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TAME LOCI OF CERTAIN
LOCAL COHOMOLOGY MODULES

MARKUS BRODMANN AND MARYAM JAHANGIRI

ABSTRACT. Let M be a finitely generated graded module
over a Noetherian homogeneous ring R = ®©,cNy Rn. For each
i € Np, let H;Lr (M) denote the ith local cohomology module

of M with respect to the irrelevant ideal R4 = @®p>0Rn of
R, furnished with its natural grading. We study the tame loci
T¢(M)<3 at level i € No in codimension < 3 of M, that is,
the sets of all primes pg C Rp of height < 3 such that the
graded Ry,-modules Hfhr (M)p, are tame.

1. Introduction. Throughout this note let R = ®,>0R, be
a homogeneous Noetherian ring. So, R is an Ny-graded Ry-algebra
and R = Ry[ly,...,l;] with finitely many elements [;,...,l, € R;.
Moreover, let Ry := @n,>0R, denote the irrelevant ideal of R, and
let M be a finitely generated graded R-module. For each i € Ny,
let Hli‘h (M) denote the ith local cohomology module of M with
respect to Ry. It is well known that the R-module H}é+ (M) carries a
natural grading and that the graded components H}}br (M),, are finitely
generated Rp-modules which vanish for all n > 0 ([11, Section 15], for
example). So, the Ry-modules H}LLr (M),, are asymptotically trivial if
n — +00.

On the other hand, a rich variety of phenomena occur for the modules
H%+(M)n if ¢ € Ny is fixed and n — —oo. So, it is quite natural to
investigate the asymptotic behavior of cohomology, e.g., the mentioned
phenomena [4].

One basic question in this respect is to ask for the asymptotic stability
of associated primes, more precisely, the question of whether for given
i € Ny the set Assg, (H}'er (M),) (or some of its specified subsets)
ultimately becomes independent of n, if n — —oo. In many particular
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cases this is indeed the case ([3, 5-7]), partly even in a more general
setting [16]. On the other hand, it has been known for quite awhile
that the asymptotic stability of associated primes may also fail in many
even surprisingly “nice” cases by various examples ([6, 8] and also [4]),
which rely on the constructions given in [20, 21].

Another related question is whether, for fixed i € Ng, certain
numerical invariants of the Ryp-modules H% (M), ultimately become
constant if n = —oo. A number of such asymptotic stability results for
numerical invariants are indeed known ([1, 9, 10, 14]).

The oldest, and most challenging, question around the asymptotic
behavior of cohomology was the so-called tameness problem, that is,
the question of whether, for fixed ¢ € Ny, the Ry-modules H}LLr (M),
are always either vanishing for all n < 0 or always non-vanishing for
all n <« 0. This question seems to have been raised already in relation
with Marley’s paper [18]. In a number of cases, this tameness problem
was shown to have an affirmative answer [4, 7, 17, 19].

Nevertheless, by means of a duality result for bigraded modules given
in [15], Cutkosky and Herzog [13] constructed an example which shows
that the tameness-problem can have a negative answer also. In [12] an
even more striking counter-example is given: a Rees-ring R of a three-
dimensional local domain R; of dimension 4, which is essentially of
finite type over a field such that the graded R-module H?u (R) is not
tame.

The present paper is devoted to the study of the tame loci T(M)
of M, that is, the sets of all primes py € Spec(Rp) for which the
graded R, -module th (M)p, = H(iRp ) (My,) is tame. These loci

o)+

have already been studied in [19]. We restrict ourselves to the case
in which the base ring R is essentially of finite type over a field,
as in this situation asymptotic stability of associated primes holds in
codimension < 2. As was shown by Chardin-Jouanolou, this latter
asymptotic stability result holds under the weaker assumption that
Ry is a homomorphic image of a Noetherian ring which is locally
Gorenstein (oral communication by M. Chardin). So all of the results
of our paper remain valid if Ry is subject to this weaker condition.

One expects that, in such a specific situation, the tame loci T¢(M)
show some “usual” well behavior, like being open for example. But as
we shall see in Example 2.5 this is wrong in general. Namely, using
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the counter-example given in [12], we construct an example of graded
R-module M of dimension 4 whose 2nd tame locus T2(M) is not even
stable under generalization. This shows, in particular, that the tame
loci T¢(M) need not be open in codimension < 4. The example of
[12] also shows that the tame loci T/(M) need not contain all primes
po € Spec (Ry) of height 3. Therefore, we shall focus on the “border
line case” and investigate the sets T¢(M)=? of all primes py € T¢(M)
of height < 3.

