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P-PARTITIONS REVISITED

VALENTIN FERAY AND VICTOR REINER

ABSTRACT. We compare a traditional and non-traditional
view on the subject of P-partitions, leading to formulas count-
ing linear extensions of certain posets.

1. Introduction. Our goal is to re-examine Stanley’s theory of P-
partitions from a non-traditional viewpoint, one that arose originally
from ring-theoretic considerations in [2]. Comparing viewpoints, for
example, gives an application to counting linear extensions of certain
posets. We describe these viewpoints here, followed by this enumerative
application, and then give an indication of the further ring-theoretic
results.

1.1. Traditional viewpoint. Given a partial order P on the
set {1,2,...,n} a weak P-partition [21, subsection 4.5] is a map
f:P—N:={0,1,2,...} satisfying f(i) > f(j) whenever i <p j.

In Stanley’s original work [20] and that of Garsia [11], it was
important that one can express a weak P-partition f uniquely as a
sum f = X7, + X, +---+ X Lma( ) of indicator functions Xj, for a
multiset of nonempty, nested order ideals I; in P; specifically, I; :=
{j € P: f(j) > i}. An important special case occurs when f takes on
each value in {1,2,... ,n} exactly once, so that the nested sequence of
order ideals I1 D --- D I, D I,,4+1 := @ corresponds to a permutation
w = (w(l),...,w(n)) of {1,2,... ,n} defined by w(i) = I; \ I;+1. Such
permutations w are called linear extensions of P because the order <,
given by w(1l) <4 -+ <4 w(n) strengthens the partial order P to a
linear order.
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This has a geometric interpretation: the weak P-partitions f are
the integral points inside a rational polyhedral cone in R™ defined
by the inequalities f; > f; > 0 for ¢ <p j, and the set L(P) of
all linear extensions of P indexes the maximal simplicial subcones in
a unimodular triangulation of this P-partition cone. The simplicial
complex underlying this triangulation is the order complex for the finite
distributive lattice structure on the set J(P) of all order ideals in P;
see [22].

1.2. New viewpoint. Here a much larger role is played by the
subset Jeonn(P) C J(P) consisting of all nonempty connected order
ideals J in P, that is, those order ideals J whose Hasse diagram is a
connected graph. Say that two connected order ideals Ji, Jy intersect
trivially if either they are disjoint or they are nested, that is, comparable
under inclusion; otherwise, say that they intersect nontrivially.

It will be important that one can express a P-partition f uniquely as
a sum

(1.1) F=Xn+Xn+ -+ X

of the indicator functions X j, where {J1,J2,... ,J,(s)} is a multiset of
nonempty connected order ideals in P that pairwise intersect trivially;
specifically, one takes the {Jg};ifl) to be the multiset of connected
components of the Hasse diagrams for the order ideals I; = {j € P :
f(j) > i} mentioned earlier.

Geometrically, this corresponds to a different (non-unimodular) tri-
angulation of the P-partition cone. This triangulation is intimately
related to the refinement of the normal fan of a graphic zonotope by
the normal fan of one of Carr and Devadoss’s graph-associahedra [5];
see Section 11.

1.3. Counting linear extensions. Computing the number |L(P)|
of linear extensions of P for general posets P is known to be a #P-hard
problem by work of Brightwell and Winkler [3]. However, for the class
of posets which we are about to define, a formula for |£(P)| will follow
easily from the above considerations.

Say that a finite poset P is a forest with duplications if it can be
constructed from one-element posets by iterating the following three
operations:
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Disjoint union: Given two posets Py, P», form their disjoint union
P, U P», in which all elements of P; are incomparable to all elements
of P2.

Hanging: Given two posets P;, P> and any element ¢ in P;, form
a new poset by hanging P> below a in Py, that is, add to the disjoint
union P; LI P, all the order relations ps < b for every ps in P> and b in
Py with b >p, a.

Duplication of a hanger: Say that an element a in P is a hanger if
P can be formed by hanging the nonempty subposet P, := P, below
a in the subposet P; := P\ P.,. Equivalently, a is hanger in P if P,
is nonempty and every path in the Hasse diagram of P from an element
of P, to an element of P\ P<, must pass through a. Then one can
form the duplication of the hanger a in P with duplicate element a':
add to the disjoint union PU{a’} all order relations p < a’ (respectively
a' < p) whenever p <p a (respectively a <p p).

Note that when one disallows the duplication-of-hanger operation
from the above list of constructions, one obtains the subclass of forest
posets, that is, posets in which every element is covered by at most one
other element.

