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EXISTENCE OF TOTALLY REFLEXIVE MODULES
VIA GORENSTEIN HOMOMORPHISMS

KRISTEN A. BECK

ABSTRACT. We define, via Gorenstein homomorphisms, a
class of local rings over which there exist non-trivial totally
reflexive modules. We also provide a general construction of
such rings, which indicates their abundance.

1. Introduction. In 1967, Auslander first introduced the notion
of a totally reflexive module when he defined Gorenstein dimension
in [2]. Since that time, totally reflexive modules have been studied
extensively. The goal of this paper is to investigate the existence of
such modules. On one hand, their existence is always guaranteed, as
every projective module is trivially totally reflexive. A more interesting
problem, however, is to understand the prevalence of non-trivial (that
is, non-projective) totally reflexive modules. It is well known that, over
a Gorenstein local ring, it is precisely the maximal Cohen-Macaulay
modules which are totally reflexive; when the ring is also non-regular,
these modules are non-free. However, over a non-Gorenstein ring, non-
trivial totally reflexive modules are much more elusive.

There has been some work done to answer this existence question
over non-Gorenstein rings. Among others to study this problem (see,
for example, [7, 16, 17, 19]), Avramov, Gasharov, and Peeva showed
in [6, Theorem 3.2] that any local ring R with an embedded deforma-
tion S — S/(z1,...,2,) & R, with z1,... ,z, an S-regular sequence,
admits non-trivial totally reflexive modules. In this paper, we weaken
the hypotheses of [6, Theorem 3.2] by considering a local ring homo-
morphism S — S/I = R where I is a Gorenstein ideal of S, rather
than an ideal generated by a regular sequence. In this generality one
would not expect such an R to always admit non-trivial totally reflex-
ive modules. However, we prove in our main theorem that when a
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particular lifting of R to a Gorenstein ring exists, the desired result is
obtained. As regular sequences always lift modulo certain surjective
ring homomorphisms, our result recovers that of [6], mentioned above.
This result, along with several corollaries, is given in Section 2.

In Section 3 we provide a general construction for rings of arbitrary
grade which satisfy the hypotheses of our result and therefore admit
non-trivial totally reflexive modules. Subsequently, we give a specific
example which, using machinery established in Section 4, show does
not have an embedded deformation.

1. Preliminaries. Throughout, let (R, m, k) denote a commutative
local (meaning also Noetherian) ring with maximal ideal m and residue
class field ¥ = R/m. All modules will be finitely generated, and we
shall reserve the symbol pg(M) for the minimal number of generators
of the R-module M. Furthermore, by (—)* we denote the ring dual
HomR(f, R)

1.1. Total reflexivity. Let M be a finitely generated module
over R. Then M is said to be totally reflexive if each of the following
conditions hold:

(1) The canonical map M — Hompg(M*, R) is an isomorphism.
(2) Ext% (M, R) =0 for all i > 0.
(3) Extiy(M*, R) = 0 for all i > 0.

Moreover, we say that M is non-trivial if it is not free.

Recall that an acyclic complex C = (C}, 9;);cz of finitely generated
free R-modules is called minimal if 9;(C;) C mC;_; for all ¢ € Z (for
example, see [7, Proposition 8.1]). Furthermore, if C is such that
C* = (C},0})icz is also acyclic, then it is said to be a (minimal)
totally acyclic compler. Any totally acyclic complex which is minimal

and nonzero is non-trivial.

Given a totally acyclic complex C = (Cj, 0;)icz of R-modules, we
have that Q‘C = ker §; is a totally reflexive R-module for every i € Z.
Conversely, it is easy to see that every totally reflexive module gives
rise to a totally acyclic complex. Thus, the existence of totally reflexive
modules and totally acyclic complexes are equivalent notions.
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1.2. Gorenstein homomorphisms. For finitely generated Q-
modules M and N, we define the grade of N on M by

gradeq (N, M) = min{i | Exty (N, M) # 0}.

Note that this quantity is well defined over a non-local ring. In fact, the
quantity gradeg (XN, M) is simply the common length of the maximal
M-regular sequences contained in Anng/N. We also speak of the grade
of a finitely generated Q-module M, which is defined by

gradeq M = min{i | Ext{, (M, Q) # 0}.

Thus, gradeg M is simply gradeg (M, @), as defined above.