In Section 2 of this paper we recall a few basic facts on the asymptotic
stability of associated primes which shall be used constantly in our
arguments. In this section we also introduce the so-called critical sets
C*(M) C Spec(Rp) which consist of primes of height 3 and have the
property that all primes py ¢ C*(M) of height < 3 belong to the tame
locus /(M) (Proposition 2.8 (b)). Moreover, the finiteness of the set
C*(M) has the particularly nice consequence that M is uniformly tame
at level i in codimension < 3, e.g., there is an integer ny such that,
for each py € TH(M)=3, the (Ro),,-module (H;.ﬁ (M)n)p, is either
vanishing for all n < ng or non-vanishing for all n < ny (Proposition 2.8
(c))-

In Section 3 we give some finiteness criteria for the critical sets C*(M).
Here, we assume in addition that the base ring Ry is a domain, so
that the intersection a‘(M) of all non-zero primes pg C Ry which are
associated to H}é+ (M) is a non-zero ideal by a result of [5]. Our main
result says that the critical set C*(M) is finite, if a’ (M) contains a quasi-
non-zero divisor with respect to M (Theorem 3.4). This obviously
applies in particular to the case in which M is torsion-free as an
Rp-module in all large degrees or at all (Corollary 3.5, respectively
Corollary 3.7). In order to force a situation as required in Theorem 3.4,
one is tempted to replace M by M/T (M) for some non-zero element
x € Ryg. We therefore give a comparison result for the critical sets
C*(M) and C*(M/T (,)(M)) (Proposition 3.7). As an application we
prove that the critical sets C*(M) are finite if Ry is a domain and
the Ryp-module M asymptotically satisfies some weak “unmixedness
condition” (Corollary 3.8).

In our final Section 4 we give a few conditions for the tameness at
level i in codimension < 3 in terms of the “asymptotic smallness” of
the graded R-modules H;al (M) and Hg;l(M ). We first prove that
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all primes py C Ry of height < 3 belong to the tame locus T¢(M),
provided that dimpg, (H}{:(M)n) < 1 and dimg, (H}{Jrz(M)n) < 2 for
alln < 0 (Theorem 4.2). In addition, we show that M is tame at almost
all primes pyg C Ry of height < 3 provided that Ry is a domain and
dimp, (H;{Jrl (M),,) <0for all n < 0 (Theorem 4.4). We actually prove
in both cases slightly sharper statements, namely: the corresponding
graded R, -modules H§+ (M),, are not only tame, but even what we
call almost Artinian. Using this terminology we get in particular the
following conclusion. If Ry is a domain and the graded R-module
H};l (M) is almost Artinian, then for almost all primes pg € Spec (Rp)
of height < 3, either the (Ro), -module (H}%Jr (M)n)'p0 is of dimension
> 0 for all n < 0 or else the graded Rp,-module Hp, (M)y, is almost
Artinian (Corollary 4.5).

2. Tame loci in codimension < 3. We keep the previously
introduced notations.

Convention and notation 2.1. (A) Throughout this subsection
we convene that the base ring Ry of our Noetherian homogeneous ring
R = Ry ® R; @ --- is essentially of finite type over some field. So,
Ry = S7'A, where A = K]lay,... ,a;] is a finitely generated algebra
over some field K, S C A is multiplicatively closed, and there are
finitely many elements Iy, ..., € Ry such that R = Ryl[ly,...,L.].

(B) If n € N and P C Spec (Ry) we write

P~ := {po € P | height (pg) = n}
P=" .= {po € P | height (po) < n}.

Reminder and remark 2.2. (A) According to [2] for all n < 0, the
set Assg,(M,) is equal to the set {p N Ry | p € Assg N Proj(R)} and
hence asymptotically stable for n — oo, thus:

There is a least integer m(M) > 0 and a finite set Assy (M) C
Spec (Ro) such that Assg,(M,,) = Assy (M) for all n > m(M).

(B) Let f(M) denote the finiteness dimension of M with respect to
R, , that is, “the least integer” for which the R-module H §?+ (M) is not
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finitely generated. Clearly we may write
f(M) =inf{i € No | {n € Z | Hp, (M), # 0} = oo}.

(C) Keep in mind that f(M) > 0. According to [7, Theorem 5.6]
we know that the set Assg,(H IJ;&M)(M )n) is asymptotically stable for
n— —oo:

There is a largest integer n(M) < 0 and a finite set $4(M) C Spec (Rp)
such that Assg, (HIJ;&M)(M)H) =U(M) for alln < n(M).

In particular,
f(M) _
Suppg, (HR+ (M),) =(M), forall n < n(M),

where ® denotes the formation of the topological closure in Spec (Rp).

(D) According to [3, Theorem 4.1] we know that for each i € Ny the
set Assg, (Hlih(M )n) is asymptotically stable in codimension < 2 for
n — —oQ:

For each i € Ny there is a largest integer n'(M) < 0 and a finite set

P¥(M) C Spec (Ro)=? such that Assg,(Hp, (M)n)=? = B (M) for all
n < ni(M).