For the sake of stating our first main result counting linear extensions,
we define the notion of a naturally labeled poset P: it means that
1 <p j implies ¢ <z j. Let us also recall the major index statistic on a
permutation w = (w(1),... ,w(n)) defined by

maj (w) := Z i
1=1,2,... ,n—1:
w(i)>w(i+1)
and these standard g-analogues of the number n and the factorial n!:

i 2 no1_ 1—¢q"
nlg:=1+q+q¢ +--+q" " = 1—q

[n]lg == [1]¢[2]g - - - [n — 1]g[n]q-

We give a proof of the following result by inclusion-exclusion in
Section 4 and then a second proof via commutative algebra in Section 7.
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hangI hangﬂ hang /“: hang

duplicate

duplicate

FIGURE 1. A duplicated forest built by a sequence of hanging and duplication
operations.

Theorem 1.1. Let P be a naturally labeled forest with duplications
on {1,2,...,n}. Then

(12) > ™ =M ] [|J1|+J2]q/
)

weL(P) {J1,J2}ll(P
IT o,

JETconn (P)

where the product in the numerator runs over all the set II(P) consist-
ing of all pairs {J1,J2} of connected order ideals of P that intersect
nontrivially. In particular, upon setting ¢ = 1, one has

(1.3) L) =nl- I (5l +1%) II v

{J1,J2}€II(P) JETconn (P)

The products appearing in Theorem 1.1 are much more explicit than
they first appear, as will be shown (see Lemma 4.1) that for a forest P
with duplications, the two sets Jeonn (P) and II(P) are easily written



P-PARTITIONS REVISITED 105

down in terms of the principal ideals P<, and the duplication set D(P)
consisting of all duplication pairs {a,a’} that were created during the
various steps that build P:

u7conn (P) = {PSP}PGP U {Pga,a’}{a,a’}eD(P)
II(P) = {{P<a;, P<a’ }}{a,a}eD(P)-

Figure 1 shows an example of a forest with duplications P built by
a sequence of hangings and duplications; no disjoint union operations
are used, yielding only one connected component. Its duplication set
D(P) = {{5,6},{7,8}} is shown dotted. One has the following list of
cardinalities |J| of connected order ideals J:

(1.4)

J € Jeomn (P) | P<1 | P<y | P<s | P<4 | P<s | P<¢ | P<7 | P<g

|| 1|1 1|12 | 3| 7|7

JE%OHH(P) PS5UPS6 P§7UP§8
1] 4 8

and this data on the pairs in II(P)

{J1,J2} € I(P) | {P<s, P<o} | {P<7, P<s}
|J1] + | J2] 24+3=5 | 7T4+7=14

Consequently, Theorem 1.1 implies that

maj (w) _ [8]!q
Z 1 mq : [l]q : [l]q : [l]q : [2](1 ' [3]61 ' [7]q ’ mq

weL(P)
[5]q - [14],
[4 q° [S]q
_ [5]11 [5]q i [6]q i [14]q
[7]q

and upon setting ¢ = 1, one obtains

IL(P)|=2-5-5-6 = 300.
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This example has been checked using the software sage [24], see
http://www.sagenb.org/home/pub/2701/.

A special case of Theorem 1.1 is well known, namely, when the forest
has no duplications, and the set II(P) is empty. In this case, one simply
has a forest poset. Then equation (1.3) becomes Knuth’s well-known
hook formula for linear extensions of forests [14, subsection 5.1.4,
Exercise 20], and equation (1.2) becomes Bjorner and Wachs’ more
general magjor indezx q-hook formula for forests [1, Theorem 1.2]. The
derivation of these two special cases from consideration of P-partition
rings was already pointed out in [2, Section 6]; see also Examples 9.7
and 9.8 below.

1.4. The ring of weak P-partitions. Although Theorem 1.1 has
a simple combinatorial proof, it was not our original one. We were
motivated from trying to understand the structure of the affine semi-
group ring Rp of P-partitions, the subalgebra of the polynomial ring
k[zy,- .. ,,] spanned k-linearly by the monomials x/ := x{(l) gl ™
as f runs through all weak P-partitions. In [2] this was the ring de-
noted R%'. There it was noted that a minimal generating set as an
algebra is given by the monomials x” := [] jes @j as J runs through
the set Jeonn (P) of nonempty connected order ideals of P. We extend
this to the following result in Section 6.