A finitely generated (-module M is called perfect if pdgM =
gradeg M. It is easy to see that if @) is Cohen-Macaulay and pdoM <
00, then M is perfect if and only if it is Cohen-Macaulay. Moreover,
let I C @ be an ideal such that Q/I is a perfect @Q-module. Then I is
called a Gorenstein ideal if

Ext)'?'(Q/1,Q) = Q/I.

Notice that if @ is Gorenstein and R/I is a perfect @-module, then I
is a Gorenstein ideal if and only if @/ is a Gorenstein ring.

A surjective ring homomorphism ¢ : @ — R is called Cohen-
Macaulay if R is a perfect @-module. Moreover, ¢ is called Gorenstein if
it is perfect and ker ¢ is a Gorenstein ideal of ). With these definitions,
notice that the image of a Cohen-Macaulay ring under a Cohen-
Macaulay ring homomorphism is also Cohen-Macaulay. Moreover, the
image of a Gorenstein ring under a Gorenstein ring homomorphism is
Gorenstein.

1.3. Lifting. Let ¢ : P — @ be ring homomorphism and M a
finitely generated @-module. If there exists a finitely generated P-
module N such that

(].) M%Q@FNand
(2) Torf (Q, N) =0 for all i > 0,

then M is said to lift to P via . In this case, N is called a lifting of
M.
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2. Existence of non-trivial totally acyclic complexes. The
framework of our main theorem is motivated by the phenomenon
apparent in the most general class of rings previously known to always
admit non-trivial totally acyclic complexes: local rings having an
embedded deformation. The next result is a consequence of the explicit
construction in [6, Theorem 3.2] due to Avramov, Gasharov and Peeva.
First we give the definition.

2.1 Definition. A local ring R is said to have an embedded de-
formation if there exists a local ring S and an S-regular sequence
T1,...,T, C m% such that R = S/(z1,...,z,).

2.2 Theorem [6, Theorem 3.2]. Let R be a local ring which has
an embedded deformation. Then there exist non-trivial totally acyclic
complezes over R.

This result will prove to be a corollary to our main theorem. The
proof we give below is completely different than the construction in [6].

The method used in our main result relies on the following result con-
cerning the descent of totally reflexive modules along homomorphisms
of finite flat dimension, cf. [9, 5.6(b)].

2.3 Lemma. Let Q be a non-regular Gorenstein ring and p : Q — R
a local homomorphism of finite flat dimension. Then there exist non-
trivial totally acyclic complexes over R.

Proof. Since @ is Gorenstein and non-regular, it admits non-trivial
minimal totally acyclic complexes; let C = (C;,0;)icz be such a
complex, and consider the totally reflexive module Q/C for some j € Z.
If fdg R = n, we have that Tor? (7C, R) vanishes for all i > n. Letting
j vary, it follows that C ®g R is exact over R. Furthermore, the
isomorphism given by

Hompg(C ®q R, R) = HOIHQ(C, Q) ®q R

(cf. [10, Proposition 2.3]) implies that the same argument shows that
(C®q R)* = Hompg(C ®¢ R, R) is also exact over R. Therefore C ®¢g R
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is a totally acyclic complex over R, and it is non-trivial and minimal
since C was. o

We can now state and prove our main theorem.

2.4 Theorem. Let ¢ : Q — R be a Gorenstein homomorphism of
local rings whose kernel is contained in mQQ. Suppose that there exists
a Gorenstein local ring P and homomorphism ¢ : P — Q of finite flat
dimension. Furthermore, let S = P/I be a lifting of R to P via Q such
that

(1) 0# 1 Cm% and

(2) gradep(S, P) > gradep(S, Q).

Then there exist non-trivial totally acyclic complexes over R.

Proof. Consider the natural projection ¢’ : P — S, and the map
P S — S®p Q = R which acts by s = s ® 1. Then we have the
following commutative diagram of local ring homomorphisms:

N
A

By Lemma 2.3, it suffices to show that S is a non-regular Gorenstein
ring and that fdy’ < oco.

Let F be a minimal free resolution of S over P. Since Tor? (S, Q)
vanishes for each ¢ > 0, a minimal free resolution of R over @ is given
by F ®p Q, and therefore pdpS = pdgR < co. Also by the vanishing
of Torf (S, Q) for each i > 0, we get isomorphisms

Ext%(S, Q) = Ext})(R, Q)
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for all ¢ (cf. [11, 2.1 (1)]). Thus, gradep(S, Q) = gradeg(R, Q). This
and the assumptions of the theorem now give

gradep(S, P) > gradep(S, Q)

= gradeg (R, Q)
= deR
= deS

which implies that gradep (S, P) = pdpS, and so ¢’ is Cohen-Macaulay.