Now, combining this with the observations made in parts (B) and
(C) we obtain:

(i) i < f(M) = for all n < n'

—

M) : Hp (M)n = 0;

(ii) for all n < n(M) : Suppg,

—

Hy M (M),) = U
(iii) i« > f(M) = for all n < nf(M) : SuppRo(Hfer(M)n)Sz =
2

——<

F(M)™

Definition and remark 2.3. (A) Let ¢ € Ny. We say that the
finitely generated graded R-module M is (cohomologically) tame at
level i if the graded R-module H}'ﬁ (M) is tame, e.g., there exists an

no €Z: (Yn<ng:Hp, (M), =0)V(Vn<ng:Hp, (M), #0).

(B) Let pg € Spec(Ry). We say that M is (cohomologically) tame
at level i in po if the graded Ry -module M,, is cohomologically
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tame at level ¢. In view of the graded flat base change property of
local cohomology it is equivalent to say that the graded Ry -module
H§3+(M)p0 is tame.

(C) We define the ith (cohomological) tame locus of M as the set
T¢(M) of all primes py € Spec (Ry) such that M is (cohomologically)
tame at level ¢ in pg. So, if po € Spec (Rp), we have

Vn < ng : po € Suppr, (Hy, (M)n)
po € T (M) < Ing € Z : or
Vn < g : po ¢ Suppr, (Hp, (M)n)

If & € Ny, the set T¢(M)<F is called the ith (cohomological) tame
locus of M in codimension < k.

(D) Let & C Spec(Rp). We say that M is (cohomologically) tame
at level i along 4, if 4 C THM). We say that M is uniformly
(cohomologically) tame at level i along 4 if there is an integer ng such
that, for all pg € U,

(Vn < ng : po € Suppr, (Hg, (M),)V
(Vn < ng : po ¢ Suppg, (H§%+ (M)y).

(E) If M is uniformly tame at level ¢ along the set & C Spec (Ry),
then it is tame along 4 at level <.

Remark 2.4. (A) According to Reminder and remark 2.2 (D) (i), (ii),
we have

M is uniformly tame along Spec (Ry) at all levels i < f(M).

(B) Using the notation of Reminder and remark 2.2 (A), we write
Suppy, (M) := Ass}, (M) so that Suppg,(M,) = Suppy, (M) for all
n > m(M). Now, by use of Reminder and remark 2.2 (D), it follows
easily:

for all i > f(M), the module M is uniformly tame at level i along

the set W*(M) := (Spec (Ro) \ Suppk, (M)) U P¢(M) U Spec (Ro)=2.

It follows in particular that W¢(M) C T¢(M) and, moreover, for all
i € Np:
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(i) M is uniformly tame at level i along the set Spec (Rg)<2.

(i) T(M)=3 is stable under generalization.

If the graded R-module T = ®,czT;, is tame, and po € Spec (Rp),
then the graded R,,-module T}, need not be tame anymore. This hints
that in general the loci ©¢(M) could be non-stable under generalization.
We now present such an example.

Example 2.5. Let K be algebraically closed. Then, according
o [12], there exists a normal homogeneous Noetherian domain R’ =
®n>oR,, of dimension 4 such that (Rj,my) is local, of dimension 3
with R{/mj = K and such that for all negative integers n we have
H122'+ (R"), = K? if n is even and lez,+ (R"),, = 0if n is odd.

Now, let ly,...,l, € R} be such that R} = Y. | Rjl;. Let
x,x1,...,%, be indeterminates, let Ry denote the four-dimensional lo-
cal domain R§[7](m; ») with maximal ideal mg := (mg, z)Rj, consider
the homogeneous Ry-algebras R := Ry[z1,...,,] and R := Ry QR R
together with the surjective graded homomorphism of Ry-algebras

@:R:Ro[ml,...,wr]—»ﬁ; x; = 1g, ®1;.

Now, let o € m\{0}, let ¢t be a further indeterminate, consider the
Rees algebra

S = Rylzt, (x + a)t] = @((m, z+ a)Ry)"
n>0
and the surjective graded homomorphism of Ry-algebras

U:R—»S, z—at, z2— (z+a)t, z;—0ifi>3.

We consider R and S as graded R-modules by means of ¢ and ¥,
respectively. Then M := R@ S is a finitely generated graded R-module
which is, in addition, torsion-free over Ry.

By the graded base ring independence and flat base change properties
of local cohomology we get isomorphisms of graded R-modules

H}, (R) = Ry ®ry Hy, ('), Hf, (S)=H; (S).
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As cds, (§) = dim (S/moS) = 2 we have HZ (S), # 0 foralln < 0. It
follows that H12?+ (M),, = H12?+ (R)n, @ H§+ (S)n # 0 for all n < 0 and
so M is tame at level 2. In particular, we have my € T2(M).

Now, consider the prime pg := m{ Ry € Spec (Ro)~>. Then, for each
n < 0, we have

K(z)? if n is even;
0 if n is odd.
Moreover, Sy, = (Ro)pol(z,z + a)(Ro)pot] = (Ro)p,lt] shows that
H§+ ()po = H(Zspo)+(5p0) = 0. It follows that (HfLr (M)n)p, vanishes
precisely for all odd negative integers n. So leh (M)y, is not tame,
and hence pg ¢ T2(M).