Theorem 1.2. For any poset on {1,2,... ,n} and any field k, the
P-partition ring Rp has minimal presentation

0—=Ip—S-2Rp—0

in which the polynomial algebra S = k[Us] e ... (p) maps to Rp via

Uy % x’, and the kernel ideal Ip has a minimal generating set indexed
by {J1, J2} in II(P), consisting of binomials

(1.5) SyZJl,JZ = UJIUJ2 — UJIUJ2 - UJ(I) UJ(z) st UJ(t)

where the intersection J; N Jo has connected component ideals JM Yy
e J@
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Example. For the poset in Figure 1, the presentation of Theorem 1.2
is Rp = S/Ip, where

(1-6) S=k [U17 Uz, Us, Uy, Urs, Ut2e, Ur234567,
U1234568, U256, U12345678)
and Ip is the ideal of S generated by
U1sU126 — Ui256U1,

U1234567 U1234568 - U12345678 U1256 U3 U4-

It is not hard to see (and as is explained in Corollary 5.3) how the
various generating functions for (weak) P-partitions turn into Hilbert
series calculations for Rp. This suggests trying to understand the
structure of Rp in order to calculate its Hilbert series. One natural
situation where this follows easily is when Rp = S/Ip gives a complete
intersection presentation, that is, the Krull dimension n of Rp plus
the size |II(P)| of the minimal generating set for Ip sums to the
Krull dimension |Jeonn (P)| of S. The forward implication in the
following combinatorial characterization of the complete intersection
case is proven in Section 7 and used to give our second (but historically
first) proof of Theorem 1.1:

Theorem 1.3. A poset P on {1,2,...,n} is a forest with duplica-
tions if and only if Rp = S/Ip is a complete intersection presentation.

1.5. The associated graded ring. We explain in Section 5 the
significance of the statistic v(f) on a P-partition f which appeared in
the unique expression (1.1) above. It turns out that v(f) gives the
N-grading of the image of the monomial x/ in the associated graded
ring gr(Rp) = gr,,(Rp) with respect to the unique N-homogeneous
maximal ideal m C Rp. Consequently, gr(Rp) has N x N"-graded
Hilbert series

(1.7) Hilb (gr(Rp),t,x) = Y. t"Ux/.
feAweak (P)
An expression for this Hilbert series as a summation over the set

L(P) of linear extensions of P is given in (3.1) below.! The following
presentation and initial ideal for gr(Rp) will be derived in Section 6.

1 Assuming that P has been naturally labeled; see Remark 2.6.
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Theorem 1.4. For any poset on {1,2,... ,n} and any field k, the
associated graded ring gr(Rp) has minimal presentation

0— Iy — S orls) gr(Rp) — 0

in which the polynomial algebra S = k[Ujljcg.,...(p) 15 mapped to
gr(Rp) via Uy % %7, and the kernel ideal IY has minimal generating
indezed by {J1, J2} in II(P), consisting of the quadratic binomials and
monomials
(1.8)

SyZ%T L= { []J1 UJ2 — UJIUJZ UJlsz Zf Jl N J2 1:8 cc?nnected,

1,2 UnUy, if Jy N Jy is disconnected.
Furthermore, monomial orders exist on S for which the initial ideal of
both Ip and I} is the squarefree quadratic monomial ideal I3t having
minimal generating set indexed by {Jy1, J2} in II(P), consisting of the
squarefree quadratic monomials

(1.9) syZiJnlifJ2 =U;Uy,.

Example. For the poset in Figure 1, the presentation in Theorem 1.4
is gr(Rp) = S/I}", where S is as in (1.6) and I}’ is generated by the

binomial
Ui5Ui26 — Ur256U1,

Ui234567U1234568

while the initial ideal I%i* in Theorem 1.4 is generated by the mono-
mials

U15U126,

Ui234567U1234568-
The existence of this quadratic initial ideal I Ii,“it has this consequence.
Corollary 1.5. For any poset P on {1,2,...,n}, the associated

graded ring gr(Rp) a Koszul algebra. Thus the N x N"™-graded Hilbert
series from (1.7) will have the property that

{ D tV(f)Xf}

f EAweak (P)

-1

t——t
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is a power series in t,Ty,...,T, with nonnegative coefficients; specifi-
cally, it is the N x N"™-graded Hilbert series of the Koszul dual algebra
g’l‘(Rp)!.

The remainder of this paper explains these results further. The reader
interested only in the combinatorial results will find them in Sections
2—4 and can safely skip the connections to ring-theory explained in
Sections 5-10. Section 11 discusses the geometry of the initial ideal
I}?it and its associated triangulation of the P-partition cone, relating it
to graphic zonotopes and graph-associahedra. Section 12 collects some
further questions.