To show that S is a Gorenstein ring it remains to prove that
Extl}),dPS(S, P) =~ S. However, since S is a perfect P-module, it is
sufficient to show that the rank of the last nonzero free module in the
minimal free resolution F of S over P is one. But this follows from the
fact that F ® p @ is a minimal free resolution of R over () whose last
nonzero free module has rank one.

Next we justify that S is non-regular. Let I = ker ', which by
assumption is contained in m%. We have mg/m% = mp/(m% + 1) =
mp/m%. Since the Cohen-Macaulayness of S and P, along with
the Auslander-Buchsbaum formula, imply that dim S < dim P, we
therefore have

ps(ms) = pp(mp) > dim P > dim S,

and so S is non-regular.

Finally, we show that the map 1’ has finite flat dimension. Let M be
any S-module. By the vanishing of Tor? (S, Q) for each i > 0, we have
isomorphisms Tor? (R, M) = Tor!’(Q, M) for all i. Since @ has finite
flat dimension as a P-module, this homology eventually vanishes. The
finite flat dimension of R over S follows. O

2.5 Remark. Theorem 2.4 may be regarded as a sort of ‘ascent’ ana-
logue of [18, Theorem 3.1 (2)]. Both results use a similar factorization
involving Gorenstein homomorphisms, whereas the point of the theo-
rem from [18] is that the hypotheses placed on ¢’ descend to ¢.

We list as corollaries several cases in which Theorem 2.4 applies to
establish the existence of non-trivial totally acyclic complexes over R.
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We shall begin by showing that our result recovers the class of local
rings which have embedded deformations. Our proof of this result, as
well as that of Corollary 2.6 below, uses standard constructions of ring
homomorphisms, as, for example, seen in [18].

Proof of Theorem 2.2. Let p : Q — Q/(z1,...,z.) = R define an
embedded deformation for R, so that zi,... , z. is a Q-regular sequence
contained in mé. Choose a minimal system of generators zy, ... , ze of
mg and, for 1 < ¢ < ¢, write z; = 25:1 rij2; where each r;; € mg.

Now let p;j, £ for 1 <i < cand 1 < j < e be indeterminates over Z.
If p = char Q/mg, set

P = Z[Pij, §j](p,pij7€j)

and consider the local ring homomorphism ¢ : P — @ given by
Pij = Tij, and fj = Zj for all 7 and j ThHS, we define X; = Z;:l pij'fj
for each 1 < i < ¢, and let

S=P/(X1,...,Xc).

It now suffices to show that S satisfies the hypotheses of Theorem 2.4.

First of all, notice that by way of construction, S is a lifting of R to
P via Q. To see this more explicitly, notice that

P/(Xla 7Xc)®PQiP®PQ/($17"'axc)

as P-modules via the mapping given by @ ® b — 1 ® ¢(a)b, whence
S®pQ = R. Furthermore, as x1, ...,z is @-regular and X1, ... ,X. is
P-regular, if F is a P-free resolution of S, then F ® p Q yields a Q-free
resolution of R. This implies Tor-independence.

The required grade inequality is actually a grade equality in this case,
gradep (S, P) = ¢ = gradep(S, Q).
The remaining hypotheses are obvious, and the result follows. o
2.6 Corollary. Suppose that ¢ : Q — R is a Gorenstein homomor-

phism of grade 3. Then there exist non-trivial totally acyclic complexes
over R.
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Proof. By the Buchsbaum-Eisenbud structure theorem (cf. [8, The-
orem 3.4.1 (b)]), there exists a (deleted) minimal free resolution of R
over @ given by

F: 0—Q-50 %250 —0

with d odd, where a = (a;;) is skew-symmetric and 5 = (b;), such that
b; is determined by the Pfaffian of the matrix obtained by the deletion
of the jth row and column of «. Notice that 8 is non-trivial since d is
assumed to be odd.

Through a similar process as that in the previous proof, we define a
regular local ring

P = Z[T](p;T)

where T' = {t;; | 1 < i < j < d} is a set of indeterminates over Z and
p = char /mg, and a local homomorphism t : P — @ which acts by
tij — a;; for each 7 and j.