Observe in particular that here T2(M) = T2(M)=* is not stable under
generalization, and that Ry is a domain and the graded R-module M

is torsion-free over Ry. On the other hand, T¢(M)<3 is always stable
under generalization, (cf. Remark 2.4 (B) (ii)).

(HE, (B)n)p, = (Ro)myro @ry Hir (R')n =2 {

One of our aims is to show that quite a lot can be said about
the sets T¢(M)=? if the base ring Ry is a domain and M is torsion-
free over Ry. Indeed, we shall attack the problem in a more general
context, beginning with the following result, in which ¢(M) is defined
according to Definition and remark 2.2 (D).

Lemma 2.6. Let i € Ny, and let n (M) be defined as in Reminder
and remark 2.2 (D). Then for all n < n*(M) we have

Cy,(M) := (Suppr, (Hg, (M),)\B'(M ) =

= (Assg, (Hp, (M)n)\F(M)) ™",

Proof. Let n < n'(M) and po € ((Suppg, (H}'h(M)n)\‘Bi(M))Ss
Then, there is some ¢y € ASSRO(H§%+(M),L) with qo C po. As

po ¢ P*(M) we have qo ¢ PI(M) = ASSRO(HfLr(M)n)SQ. It follows
that height (gqo) > 3, hence qo = po and therefore

po € Asspg, (HJZ'LLr (M),)=3.
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This proves the inclusion “C.” The converse inclusion is obvious. a
Definition 2.7. Let i € Ny, and let n‘(M) and Cf(M) be as in

Lemma 2.6. Then the set

cim):= |J cim)

is called the ith critical set of M.

Proposition 2.8. Leti € Ng. Then

(a) M is uniformly tame at level i along the set

[(Spec (Ro) \ Suppf, (M)) U (M) U Spec (Ro)=*] \ C*(M).

(b) T(M)=? 2 Spec (Ro)=*\ C*(M).
(c) The following statements are equivalent:
(i) C*(M) is a finite set;
(i) TH(M)=3 is open in Spec (Ro)<® and M is uniformly tame at
level i along TH(M)<3.
(iii) Spec (Ro)<3\ T¢(M) is finite and M is uniformly tame at level i
along TH(M)<3.

Proof. (a) This follows from Remark 2.4 (B) and the fact that
=3

[ U  Suppr,(Hp, (M),)| \P'(M)=C'(M).

(b) This is immediate by statement (a).

(¢) (i) = (ii). This follows easily by statements (a) and (b) and
the fact that M is uniformly tame at level ¢ along each finite subset
v CP(M).

(ii) = (iii). Assume that statement (ii) holds. As Spec(Ry)<2 C
TH(M)=? (Remark 2.4 (B) (i)) and as T¢(M)=? is open in Spec (Ry)<3
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it follows that Spec (R)<3 \ T¢(M)=? is a finite set, and this proves
statement (iii).

(iii) = (i). Assume that statement (iii) holds so that Spec (Ro)<®\
T¢(M) is finite and M is uniformly tame along T'(M)<3. By statement
(b) we have Spec (R)<3 \ TH(M)<3 C C{(M) C Spec (Roy)~=3. It thus
suffices to show that the set F':= C*(M) N T}(M) is finite.

By uniform tameness there is some integer ny < n‘(M) such that, for
each pg € F, either

(I) po € Suppkg, (Hf%+(M)n) for all n < ng; or

(IT) po ¢ Suppg, (Hli‘h (M),,) for all n < ng.

Let Fr := {po € F | po satisfies (I)} and Fi; := {po € F |
po satisfies (I1)}. As F = Fr U Fyy it suffices to show that Fr and
Fy; are finite.

; <3
If po € Fr, we have po € (Suppr,(Hp, (M)n,) \ PI(M))~". As
no < ni(M) statement (a) implies py € Assg, (H}'er (M)pn,). This proves
that Fr C Assg, (H}'er (M),,) and thus F7 is finite.

) — <
Clearly Frr C (Unogngni(M) Suppkg, (Hfer (M) \ “BZ(M))J' S

by statement (a), we see that Fy; is contained in the finite set
Unogngni(M)ASSRo(H;{_,_(M)n)‘ o

o,

3. Finiteness of critical sets. We keep all notations and hy-
potheses of the previous section. So R = @®pen,Rn is a Noetherian
homogeneous ring whose base ring Ry is essentially of finite type over
some field and M is a finitely generated graded R-module. By state-
ment (c) of Proposition 2.8 it seems quite appealing to look for criteria
which ensure that the critical sets C*(M) are finite. This is precisely
the aim of the present section.