2. Unique expressions. We discuss some old and new ways to
uniquely express a P-partition, mentioned in the introduction.

Definition 2.1. Let P be a partial order <p on {1,2,... ,n}, and
consider the nonnegative integers N = {0,1,2, ...} as a totally ordered
set with its usual order <. Say that amap f: P - N :={0,1,2,...}
is

e a weak P-partition if it is weakly order-reversing: i <p j implies
the inequality /(i) >~ £(j);

e a P-partition if, in addition, whenever ¢ <p j and i >N j, one has
a strict inequality f(7) >n f(4);

e a strict P-partition if i <p j implies f(:) >N f(4)-

NB: This terminology is similar in spirit, but not quite the same as
that used by Stanley in [21, subsections 4.5, 7.19]. We hope that the
slight differences create no confusion.

Denoting by A(P), A%"eak(P), Astrict (P) the sets of P-partitions,
weak P-partitions, and strict P-partitions, one has the inclusions

(2.1) AStiCt (P) C A(P) C A" (P).

One has equality in the second inclusion of (2.1) if and only if P is
naturally labeled; similarly one has equality in the first inclusion of
(2.1) if and only if P is strictly or anti-naturally labeled in the sense
that ¢ <p j implies ¢ >N J.
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Example 2.2. The three posets P;, P2, P; on {1,2,3} shown below

VoYY

3
R P, P

1

are all isomorphic, with P; naturally labeled, Ps strictly labeled and
P neither naturally nor strictly labeled. One has

A(Py) = {f = (f(1), f(2), £(3)) € N*: £(1) >~ f(2), f(3)}
A(P2) = {f = (f(1), f(2), f(3)) € N*: £(2) >n f(3) and

f(2) >~ f(1)}
A(Ps) = {f = (£(1), f(2), f(3)) € N*: f(3) >n f(1)

1), f(2)}-
Definition 2.3. Recall that a permutation w = (w(1),...,w(n)) of
{1,2,...,n} is a linear extension of P if the order w(1)<, -+ <4

w(n) extends P to a linear order. Denote by L(P) the set of
all linear extensions w of P. Denote by wlp ) the initial segment
{w(1),w(2),...,w(7)} of w thought of as a subset of {1,2,... ,n}. It
is an order ideal of P whenever w lies in L(P).

For any subset A C {1,2,...,n}, let X4 be its characteristic function
thought of as a vector in {0, 1}".

Proposition 2.4. For any poset P on {1,2,...,n}, and any P-
partition f, there exists a unique permutation w in L(P) for which

(2.2) Fw(1)) >+ > f(w(n))

and one has strict inequality f(w(i)) > f(w(i + 1)) when w(i) >
w(i + 1), that is, whenever i is an element of the descent set Des (w).
Consequently,

f= Z(f(U)(i)) — F(w(i+1))) - Xy, -
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Proof. (See [21, Lemma 4.5.1, Theorem 7.19.4]). One takes w to be
the minimum length or lexicographically earliest permutation satisfying
(2.2). O

Proposition 2.5. For any poset P on {1,2,...,n}, any weak P-
partition f (and hence also any P-partition) has a unique expression
as

i = I-Iiax(f) X1, for a multiset Iy O --- DO I .« of nested
i=k k (£)
nonempty order ideals in P, and also as

(i) f = Z;’i];) Xg; for a multiset Ji,J2,...,J,y) of nonempty
connected order ideals of P which pairwise intersect trivially.

Proof. For (i), one sets I := f~'({k,k + 1,k +2,...}) for k =
1,2,...,t:= max(f).

To prove (ii), one can show existence of such an expression for f
by starting with the multichain J; O .-+ O J; of order ideals from
(i), and replacing each order ideal J; with its collection of connected
components. It is not hard to see that the resulting multiset of
connected order ideals will pairwise intersect trivially.

To prove uniqueness of the expression in (ii), induct on |f]| :=
i, f(i), with trivial base case f = 0. In the inductive step, let
f # 0, and consider the set J which is the support of f as a subset of
P. Because f is a P-partition, J is a nonempty order ideal. Decompose
J into its connected components J1) J®2) . J©  which are all
connected order ideals.

If ¢ > 1, then one can consider for each i the restriction f|;u) as a
J@_partition. Since |J®)| < |J| < |P|, uniqueness follows by induction.