Now consider the d x d matrix over P given by 7 = (¢;;) where ¢;; =0
and t;; = t;; for all ¢ < j. Let 0 = (s;) be the d x 1 matrix over P such
that s; is defined by the Pfaffian of the matrix obtained by deleting the
jth row and column of 7. If S is the P-module defined by the cokernel
of *, the Buchsbaum-Eisenbud structure theorem implies that

G: 0—P-%pt ypi?p_ o

is a (deleted) minimal free resolution of S over P. With these defined,
notice that G ®p Q = F, which implies that R lifts to P via Q. We
can now use Theorem 2.4 to obtain the desired result. ]

The next result addresses the case where @) is a Cohen-Macaulay ring.
Its proof uses a corollary to Robert’s “new intersection theorem” (cf.
[14]), which we state as a lemma.

2.7 Lemma. Let R be a local ring, and suppose that M and N are
finitely generated R-modules of finite projective dimension over R. If
Tor®(M,N) =0 for all i > 0 and M ®g N is Cohen-Macaulay, then
both M and N are Cohen-Macaulay.
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Proof. Recall that the vanishing of Torf(M, N) for i > 0 implies that
de(M QR N) = deM + deN

Furthermore, by using [8, Corollary 9.4.6] along with the Auslander-
Buchsbaum formula, we obtain the following:

dimgN < pdrM + dimr(M ®g N)
=pdr(M ®r N) — pdgrN + depthr(M ®g N)
= depthg R — pdr N
= depthg N

The same proof shows that M is also Cohen-Macaulay. mi

2.8 Corollary. Let ¢ : @ — R be a Gorenstein homomorphism
of local rings whose kernel is contained in mQQ. Suppose that there
exists a Gorenstein local ring P and Cohen-Macaulay homomorphism
¥ : P — Q whose kernel is contained in m%. If R lifts to P via Q, then
there exist non-trivial totally acyclic complexes over R.

Proof. If P is non-regular, then by virtue of the fact that pdpQ
and pdgR are both finite, we have that pdpR is finite as well. Thus
Lemma 2.3 shows that non-trivial totally acyclic complexes exist over
R. The rest of the proof addresses the case that P is regular.

Let S be a lifting of R to P. First, we want to show that S is a
quotient ring of P, equivalently a cyclic P-module. We have that the
induced map P/mp — Q/mg is an isomorphism, and therefore

R/mgR = R®q Q/mg
= (S®p Q) ®q Q/mq
= S®pQ/mg
2 S®p P/mp
~ S/mpS

which implies that R/mgR = S/mpS as vector spaces over Q/mq. It
follows that

/LP(S) = dimp/mPS/mpS = dimQ/mQR/mQR =1
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Now consider the natural projection ¢’ : P — S, and the natural local
ring homomorphism ¢’ : S — S ®p Q@ = R which acts by s — s ® 1.
Since ¢ Cohen-Macaulay implies fdp@ < oo, it is sufficient to show
that S satisfies the hypotheses of Theorem 2.4. To this end, we prove
that gradep(S, P) > gradep(S, Q) and the kernel of ¢’ is contained in
m2,.

In order to show the latter, let x € ker ¢'. Then 3 (z) € ker ¢ C mj,.
Since the induced map mp/m% — mg /m2Q is injective, it follows that
z € m%. Now to show the former, note that Q is Cohen-Macaulay
since it is a perfect module over a Cohen-Macaulay ring. This fact, in
turn, implies the same property for R. Recall that Lemma 2.7 shows
that S must be Cohen-Macaulay as well. Since pdpS < oo, it follows
that ¢’ is Cohen-Macaulay. This fact and the lifting condition imply
the following equalities

gradeg (R, Q) = pdoR = pdpS = gradep(S, P).

Recalling that vanishing of Tor®(S, Q) for i > 0 implies that gradep(S,
Qgrade) = gradeg(R, Q) (see the proof of Theorem 2.4), the desired
grade condition is satisfied. We can now apply Theorem 2.4 to obtain
the result. O

In the previous corollary, the assumption that ker ¢ C m% is essential
in obtaining totally reflexive R-modules which are non-trivial. This fact
is illustrated through the following example.