Reminder 3.1. (A) Assume that Ry is a domain. Then, according
to [5, Theorem 2.5] there is an element s € Ro\{0} such that the (Rp)s-
module (H}'Lr (M))s is torsion-free or 0 for all ¢ € Ny. From this we
conclude that (with the standard convention that Ny, cezpo := Ro):
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If Ry is a domain, the ideal

a'(M) = ﬂ Po

Po€ASsRy (Hly, (M))\{0}

is # 0 for all i € Ny.
(B) Keep the notations and hypotheses of part (A). Then:

Ifx € a'(M) and if N is a second finitely generated graded R-module
such that the graded R.-modules M, and N, are isomorphic, then
z € a‘(N).

This follows immediately from the fact, that for all n € Z there is an
isomorphism of (Ry),-modules (Hlih (M)p)e = (H}%Jr (N)n)z. For our
purposes the most significant application of this observation is:

If v € a'(M), then © € a'(M/T ;) (M)).

Notation 3.2. An element z € Ry is called a quasi-non-zero divisor
with respect to (the finitely generated graded R-module) M if z is a
non-zero divisor on M,, for all n > 0. We denote the set of these quasi-
non-zero divisors by NZD% (M). Thus, in the notation of Reminder
and remark 2.2 (A) we may write

NZDR, (M) =Ro\  |J  po.
POGASS;‘{O(M)

Lemma 3.3. Let i,k € No, and assume that height (po) > k for all
po € Assi (M). Then, the set Assg, (H}'%Jr (M),,)=**2 is asymptotically
stable for n — —oo. In particular, if k > 0, then C*(M) is finite.

Proof. There is some integer ng € Z such that (0 :r, M>n,) € Ro
is of height > k, where we use the notation M>y, 1= ®n>n,Mp. As
Hp, (M) and Hy, (M) differ only in finitely many degrees, we may
replace M by M>,, and hence assume that agA/ = 0 for some ideal
ap € Ry with height (ag) > k. As height (pg/ag) < height (po) — & for all
po € Var (ag) and in view of the natural isomorphisms of Ry-modules
Hy, (M), = HfR/aOR)+ (M),,, we now get a canonical bijection

Asspy (Hp, (M)n)=""2 ¢ Assp, /o, (Hp, (M)n)=?,
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for all n € Z. So, by Reminder and remark 2.2 (D) the left hand side
set is asymptotically stable for n — —oo. If £ > 0 the finiteness of
C*(M) now follows easily from statement (a) of Lemma 2.6. u]

Let ¢ € Ny. According to Remark 2.4 (B) we know that M is
uniformly tame at level ¢ in codimension < 2. We also know that
M need not be tame at level ¢ in codimension 3. It is natural to ask
whether there are only finitely many primes po of height 3 in Ry such
that M is not tame at level 7 in py and whether outside of these “bad”
primes the module M is uniformly tame at level ¢ in codimension < 3.
We aim to give a few sufficient criteria for this behavior. The following
theorem plays a crucial role in this respect.

Theorem 3.4. Let 1 € Ny. Assume that Ry is a domain and that
NZD}, (M) Na'(M) # @. Then C*(M) is a finite set. In particular,
the set Spec(Ro)<2\ TH(M) consists of finitely many primes of height 3
and M is uniformly tame at level i along TH(M)<3.

Proof. If i < f(M) our claim is clear by Remark 2.4 (A) and
Proposition 2.8 (c). So, let ¢ > f(M). Then in particular ¢ > 1.

Now, let m(M) € Z be as in Reminder and remark 2.2 (A), and
set N := M>p) = Ons>m(ur)yMn. Then NZDp (M) equals the
set NZDg,(N) of non-zero divisors in Ry on N. As i > 1, we have
Hﬁh (N) = H}é+ (M), and hence a'(M) = a‘(N) and C*(M) = Ci(N).
So, we may replace M by N and hence assume that NZDg, (M) N
al(M) £ @.

Let = € NZDg,(M) N a’(M). Then, the short exact sequence
0—->M3M— M/xM — 0 implies exact sequences

Hp (M), = Hy (M), — Hp (M/zM),

foralln € Z. Now, let pg € C*(M) so that height (po) = 3 (Lemma 2.6).
Then, there is an integer n < ni(M) such that py is a minimal
associated prime of Hlih(M )n. We thus get an exact sequence of
(Ro)p,-modules

(Hiy, (M)n)po =55 (Hiy, (M))py —5 (Hp, (M/2M)0)p,
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in which the middle module is of finite length # 0. As x € af(M) C
po, it follows by Nakayama that o is not the zero map. There-
fore, (Hfer (M/xM)y,)p, contains a non-zero (Ry)p,-module of finite
length. It follows that py € Assg, (H}é+ (M/xM),)=3. This shows that
C*(M) C Assp,(Hp, (M/zM),)=%. So, by Lemma 3.3 the set C*(M)
is finite. |

Corollary 3.5. Leti € No. Assume that Ry is a domain and that
M,, is a torsion-free Ro-module for all n > 0. Then the set C*(M) is
finite. In particular, M is uniformly tame at level i along T'(M)<3,
and the set Spec (Ro)<3 \ TH(M) is finite.