If ¢ = 1, so that J is connected (and nonempty), then f = xj + 2
where f is again a P-partition, and | f| < |f|. Again, uniqueness follows
by induction. a

Remark 2.6. The relation between Propositions 2.4 and 2.5 is easiest
when P is naturally labeled, so that a P-partition f is the same
as a weak P-partition. In that case, the unique permutation w
guaranteed by Proposition 2.4 has the property that the multiset of
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ideals {Ir}r—1,2,.. max(f) contains the order ideal wlp , of P with
multiplicity f(w(i)) — f(w(i + 1)).

We also note that it is essentially innocuous to relabel an arbitrary
poset P so that it is naturally labeled, either if the goal is to count the
linear extensions £(P), or if the goal is to understand the ring Rp—this
ring depends only upon P up to isomorphism, not on the labeling. The
labeling of P only makes a difference when considering the ideal Zp
within Rp consider later, in Section 9.

Example 2.7. Let P be the naturally labeled poset on {1, 2, 3,4, 5,6,
7,8,9} from Figure 1, and let f be the P-partition with values in the
following table, as depicted below:

~
—
[\
w
— |
[}
D
oo

Then max(f) = 5 and the unique expression for f as in Proposition
25 (1) is f = Z?:l X1; where {Iy, I, I3, 14, I5} are the nested ideals
shown here

Iy 2 I 2 I3 = 1y 2 Is
I I I I I
{1,2,3,4,5,6,8} {1,2,3,5,6} {1,2,6} {1,2,6} {1}
Il Il I Il I
J1 {1,2,5,6} LI{3} J3 Ja Js

I
Ja U Jg
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and these decompose into the multiset of v(f) = 6 connected compo-
nent ideals {Ji, Ja, J3, J4, Js, Jo} labeled above, giving the expression
f= Z?zl X, as in Proposition 2.5 (ii). The unique expression as in
Proposition 2.4 has

w o = (w), w(2), w3), w4), w’), w6), w(), w@))
(1, 2, 6, 3, 5, 4, 8, 7)
and f=1- Xw\[m] +2- Xw\u,s] +1- Xw|[1,5] +1- Xw|[1,7]'

3. Generating functions. We explain here how Proposition 2.5
suggests generating functions counting P-partitions and linear exten-
sions according to certain statistics, which one can then specialize in
various ways. We will see in Corollary 5.3 that they all have natu-
ral interpretations as Hilbert series for the P-partition ring Rp or its
associated graded ring gr(Rp) using different specializations of their
multigradings.

Definition 3.1. Given a P-partition f, recall that v(f) denotes the
size (counting multiplicity) of the multiset {J1,... ,J,(f)} in the unique
expression (1.1) whose existence is guaranteed by Proposition 2.5 (ii).

Given an order ideal J of P, let cp(J) denote the number of connected
components in the Hasse diagram of the restriction P|;. We also define
a new descent statistic for w that depends upon the poset structure of

P:
desp(w) := Z cp(wlp,q)-
i€Des (w)
Recall also that we have been using the notations x/ := x{(l) A

for f € N”, and x4 := [I;c 4 i for subsets A C {1,2,... ,n}.

Corollary 3.2. For any poset P on {1,2,...,n}, one has

tdeSp(’u)) H Xw‘[l,i]
v(f)of _ i€Des (w)
(3.1) Z X = Z [, (1 - ter(wlna)xwln,a) '

feA(P) weL(P)

Setting t =1 in (3.1) gives

wl[l,i]
. X
(3.2) Y ox= S H;EDGS(W) :

w] ,i
FEA(P) weL(P) [Liz, (1 —xvi)
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whereas setting x; = q for all i in (3.1) gives

tdeSp(’u)) maj (w)

3.3 (D lfl =
( ) Z q Z H (1_tCP(w\[1 1])q)

feA(P) weL(P)

Further specializing ¢ = 1 in (3.3) gives
tdesp (w)

v(f) —
(34) Z t - Z H:f:l(l _ tCP(w|[1,,-])) ’

FEA(P) weL(P)

Setting both t =1 and z; = q for all i in (3.1) gives

35)  (Q-@-¢)--(1-q") Y = Y gl
feEA(P) wEL(P)

and hence, lastly,

(86)  lm(1-q)(1-¢)--(1-q") 3 ¢ =[L(P)

feA(P)

Proof. To prove (3.1), use Proposition 2.5 (i) to write the sum on the
left as a sum over w in £(P), and for each P-partition f, think about
how many connected order ideals (counted with multiplicity) will be in
the corresponding multiset from Proposition 2.5 (ii). o

We remark that the specializations to ¢t = 1 that appear in Corol-
lary 3.2, namely (3.2) and its specializations (3.5), (3.6), are all part of
Stanley’s traditional P-partition theory; see [21, subsection 4.5].