2.9 Example. Let k be a field and consider the local rings defined
by:

P:k[[may]]a Q:k‘[[l']], R:k[[m]]/(w2)

Furthermore, let ¢ : P — kz,y]/(y — 2?) = Q, and let ¢ : Q — R
be the natural projection maps. Notice that ¢ ot : P — R can be
alternately factored to obtain the following commutative diagram of
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local rings
P
N
S Q
R

where S = k[z,y]/(y) = k[z] and ¢’ and ¢’ are the natural projection
maps. Though S is clearly a lifting of R to P via @), R does not fit the
criteria for Theorem 2.4 as kery ¢ m%. The consequence lies in the
fact that @ is regular, and thus all of its totally reflexive modules are
in fact free. The induced R-modules will therefore be free as well.

2.10 Corollary. Let ¢ : @ — R be a Gorenstein homomorphism
of local Tings whose kernel is contained in mé. Suppose that P is a
Gorenstein local ring and ¢ : P — Q a local homomorphism of finite
flat dimension such that

1) the induced map mp/m% — mg/m2, is injective and
P QI™MQ
2) the induced map P/mp — Q/mg is bijective.
Q )

If there exists a Cohen-Macaulay lifting of R to P via Q, then there
exist non-trivial totally acyclic complezes over R.

Proof. Let S be such a lifting of R to P via Q. Since S is Cohen-
Macaulay and the lifting of R implies that pdpS is finite, we have
that S is a perfect P-module. Using this fact, it is easy to follow the
same steps as in the proof of Corollary 2.8 to verify that .S satisfies the
hypotheses necessary for the application of Theorem 2.4. o

3. Examples. In this section we turn our attention to examples of
rings which admit totally acyclic complexes by virtue of Theorem 2.4.
In fact, we are able to construct such rings with associated Gorenstein
homomorphisms of arbitrary grade, which furthermore do not have
embedded deformations.
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3.1 Construction. Let k be a field, and define P = k[Xy,... , X,,
Yi,..., Y]m where m = (Xy,... ,X,,Y1,...,Y,,) is the homogeneous
maximal ideal over the polynomial ring k[Xi,...,X,,Y1,..., Y]
Furthermore, let mxy = (Xy,...,X,) and my = (Y3,...,Y,,) de-
note the homogeneous maximal ideals over the polynomial rings
k[X1,...,X,] and k[Y1,...,Y,], respectively. Now let

fiEPX ::k[Xla---aXn]mxa 1
9j € Py =Ek[Y1,...,Yulm,, 1

each be contained in the square of the respective maximal ideals. If
(f1,.--, fr)P is a Gorenstein ideal of P and (g1,...,gs)P is a perfect
ideal of P, then

R:P/(fla 7fragla"' 7gS)P

admits non-trivial totally acyclic complexes. Moreover, if (g1,... ,9s)P
is chosen to be a non-Gorenstein ideal P, then R is a non-Gorenstein
ring.

To justify these claims, let S = P/(f1,...,f-)P and Q@ = P/(g1,-..,
gs)P, and notice that R =2 S ®p Q. We need to show that S and
@ are Tor-independent P-modules, that gradep (S, P) > gradep(S, Q),
and that the projection @ — R is a Gorenstein homomorphism. These
facts are illustrated below. In order to make notation more concise,
we let (f) and (g) denote the ideals (f1,... , f-)Px and (g1,...,9s)Py,
respectively. Furthermore, unless otherwise stated, all tensor products
are assumed to be taken over k.

First we show that Tor*(S,Q) vanishes for positive i. Take F —
Px/(f) - 0 and G — Py /(g) — 0 to be free resolutions over Px and
Py, respectively. Then (F® Py )~ and (Px ®G), are free resolutions of
S and Q, respectively, over P, where we define m = mx ® Py +Px @my-.
To see that S and @ are Tor-independent over P, notice that

Tor! (S,Q) = H; (F® Py)z ®p (Px ® G)z) = H;(F ® G)

where the isomorphism is obtained from [10, 2.2]. Since this homology
is isomorphic to R for i = 0 and vanishes otherwise, we have the lifting
of R to P via Q.
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Next we establish the grade inequality. As S = P/(f)P is Gorenstein
and Y3,...,Y,, is regular on S, we have that

is also Gorenstein; in particular, Px/(f) is perfect as a module over
Px. This fact implies the last of the following equalities:

gradep(S, P) = pdpS = pdp, Px/(f) = gradep, (Px/(f), Px).