Proof. By our hypotheses we have NZDp (M) = Ry \ {0}. By Re-
minder 3.1 (A) we have a*(M) # 0. Now we conclude by Theorem 3.4. O

Corollary 3.6. Let i € Ny, and assume that Ry is a domain and
M is torsion-free over Ry. Then M is uniformly tame at level ¢ along
a set which s obtained by removing finitely many primes of height 3

from Spec (Ry)<3.
Proof. This is clear by Corollary 3.5. |

Our next aim is to replace the requirement that M, is Ry torsion-free
for all n > 0, which was used in Corollary 3.5 by a weaker condition.
We begin with the following finiteness result for certain subsets of
critical sets:

Proposition 3.7. Let Ry be a domain, leti € N, and let z € Ry\{0}
be such that xT'(z)(M) = 0. Then

(a)ﬁ[C"(M)]\[C"(M/Fm(M))UW1 (M /aM)NPHHL (T (g (M))]?]
18 a finite set.

(b) If x € a*(M), then the set C*(M /T (,)(M)) and hence also the set

CH(M) \ [[B=1 (M /2 M) N P (L o) (M) 72\ C(M/T 1y (M))]

18 finite.
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Proof. (a) Fix an integer ng < ni(M/:L'M),ni(F(x)(M)),ni(M),
n*(M /T (z)(M)), and let po € C*(M). Then po € min Assg, (Hp, (M)n)
for some n < n'(M). If ng < n, po thus belongs to the finite set

Um>no ASSk, (H}'2+ (M),,). So, let n < ng. The graded short exact
sequences

0— M/T (M) — M — M/xzM — 0

and
0—> F(m)(M) — M — M/F(z)(M) — 0

imply exact sequences

(Hi, (M/xM)n)p, — (Hp, (M/To)(M))n)po — (Hi, (M)n)ps
—— (Hp, (M/zM)n)p,

and
(Hi, (M)n)py — (Hp, (M/T(2)(M))n)po — (Hg (D (zy(M))n)po-

Assume that pg ¢ C*(M/T(;)(M)). Then (H§+(M/F(z)(M))n)po
either vanishes or is an (Rg)p,-module of infinite length. In the first
case we have (Hi, (M)a)py © (Hi, (M/oM)n)py: As (Hi (M)n)p,
is a non-zero (Rp)p,-module of finite length, it follows that po €
Asspg, (Hfﬁ (M/xM),). So po belongs to the finite set Assg, (H}'er (M/
rM))S3 (Remark 3.3).

Assume now that (Hﬁ+(M1/F(w)(M))")p0 is not 'oi finite length.
By the above sequences (Hp “(M/xM)n),, and (H};:r (Czy(M))n)po
are both of infinite length, so that py € Pi—1(M/zM) and py €
P (L) (M)).

(b) According to Reminder 3.1 (B) we have z € a*(M/T(,)(M)).
As moreover it holds = € NZDpg,(M/I'(,)(M)) our claim follows by
Theorem 3.4. |

Corollary 3.8. Let i € Ny, let Ry be a domain, and assume that
height (po) > 3 for all po € Assf, (M)\ ({0} UB (M)). Then C*(M) is
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a finite set. In particular, the set Spec(Rg)<3\ TH(M) is finite and M
is uniformly tame at level i along the set TH(M)<3.

Proof. Let m(M) € Z be as in Reminder and remark 2.2 (A) so
that Assgp,(M,) = Assp (M) for all n > m(M). As H%+(M) and
H§3+(M2m( ) differ only in finitely many degrees, we may replace
M by Ms,,vy) and hence assume that Assp (M) = Assg,(M). If
0 ¢ Assg, (M) we get our claim by Lemma 3.3. So, let 0 € Assg, (M)
and consider the non-zero ideal by := Mpo€Asspy (M)\{0}P0- Then
Assp, (M /Ty, (M)) = {0} so that M /T, (M) is torsion-free over Ry.
Let z € bg \ {0} with zI'(;)(M) = 0. Then it follows that L'y, (M) =
['(z)(M). By Corollary 3.5 we therefore obtain that C*(M/T'(,)(M))
is finite. According to Proposition 3.7 (a) it thus suffices to show

that C*(M) N Pi+1(Ty, (M))_3 is finite. So, let qo be an element of
this latter set. Then height (qo) = 3 and qo ¢ PI(M). Moreover,
there is a minimal prime py of by with pg C ¢o. In particular
po € Assg, (M) \ {0} and po ¢ P*(M). So, by our hypothesis

height(po) > 3, whence qo = po € Assp (M) \ {0}. This shows that
C'(M)n ‘13"+1(Fb0(M)):3 C Assy, (M) and hence proves our claim. 0O

Remark 3.9. Clearly Corollary 3.6 applies to the domain R’ con-
structed in [12] (Example 2.5), taken as a module over itself. In this
example we have in particular T2(R')<® = Spec (R})) \ {mo}. Moreover,
the uniform tameness of R’ at level 2 along this set can be verified by
a direct calculation.