Example 3.3. For this naturally labeled poset P on {1,2,3,4,5}
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the expression in (3.1) can be computed using the following data

nonempty ideal J € J(P) | cp(J)
i1} 1 w € L(P) | desp(w)
{2} 1 12345 0
{1,2} 2 1235 4 1
{2,4} 1 124 - 35 2
{1,2,3} 1 21345 1
{1,2,4} 2 2.135-4 |14+1=2
{1,2,3,4} L 2.14-35 |1+2=3
{1,2,3,5} 1 24 -135 1
{1,2,3,4,5} 1

as the sum

Z D f

FEA(P)

Z tdeSp(’w) HiEDes (w) xw‘[l’i]

wzir) H?Zl(l _ tCP(wl[l,i])xw\[l,i])

1

= (17tz1)(17752:61:62)(17&611213)(17&61121314)(17t561562563Z4Z5)

+ txixoxT3TH
(17tz‘1)(17t2z1z2)(17tz1z2$3)(17t11121315)(17&61562563:64565)

+ t2zlzzz4
(l—tzl)(l—tzzlzg)(1—t21:11321:4)(1—t1112m3m4)(1—tm1m2m3m4m5)

txo
+ (l—tzz)(l—tzzlzz)(1—t212213)(1—t11121314)(1—t1112131415)

+ tro-tx1T2T3TH
(l—tzz)(l—tzzlzz)(1—t212213)(1—t11121315)(1—t1112131415)

+ tEQ-t2E1E2E4
(1—two)(1—t2z1@2) (1—t2w w2y ) (1—tzr2z2w3w4) (1 —tz1T2T3T4T5)

+ trxoxa
(1—txo)(1—twowys)(1—t2z1w2w4) (1—tzrz22324) (1 -tz 1222324 T5)

which simplifies over a common denominator, after cancelations, to give

122 (x(12110) L (L2111 4 y(2,2,2,11)) 448 (538,211 4 (2,3,2,2,1))

s

conn (P) (1—tx7)

The form of this last expression should be compared with Corollary

5.3 (ii).
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4. First proof of Theorem 1.1: Inclusion—exclusion. We
begin the proof with the following lemma, partly asserted already in
the introduction as (1.4). Recall that, for a forest with duplications
P, we denote by D(P) the collection of all pairs {a,a’'} that arise by
the duplication steps in the construction of P. The set D(P) is well
defined (it does not depend upon the construction of P), as shown by
the following lemma.

Lemma 4.1. Let P be a forest with duplications on {1,2,... ,n}.

(i) The duplication pairs in D(P) are pairwise disjoint: for any
{a,d'},{b,b'} in D(P), either {a,a’} = {b,b'} or {a,a’} N{b,0'} = 2.

(ii) The set Jeonn (P) of nonempty connected order-ideals of P are
the principal ideals P<, (for p € P), and the unions P<q U P<q: for
{a,a’} in D(P).

(iii) The set II(P) of pairs {J1,J2} of connected order-ideals of P
intersecting non-trivially are the pairs { P<q, P<q' } for {a,a’} in D(P).

Proof. Assertion (i) is equivalent to saying that, in building up a
forest with duplications, once a duplication pair {a,a’'} is created from
duplicating a hanger a in a poset P, then neither a nor a’ will ever
be a hanger at some later stage of the construction. To see this, note
that any element p in the nonempty poset P., which is covered by
a will also be covered by a' after the duplication. Thus, in the new
poset P’ after duplication, p has a single-edge path to the element o
of P\ (P')<, avoiding a, and similarly p has a single-edge path to the
element a of P\ (P')<. avoiding a’. These single-edge paths cannot
be destroyed by any of the further constructions, so neither a nor o’
will ever be a hanger that is later duplicated.

We prove assertions (ii) and (iii) by induction on the cardinality of
P, that is, on the number of operations used in constructing P. It
suffices to show that they remain true when performing any of the
three construction operations. This is trivial for the disjoint union
construction, and straightforward for the hanging construction.

For the duplication of a hanger operation, we argue more carefully.
Assume that P’ is obtained from the forest with duplications P by
duplicating the hanger a, to form a new pair {a,a’} with D(P’) =
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D(P) U {{a,a'}}. We will make use of the order-preserving surjection
7w : P’ — P that collapses both a and a’ to a.