Furthermore, note the following isomorphisms of complexes

(1) Homp((F® Py);,Q)
= Homp, op, (F® Py, Px ® Py /(g))5
& (Homp, (F, Px) ® Homp, (Py, Py/(g)))a
= (Homp, (F, Px) ® Py /(g))7,

the second of which is obtained from [10, Proof of Lemma 2.5 (1)].
Now since

H (Homp, (F, Px) ® Py /(g)) = Ext®"*(Px /(f), Px) ® Py/(g)
= Px/(f) ® Py/(g)

is nonzero upon localizing at m, we have gradep (S, Q) = gradep, (Px/
(f), Px), and therefore gradep(S,P) = gradep(S,Q@). In particular,
the inequality holds.

Finally, we verify that @ — R is Gorenstein. To do this, recall
that the vanishing of Tor[ (S, Q) for i > 0 implies that Ext{, (R, Q) =
Ext% (S, Q) for all i € N. Thus,

gradeg (R, Q) = gradep (S, Q) = gradep(S, P).

Since, furthermore, pdgR = pdpS due to the lifting of R, we have
established that R is a perfect @-module. To verify that Q@ — R is
Gorenstein, it is enough to check that ExtngR(R, Q) = R. However,
this is equivalent to checking the same for Ext?)d” S(S’, Q), which is
obtained by taking homology of (). To this end, we calculate:

Ext}'75(S,Q) = (Px/(f) ® Py /(g))5 =
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Therefore Theorem 2.4 establishes the existence of non-trivial totally
acyclic complexes over R. In order to check the validity of the final
statement, notice that if (g)P is not a Gorenstein ideal of P, then
Q@ is Cohen-Macaulay but not Gorenstein. Thus, the rank of the last

nonzero free module in (Px ® G) is greater than one. Furthermore,

S®p(Px®G)z — R-—0

is a free resolution of R over S, and its last nonzero free module must
also have rank greater than one. Since S is assumed to be Gorenstein,
we have shown that R cannot be.

This section concludes with a specific example of a ring R which
demonstrates the previous construction, and which, as we shall show
in the next section, has no embedded deformation.

3.2 Example. Let k be a field and P = k[Xy,... ,X5,Y1,... , Ya]m,
where m = (X1,...,X5,Y1,...,Y,) is the homogeneous maximal ideal
over the polynomial ring k[X7,...,Xs,Y1,...,Ys]. Now consider the
local ring R = P/I, where I is defined by the following 17 quadratics
over P:

2X1 X3+ Xo X3, X1Xa+ XoXa, Xi+2X1X5— XoX5
X3+ X1X5 — XoXs, X7, X3, X3Xa, X3X5, XaX5, X2
YE, iYe — Y2, ViV — YaYy, Y1Yy, Y3 + Y3V, YoYs, Y7

We first notice that R =~ S ®p @, where S = P/J, Q = P/K, and J
and K are the ideals generated by

2X1 X3+ XoX3, XiXsg+ XoXy, Xi42X1Xs5 — XoX5
X7+ X1 X5 — Xo X5, X7, X3, X3X4, X3X5, X4 X5, X2

and
Y2, iYe — Y2, ViVs — YaYy, Y1Ya, Y2 4+ Y3Yy, YaYs, Y2,

respectively, over P. This noted, it is clear from the discussion in the
previous construction that R fits the criteria for Theorem 2.4, and so
we are guaranteed that it admits non-trivial totally acyclic complexes.
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However, as we will demonstrate in the subsequent section, R does not
have an embedded deformation.

4. On the homotopy Lie algebra. In this section, we investigate
a method which uses the homotopy Lie algebra of a local ring to
determine if it has an embedded deformation. Before giving results,
we first review some related facts.

Recall that any surjective local homomorphism  — R induces a map
m™(R) — 7 (Q) on the respective graded homotopy Lie algebras. If,
furthermore, @ is an embedded deformation of R, then the natural map
7 (R) — 7*(Q) is surjective and its kernel is comprised of the central
elements of m2(R); for details, see [4, (6.1)]. For a local ring (R, m, k)
the universal enveloping algebra of 7*(R) is precisely the graded k-
algebra Ext},(k, k). If R is moreover a Koszul algebra, then Ext},(k, k)
is generated as a k-algebra by Extk(k, k); for details, see [12, Theorem
1.2].

