).

As we have already said, the Hibi rings were introduced as examples
of ASL domains, thus proving that all distributive lattices are integral
posets. As an immediate consequence of Theorem 3.3, we have:

Corollary 3.4. The second zig-zag poset of a distributive lattice is
an integral poset.

4. A poset construction in dimension three. Let P be a
poset of rank at most three. Denote the minimal elements of P by
μ1, μ2, . . . , μr, and let d ≥ 2 be a positive integer. We will construct
a poset P (d) that has the combinatorial properties (1c), (2c) and (3c)
described in the previous section.

Let the elements of P (d) be the d-multichains in P . Let α =
(α1, . . . , αd) and β = (β1, . . . , βd) be two such multichains. Recall
that this means α1 ≤ · · · ≤ αd and β1 ≤ · · · ≤ βd. For each multichain
α we define:

v (α) = (ht (α1), ht (α2)− ht (α1), . . . , ht (αd)− ht (αd−1)).

We say that α ≤ β if the following two conditions hold:

1. The set {a1, . . . , αd, β1, . . . , βd} is totally ordered.

2. v (α) ≤ v (β) component-wise.

First of all notice that the two conditions above imply that αi ≤ βi

for every i = 1, . . . , d. The converse does not hold, meaning that
the above relation is not the component-wise order on the set of d-
multichains in P . For instance, if P = {0, 1, 2} with the natural order,
the 2-multichain (2, 2) is component-wise larger than the 2-multichain
(0, 1), but v ((2, 2)) = (2, 0) and v ((0, 1)) = (0, 1) are not comparable,
so condition 2 does not hold.

In general, for a vector v = (v1, . . . , vn) denote by |v| =
∑i=n

i=1 vi.
In our case, the fact that P has rank 3 implies that, for every d-
multichain α, |v (α)| ≤ 2. It is easy to see that, if α < β, then
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|v (α)| < |v (β)|. Also notice that the only d-multichains αi with
|v (αi)| = 0 are αi = (μi, . . . , μi), for some minimal element of P .
This fact will guarantee that, if P has a unique minimal element, then
Pd has a unique minimal element as well. But first we need to check
that we have defined a partial order.

Lemma 4.1. If P is a poset with rank (P ) ≤ 3, the above relation is
a partial order on P (d).

Proof. Reflexivity is obvious. As two elements of the same height in
P are either not comparable or equal, antisymmetry follows as well. To
check transitivity, it is enough to suppose that all inequalities are strict.
Let α, β, γ be d-multichains such that α < β and β < γ. Then we also
have |v (α)| < |v (β)| and |v (β)| < |v (γ)|. As |v (α)|, |v (β)|, |v (γ)| ∈
{0, 1, 2}, this implies |v (α)| = 0, so we get α = αi = (μi, . . . , μi) for
some minimal element μi. By the first condition we obtain that μi

is also the minimal element of the totally ordered set {μi, β1, . . . , βd},
where β = (β1, . . . , βd). As we also have β ≤ γ component-wise,
we obtain that the set {μi, γ1, . . . , γd} is totally ordered. Clearly
v (α) ≤ v (γ) by the transitivity of the component-wise ordering, so
we obtain the transitivity of the relation we defined.

The above proof obviously depends upon the fact that the rank of P
is three. But this is actually a necessary condition for Lemma 4.1 in
the sense that, for rank (P ) > 3, transitivity may fail.

From now on we will consider the set P (d) to be only the partial order
of Lemma 4.1. In general, for a positive integer m and a poset P , we
denote:

Mm(P ) = {m-multichains in P}.

For an m-multichain α in P , denote by supp (α) the set of vertices that
appear in α. If α′ is a multichain in P (d), then by suppP (α

′) we denote
the set of vertices of P that appear in any of the d-multichains of which
α is made. For example, if P = {0, 1, 2} with the natural order, then

M2(P ) = {(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2)},
supp ((1, 1, 2, 2)) = {1, 2},

suppP (((0, 0), (0, 1), (0, 2))) = {0, 1, 2}.



250 ALEXANDRU CONSTANTINESCU

Before we prove that P (d) has the desired combinatorial properties, we
will prove the following remark.

Remark 4.2. 1. If P0 = {0, 1, 2} with the natural order, then

P
(d)
0

∼= H3(d).

2. There exists a bijection, say fP0,d,m : Mmd(P0) → Mm(P
(d)
0 ), such

that for any α ∈ Mmd(P0), we have supp (α) = suppP0(fP0,d,m(α)).

Proof. In the first part, the isomorphism of posets is given by:

α = (α1, . . . , αd) �−→ v (α) = (α1, α2 − α1, . . . , αd − αd−1),

its inverse being:

H3(d) � v = (v1, . . . , vd) �−→
(
v1, v1 + v2, . . . ,

i=d∑
i=1

vi

)
.