4. Conditions on neighboring cohomologies for tameness in
codimensions < 3. We keep the hypotheses and notations of the
previous sections. So R = ®,eN, R, is a homogeneous Noetherian ring
whose base ring Ry is essentially of finite type over a field, and M is a
finitely generated graded R-module.

Our first result says that M is tame in codimension < 3 at a
given level i € N, if the two neighboring local cohomology modules
H;il (M) and H;{f (M) are “asymptotically sufficiently small.” (We
set H §+ (¢) := 0 for k£ < 0.) We actually shall prove a more specific
statement. To formulate it, we first introduce an appropriate notion.
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Definition and remark 4.1. (A) We say that a graded R-module
T = ®nezT, is almost Artinian if there is some graded submodule
N = ®pczN, C T such that N,, = 0 for all n < 0 and such that the
graded R-module T'/N is Artinian.

(B) A graded R-module T' which is the sum of an Artinian graded
submodule and a Noetherian graded submodule clearly is almost Ar-
tinian. Moreover, the property of being almost Artinian passes over to
graded subquotients.

(C) As Ry is Noetherian and R is homogeneous each graded almost
Artinian R-module T has the property that dimpg,(7,) < 0 for all
n < 0.

(D) Clearly an almost Artinian graded R-module is tame.
Now, we are ready to formulate and prove the announced result.

Theorem 4.2. Let i € N be such that dimpg, (H};l(M)n) <1 and
dimp, (H}{f(M)n) < 2 for all n < 0. Then the following statements
hold.

(a) The graded Ry, -module Hll;h (M),

Po € Spec (Ro) = \ T (M).
(b) THM)S® = Spec(Ro)=3, and hence M is tame at level i in
codimension < 3.

o Is almost Artinian for all

Proof. (a) Let py € Spec(Rp)™ \ PB*(M). We consider the
Grothendieck spectral sequence

15 = HY, (1, (M), > HEEy (1),

pot+R4 0°

By our assumption on the dimension of the Rj-modules H}il (M),
and H}'{f(M )n, the nth graded component (E%?), of the graded
Ry,-module ES'? vanishes for all n < 0 if (p,q) = (2,7 — 1) or
(p, q) = (3,7 — 2). Therefore,

(B2, = (B%),, forall n < 0.

As the graded R,,-module E2 is a subquotient of the Artinian R, -

module HéO+R+ (M)p,, it follows by Definition and remark 4.1 (B) that
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the graded R,,-module

HgORpO (H;%_,_ (M)Po) = Hgo (H;{+ (M))Po = EQO,Z

is almost Artinian. Now, since py ¢ P?(M) and py is of height 3, we
must have

dimp,, ((Hg, (M)p)n) <0, for all n <0,

and hence HSORpO (H}i%+ (M)y,) and H}LLr (M)y, coincide in all degrees
n < 0. Therefore, Hj, (M), is indeed almost Artinian.

(b) This follows immediately from statement (a), as (M) C T¢(M)
(Remark 2.4 (B)). o

Remark 4.3. The domain R’ constructed in [13] (Example 2.5),
taken as a module over itself, clearly cannot satisfy the hypotheses
of Theorem 4.1 with ¢ = 2 as it does not fulfill the corresponding
conclusion of this theorem. Indeed, a direct calculation shows that
dimp, (H}%,Jr (R"),) =3 for all n < 0.

Our next result says that the module M is tame at level ¢ almost
everywhere in codimension < 3 provided that R is a domain and
the local cohomology module H }il (M) is “asymptotically very small.”
Again, we aim to prove a more specific result.

Theorem 4.4, Let Ry be a domain and i1 € N such that
dimpg, (H}{:(M)) < 0 for all n < 0. Then the following statements
hold.

(a) There is a finite set Z C Spec (Rg)™ such that the graded R, -
module Hlih (M), is almost Artinian for all py € Spec (Ro)=\ (Z U

F(M)).
(b) Spec (Ro)=3\ T¢(M) is a finite subset of Spec (Rg)~>.

(]

Proof. (a) According to Reminder 3.1 (A), there is an element
z € a'(M) \ {0} such that z['(,)(M) = 0. If we apply Lemma 3.3
with £ = 1 to the R-module M/xM (also with ¢ — 1 instead of ¢) and
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to the R-module I, (M) (with i+ 1 instead of i) we see that the three
sets )

Assg, (Hp, (M/zM)n)=?,

Assg,(Hg, (M/zM),)=?,

Assg, (Hp, (Do) (M)n)=*

are asymptotically stable for n — —oo. So, there is a finite set
Z C Spec (Ry)™3 such that

Assgy(Hp ' (M/zM),)~> U Assg, (Hp, (M/zM),)~°
UAssg, (H ™ (T (M),)=2 =Z

for all n < 0. Let
po € Spec (Ro)=>\ (Z UPH(M)).