The following result, which characterizes the algebra generated by
Exth(k, k) for a quadratic ring R, is a special case of a result of Lofwall
n [12]. Its proof has been omitted, but details can be found in [12].

4.1 Theorem [12, Corollary 1.3]. Let k be a field, and define the
k-algebra R = k[zy, ... ,x,)/(f1,--. , [r), where

fi= Zazjemm
<t
with each a;jo € k, are homogenous for 1 < i < r. Then the algebra
generated by the degree one elements in Ext’;(k, k) is given by

[Exty(k, k)] = k(T1, ..., Tu)/(e1,-- -, 0s)
where, for 1 <i < s, we define
0; = Z cije [T, Tol
j<e
such that c;jo € k and [T;,Ty] = T;T; + T,T;. Furthermore, the (cije);e
form a basis for the solution set to the system of linear equations given

by
Z aijngg = 0

st
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for 1 < i < r. That is, (cije)je forms a basis for the nullspace of the
matriz given by:
aiir - Qlinn

ari1 e Qrpn

As a consequence of Lofwall’s result, we are able to consider degree
two elements of the homotopy Lie algebra of a Koszul algebra R as
quadratic forms in [Extk(k,k)]. The following result illustrates this
process in an extension of Theorem 4.1.

4.2 Lemma. Let k be a field, and consider the k-algebras given by
Q:k[wla"' 7$n]/(f17--- 7fr)
S = k[y17" - 7ym]/(gl7" - 793)7

where, foralll <i <r andl < j <s, the f;, g; are homogeneous forms
such that Q and S are finite-dimensional and Koszul. If R = Q ® S
then R is local and

™ (R) 2 7*(Q) x m*(S).
In particular, 7 (R) has nonzero central elements of degree two if and

only if either ™ (Q) or ©*(S) does.

Proof. Since the polynomials which define @) and S are homogeneous
quadratics, we can express them as

fi= E Q3o Ty
j<e

for 1 <i<r,and

gi = Z bijey;ye

st

for 1 < i < s. Further, since

R:Q®k5gk[1‘17 sy Yly - - - 7ym]/(f17 7f7‘7g17"' 795)7
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we see that Theorem 4.1 implies
[Extg(k, k)] = k(T1,... ,Tn, Ur, ... ,Un)/(P1,--. ,Pa)s

where a = (n+m)(n+m+1)/2—(r+s). For simplicity in notation, we
let 8=n(n+1)/2—r and vy =m(m+1)/2—s, so that « = S+~ +nm.
With this established, the first 8 + v of the ; are given by

'{stgcijé[TjaTe] 1<i<p
TSzl U B+1<i< B+,

where ¢;;0 € k is defined in such a way that (c;j¢) ¢ forms a basis for
the kernel of the (r + s) x (8 + 7) matrix given by:

[a111 -+ Ginn

Qr11 - Qrnn
b111 e blmm

L bsll e bsmm-

Furthermore, let
c:{(J)eZ?|1<j<n, 1<l<m}—{i€Z|1<i<nm}
be a bijection; then the last nm of the ¢; are given by

Pptrta(Ge) = 15, U]

for 1 < j < mand 1 < ¢ < m. Letting ¢; (respectively u;)
denote the image in Ext}(k, k) of T; (respectively U;), it follows that
[tj,ue] = [ug,t;] =0 forevery 1 < j <mand1 < ¢ <m. Now it follows
that

[Exth(k, k)] 2 k(Ty, ..., T)/(¢1,--- »95)
D k(UL o, Un)/(@541s- - s 0)-
Furthermore, as R is assumed to be Koszul, 7*(R) can be viewed as

a linear subspace of the above expression via the natural inclusion
7 (R) — Ext};(k, k). This implies the result. O
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4.3 Remark. The statement of Lemma 4.2 holds even when @, S,
and R are local, but not necessarily Koszul. To see this, notice that
we have an induced isomorphism Tor% (k, k) = Tory, (k, k) @y, Torg(k, k)
of k-algebras which extends to an isomorphism of Hopf algebras with
divided powers. Moreover, one can show that this isomorphism is
equivalent to an isomorphism of homotopy Lie algebras by considering
the equivalence of the respective categories. (For details, see [1, 13,
15].) Despite this more general fact, we have chosen to include the
machinery of Theorem 4.1 and Lemma 4.2 so that we may justify the
following result without needing the rigor which is required of Hopf
algebras.