For assertion (ii), note that = sends any connected order ideal J’
in Jeonn (P') to a connected order ideal J := w(J') in Jeonn (P)- By
induction, one knows that J is either of the form J = P<,, or of the
form P<j, U P<y where {b,0'} lies in D(P). It is now straightforward
to check that

e if J = P, for some p # a, then J' = (P’)<p,

o if J = P<,, then J' is either (P')<, or (P')<qs or (P')<, U (P )<qrs
and

o if J = P<;, U P<y where {b,b'} lies in D(P), then J' = (P')<, U
(P)<pr-
Thus Jeonn (P') is exactly as described.

For assertion (iii), first note that {(P')<q,(P')<e'} is a pair of
connected order ideals intersecting nontrivially and hence lies in II(P).
Now assume J' is in Jeonn (P’), but J' # (P')<q,(P')<a- We have
seen above that J' = 7=1(J) for some J in Jeonn (P). If J contains a,
then J' contains both (P’)<,, (P')<a’, and hence has trivial intersection
with either of them. If J does not contain a, then since a is a hanger in
P, connectivity of J forces it to lie entirely in P, or P\ P<,, and will
still have trivial intersection with either of P<, or P<,s. This analysis
shows that the pairs {J1, J5} in II(P’) other than {(P')<q, (P')<p } are
of the form {m~'(J1),7 !(J2)} for some pair {J1,Jo} in II(P). By
induction, {J1,J2} = {P<s, P<y} for some {b,0'} in D(P), and then
one can check that {J{, Jo} = {(P")<p, (P")<p' } u]

The next result is the crux of Theorem 1.1 and will follow easily via
inclusion-exclusion from Lemma 4.1.

Theorem 4.2. For a forest with duplications P on n elements, one
has

Z tl/(f)xf — H{leJz}GH(P) (]_ — t2XJ1XJ2)

_ J
fEAweak (p) JETconn (P) (1 tx )
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Setting t = 1 and x; = q for all i, this gives

J J
(4‘1) Z q\f| — H{J1,J2}€H(p) (]. — q‘ 1]+ 2\)
FeAweak (p) HJEJCDM P) (1 _ qu\)

Proof. Given a forest with duplications P, we wish to evaluate
> feAwesk (p) t*(F)xf | where the sum runs over all weak P-partitions
f. By Proposition 2.5, this is the same as the sum } ;. []; tx /i
over all multisubsets {J;} of Jeonn (P) for which the {J;} pairwise
intersect trivially. By Lemma 4.1 this is equivalent to saying that the
multiset {J;} contains no pair {P<,, P<q'} with {a,a’} in D(P). Using
inclusion-exclusion, this sum then equals

RELD | %

ECD(P) {J:} i

where the inside summation is over all multisubsets {J;} of Jeonn (P)
that contain at least the pair {P<,, P<,/} for every {a,a’} in €. Finally,
this can be rewritten

P/

P a .
> (=pHl Maayestxr= tx
o) e spm p( —tx7)
_ H{a,a’}E'D(P)(l - tZXPSQXPSQI)
[regen (p) (1 —tx7)

Proof of Theorem 1.1. Recall that, for naturally labeled posets, weak
P-partitions coincide with P-partitions. Then (1.2) follows from (3.5)
and (4.1). O

5. The rings and their Hilbert series. We now change focus in
the next few sections to discussing the weak P-partition ring Rp, an
example of a normal affine semigroup ring. Good discussions of general
theory on affine semigroup rings may be found in Bruns and Herzog [4,
Chapter 6], Miller and Sturmfels [15, Chapter 7], Stanley [23, Chapter
1] and Sturmfels [25].
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Definition 5.1. For P a poset on {1,2,...,n}, let Rp be the
subalgebra of the polynomial ring k[zi,...,2,] which is spanned k-
linearly by the monomials

xf = m{(l) A
as f runs through all weak P-partitions. In [2] this was the ring denoted
R

Let m denote the maximal ideal of Rp spanned k-linearly by all
monomials x/ with f # 0, so that Rp/m = k. As usual, one has
the m-adic filtration

(5.1) RpomoOm?>om®> ...
and the associated graded ring
gr(Rp) := Rp/madm/m*om?/m*e ... .

In this ring gr(Rp) multiplication is defined k-linearly by saying that
the product of two elements f in m®/m‘*! and g m//m/*! is fg in
mi+i [mititl,

Note that Rp has a natural N"-multigrading, in which the degree of
x! is (f(1),..., f(n)) € N™. Then its N"-graded Hilbert series will be

Hilb (Rp,x)= > %/,
feAveni (P)

that is the same generating function® that appears in (3.2).