We aim to show that the graded R, ,-module H}'ﬁ (M)y, is almost

Artinian. As py ¢ P?(M) and height (pg) = 3, it follows that
1ength(Ro)p0 (H§%+ (M)n)p,) < 00

for all n < 0. As dimpg, (Hfirl (M),) <0 for all n < 0 we also have
lengthry),, (Hi, ' (M)5)p, < 00

for all n < 0. As py ¢ Z and height (pg) = 3, we also can say

Lo (Roypg (Hp, (M/2M)n)p,) = Tpg(Ro) g (Hizy (M/2M)n)po)

= 1-‘Po(l’?o)po ((H;zt_l (F(Z)(M))n)po) =0,
Vn < 0.

Now, as in the proof of Proposition 3.8 (a), the canonical graded short
exact sequences

0 — M/T(z)(M) 2> M — M/aM — 0

and
0-—Ty(M) — M - M/T (M) — 0,
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respectively, imply exact sequences of (Rg)y,-modules

(H;%__'.l (M)n)Po — (H;-Q:_l (M/xM)n)Po

) (Hi, (#)n)ro
— (Hpg, (M/T(o)(M))n)p, — —

—— (Hp, (M/2M)n)y,

Hj (M)n)p,

and

(Hféﬂn)po

(Hp, (M)n)p, (Hg, (M/T (2)(M))n)s,

— (HE Ty (M)n)po
for all n < 0. Keep in mind that, in the first of these sequences, the
first and the second but last module are of finite length for all n < 0,
whereas the second and the last module are po(Rp)y,-torsion-free for all
n < 0. Observe further, that in the second sequence the first module
is of finite length and the last module is po(Ro)p,-torsion-free for all

n < 0. So there is an integer n(z) such that for each n < n(z) we have
the exact sequence

0 — (Hp ' (M/xM))p, — (Hp, (M/T()(M))n)p,

(Hy, Bndvy
= (Hy, (M)n)p, — 0

and the relation

Im (Hg (7)n)p0) = Tpo(Ro)pe (Hi, (M/T () (M))n)pa)-
Thus, for all n < n(z) the image of the composite map
(Hg, (M)n)po © (Hp, (#)n)po + (Hp, (M/T () (M))n)p,
— (Hi, (M/T ()(M))n)p,

is the torsion module I'y; (), ((H§+ (M/T ()(M))n)p,). As the com-
posite map mo ¢ : M/T(,)(M) — M/T'()(M)) coincides with the
multiplication map z = zId/r, (a) on M/T (3 (M) we end up with

Lpo(Ro)py (Hi, (M/T(ay(M)n)py) = 2(Hp, (M/T(2)(M))n)po
for all n < n(x).
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Now, without affecting I'(,)(M ), we may replace = by z? and thus get
the equalities

(Hpg, (M/T (@) (M)n)p, = @*(Hp, (M/T(2)(M))n)pq

for all n < m(z) := min{n(z),n(z?)}. Consequently, as z € po and
as the (Rg)p,-modules (H}'Lr (M/T (3)(M))n)p, are finitely generated, it
follows by Nakayama that

T po(Ro) g ((H;’z+ (M/T (y(M))1)po) = 0, for all n < 0.

Applying the functor Fpo(Ro)po (o) to the above short exact sequences
and keeping in mind that the right hand side module in these sequences
is of finite length, we get the natural monomorphisms

0 — (Hp, (M)n)p, — Hy,(ny),, (Hp, (M/2M)p)p,,
for all n < m(z).

It is easy to see that these monomorphisms are the graded parts of a ho-
momorphism of graded R,,-modules. Moreover, as dim ((Ro/xRg)p,) <
2, the graded Ry -module

1 i—1 ~ 7l i—1
Hp(Rg),,0 (HR+ (M/mM)po) = Hpo(Ro/mRo)po (Ilr(I-z/g;I-z)m“r ((M/@”M)po))
is Artinian ([10, Theorem 5.10]). In view of the observed monomor-
phisms and by Definition and remark 4.1 (B), this implies immediately,
that the graded R, ,-module (H}'%+ (M))p, is almost Artinian.

(b) This follows immediately from statement (a), Reminder and
remark 4.1 (D) and Remark 2.4 (B). O

This leads us immediately to the following observation.

Corollary 4.5. If Ry is a domain and i € N is such that the
R-module HEFI(M) is almost Artinian, then the set of all primes

po € Spec (Ro) <3\ Bi(M) for which the graded R,,-module H}'2+ (M)g,
is not almost Artinian as well as the set Spec (Rg)<3\ TH/(M) are both
finite subsets of Spec (Ro)=3.
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Proof. This is immediate by Theorem 4.4 and Definition and remark

4.1 (C). o
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