With these results established, we are now ready to prove the asser-
tion at the end of the previous section.

4.4 Fact. The local ring R defined in Example 3.2 does not have an
embedded deformation.

Proof. 1t suffices to show that 7*(R) has no non-trivial central
elements of degree 2. By Lemma 4.2, this condition is equivalent to
neither 7*(S) nor 7*(Q) containing such elements. In [5, Example
2.1, Section 3|, Avramov, Gasharov and Peeva prove this condition for
7™ (@), so we only need to show the result for 7*(S). We shall adopt
the same approach as the authors of [5].

As a result of [12, Corollary 1.3], we know that the algebra generated
by the universal enveloping algebra of 7*(S) can be expressed as

[Extg(k, k)] = k(T1, T», T3, Ts, Ts) /1
where I is generated by
Ty + ToTh, (ThTs + T3Th) — 2(ToT3 + T3T3),
(T1Ty + TyTh) — (ToTy + TuTe) T + T3 + (ToTs + T5T3),
T3 + (W Ts + T5Ty) + (ToTs + T5T3).
So it follows that 7*(S) is a graded Lie algebra on the variables
ty,to,ts,t4,ts, each of degree one, which satisfies the relations
[t1,82] =0, [t1,ts3] = 2[te,t3], [t1,ts] = [t2,t4]
) 412 = —[ta, t5], 26 + 2 = [t, t5).
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It is straightforward to see that the following forms a basis of 7%(S):

u1:t

(2)

1 Uz = tgz) uz = téz) Uy = t‘(f) Uus = téz)

ug = [t1,t3] uy = [t1,14] ug = [t3,t4] ug = [t3, 5] uio = [ta,ts].

Furthermore, we assert that a basis of 73(S) is given by:

[
I
Rl
[

Ujy2, L1
Ui—2,t3
Ui—5,t4

Ui—6, 15

]
]
]
]

1<i<8
9<i<12
13<i<14
15 < i < 16.

For the reader’s convenience, and in order to justify these claims, we
include a multiplication table for 73(9).

[ug, ;] | 1 ta t3 ta ls
U 0 —2v4 —2vs5 —4v1 + 2vq
U2 0 %1}4 2us V1 + U2
us U1 %Ul 0 —2U10 —21}11
U4 (%) %’Ug 721)13 0 7%1)3 + 4’011
us vz | —vs +4vi1 | —2vus —2v16 0
ug | Vg —1uy —2v1 | —v9—wg | —v7+2u13
1
U7 Us —Us Vg — 3502 —vg + 4v1g
1 1
usg Vs | 3V6 — 509 V10 V13 —V12 — V14
1
ug | vr | 3v7—3viz | Vi1 V14 V15
1
up | vs | vs— 6oy vi2 | Vs — 2vyg V16

It is clear from this table that the elements vy, ...
order to justify their linear independence, we note that rank,m>(S) =
£3(9), the third deviation of S, cf. [3, Theorem 10.2.1 (2)].
quantity can be calculated in terms of the Betti numbers of k£ over

,v16 span w2(S). In
3

This
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S as follows

61:b1

€1
() =t ()
€3 :bg—EgEl — <5?;l>

(cf. [3, Section 7]). Calculating a minimal S-free resolution of k yields
that
PP (t) = 1+ 5t 4+ 20t* + 76t + - - -

which we use to evaluate the expressions in (), and obtain €3 = 16.
Thus, vy,...,v16 is in fact a basis of 73(S).

Now suppose u = 21}21 a;u; is central in 7%(S). Then 0 = [u,t;] =

Zga a;v;_3 implies that v = aju; + asus. Furthermore, using the
above table yields

0= [U,t5]
= aq[ug, t5] + azlug, ts]
= (—40&1 =+ 0[2)’01 + (20[1 + ag)’Ug

which implies that u = 0. We have therefore proven that 72(S) does
not contain nonzero central elements, and thus R does not have an
embedded deformation. a

Recalling that (Gorenstein) local rings of codimension at most 3
(respectively 4) have embedded deformations, we have that the ring
defined in Example 3.2, in the way of codimension, is the smallest such
possible which satisfies the hypotheses of our main result, yet does not
have an embedded deformation.
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