For the second part, we already know by the ASL structure on H3(d)

of the polynomial ring in three variables that |Mmd(P0)| = |Mm(P
(d)
0 )|

for every m. It is easy to check that, for every subposet of Q ⊂ P0,

we have that Q(d) is a subposet of P
(d)
0 with the canonical embedding.

So we can construct fP0,d,m step by step, starting with |supp (α)| = 1,
which correspond to subposets of rank one.

We will now show an example of how the bijection fP0,d,m above can
be constructed. We will also see that if P0 is the chain of length 4, the

fact that, for every subposet Q ⊂ P0, Q
(d) is also a subposet of P

(d)
0

canonically, no longer holds.

Example 4.3. As in Remark 4.2, let P0 = {0, 1, 2} with the natural
order. We will construct

fP0,2,2 : M4(P0) −→ M2(P
(2)
0 ).

We start with the 4-multichains supported on one element, that is:
(0, 0, 0, 0), (1, 1, 1, 1) and (2, 2, 2, 2). Notice that {i} is a subposet of
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P0 and {i}(2) = {(i, i)} ⊂ P
(2)
0 . So in this case there is no other choice

than:

fP0,2,2,((i, i, i, i)) = ((i, i), (i, i)), for all i = 0, 1, 2.

We will now consider the 4-multichains supported on two elements and
divide them into groups corresponding to the rank two subposet of P0

that contains them. In particular, the 4-multichains contained in Q =
{0, 1} and with support {0, 1} are (0, 0, 0, 1), (0, 0, 1, 1) and (0, 1, 1, 1).

We haveQ(2) = {(0, 0), (0, 1), (1, 1)}which is a subposet of P
(2)
0 . The 2-

multichains of Q(2) supported on {0, 1} are ((0, 0), (0, 1)), ((0, 0), (1, 1))
and ((0, 1), (0, 1)). As one can see, there is no canonical way in which
to define the function, but any bijection between the two sets satisfies
the required conditions. We proceed in the same way with the 4-
chains supported on {0, 2} and {1, 2}. As we know a priori that

|M4(P0)| = |M2(P
(2)
0 )|, we also obtain

|{α ∈ M4(P0) : supp (α) = {0, 1, 2}}|
= |{α′ ∈ M2(P

(2)
0 ) : suppP0(α

′) = {0, 1, 2}}|,

so again any bijection between the two sets works.

Notice that if P = {0, 1, 2, 3} with the natural order, the subposet
Q = {0, 2, 3} has the property that the subposet of P (2) induced
by the 2-multichains of Q is not isomorphic to Q(2). For example,
(0, 2) �∼ (2, 3) in P (2), while (0, 2) < (2, 3) in Q(2).

Proposition 4.4. Let P be a poset of rank at most three. Then, for
any d ≥ 1, the poset P (d) constructed above satisfies:

(1c) If P has a unique minimal element, P (d) has a unique minimal
element.

(2c) rank (P ) = rank (P(d)).

(3c) |Mmd(P )| = |Mm(P(d))| for all m ≥ 1.

Before we come to the actual proof we have one final observation.
Any poset P can be seen as the union of its maximal chains. This
union is not disjoint, but the construction of P(d) can be done on each
such maximal chain C and then P(d) will be the union of the C(d)-s.
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In the following figure we present an example of how the construction
of P(d) can be done chain-wise.
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Proof. As we have already noticed, the minimal elements of P(d) are
of the form (μi, . . . , μi) for all minimal elements μi ∈ P . This implies
(1c). It is also clear that rank (P ) = rank (P(d)). So we just need to
define a bijection from Mmd(P ) to Mm(P(d)). To this aim we will use
the observation that P(d) can be constructed chain-wise.

We fix for each maximal chain C in P a bijection fC,d,m as in
Remark 4.2. It is easy to see that this can be done in a coherent
way, in the sense that if α ∈ C ∩ C′, then fC,d,m(α) = fC′,d,m(α). Let
α ∈ Mmd(P ). We define F : Mmd(P ) → Mm(P(d)) as follows

F (α) = fC,d,m(α) ∈ C(d) ⊂ P(d),

where C is a maximal chain such that supp (α) ⊆ C. From the way we
chose fC,d,m, we can deduce that F (α) is well defined. The function F
is bijective because it has an inverse F−1 : Mm(Pd) → Mmd(P ) given
by

F−1(β) = f−1
C,d,m(β) ∈ C ⊂ P,

where β ∈ Mm(P(d)) and C ⊂ P is a maximal chain such that β ∈ C(d).
The same arguments as above tell us that also F−1 is well defined.

Acknowledgments. The author wishes to thank his advisor Aldo
Conca for his encouragement and for his helpful remarks on preliminary



VERONESE ALGEBRAS AND MODULES OF RINGS 253

versions of this paper. We also thank Jürgen Herzog for suggesting the
study of Veronese modules.

REFERENCES
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16146 Genova, Italy
Email address: constant@dima.unige.it



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [432.000 648.000]
>> setpagedevice