Note also that gr(Rp) enjoys this same N"-multigrading, and even
the same N™-graded Hilbert series as Rp, since the the m-adic filtration
(5.1) is a filtration by N™-homogeneous ideals.

We will always use the x-variable set for the power series that are
Hilbert series with respect to this N™-multigrading. In addition, one
can collapse the N”-multigrading to an N-grading by letting z; = ¢
for all ;. We will use the variable g for power series which are Hilbert
series for this grading.

2 Again assuming that P has been naturally labeled; see Remark 2.6.
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Furthermore, gr(Rp) has its standard N-grading in which its homo-
geneous component of degree i is m*/mi*!, We call the t-grading and
use the variable ¢ in the corresponding Hilbert series.

In fact, one can form an even finer Hilbert series Hilb (gr(Rp), ¢, x)
that keeps track of both the t-grading and the N"-multigrading. We
will see shortly that this series is exactly the right side of (3.1).

Proposition 2.5 (iii) has the following consequence. Fixing a field
k, introduce a polynomial algebra S = k[U;] having generators Uy
indexed by connected order ideals J of P. For the sake of considering
multigraded maps, consider S as N™-multigraded, with the variable U;
having the same degree as the monomial x”, namely the characteristic
vector Xy in N™. In particular, when we collapse the grading into an N-
grading, the variable U; has degree |J|. In addition, S admits another
interesting N-grading, where all U; have degree 1, corresponding to
the t-grading discussed earlier.

Corollary 5.2 (cf. [2, Proposition 7.1]). The ring Rp is minimally
generated as a k-algebra by the monomials x’ as J runs through
Jeonn (P). In particular, these maps

S *sRp and S gipQgr(Rp)
UJ — X'] UJ — EJ

are multigraded k-algebra surjections with respect to the N™-gradings.
Moreover, the second map is also N-graded with respect to the t-
gradings.

Proof. The fact that {x’};cz,. .. (p) minimally generate Rp was
proven in [2, Proposition 7.1], but we repeat the proof here for com-
pleteness.

The fact that they generate Rp follows from Proposition 2.5 (iii).
Their minimality follows from the claim that the characteristic vectors
X g for J in Jeonn (P) are exactly the set of primitive vectors spanning
the extreme rays of the real cone nonnegatively spanned by the P-
partitions.?

3 In [21, Proposition 4.6.10] such vectors are called the completely fundamental
elements of the semigroup.
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To see this claim, given J in Jeonn (P), consider the Hasse diagram
for J as a connected graph, and pick a spanning tree 7" among its edges.
Then the line RX s is exactly the intersection of the hyperplanes z; = 0
for i ¢ J, and z; = x; for {4,j} an edge of T.. All of these hyperplanes
arise as cases of equality in various half-space inequalities that define
the weak P-partition cone. Hence, each such X; spans an extreme ray
of the cone.

Since {x'} je7... (p) is a minimal generating set for R, as an algebra,
their images {X’} c ... (p) by 9r() give a k-basis for m/m2. Hence,
each such element has t-degree 1 and so the map gr(¢) respects the
t-grading. |

This result allows us to interpret combinatorially the power of ¢ in the
power series Hilb (gr(Rp),t,x) and to obtain some information about
its form.

Corollary 5.3. Let P be any poset on {1,2,...,n}.
(i) The N x N™-graded Hilbert series for gr(Rp) is given by

Hilb (gr(Rp),t,x) = > t/Ux/.
feAweak(P)

(ii) The power series in (1) can always be expressed as

g(t,x)
e py (1 —tx7)

for some polynomial g(t,x) in Z[t, x].

(iii) Purthermore, the generating functions appearing in Corollary 3.2
are the Hilbert series for Rp or gr(Rp) with respect to their N x N™-
grading or N x N-grading or N™ or N-grading, where appropriate.

Proof. For assertion (i), note that X’ has t-degree 1 and N™-
multidegree X; in gr(Rp). This means that, if f = Z;’i{) X, for
connected order ideals J;, then X/ = Hz'jifl) x7i will have t-degree v/(f)
and N™-multidegree f, as desired.
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For assertion* (ii), note that gr(Rp) becomes a finitely-generated
N x N"-graded S-module where S = k[U;]sc.... (p)- It therefore has
an N x N"™-graded free S-resolution,

0—F—---—F — Fy —gr(Rp) —0,

with Fy = S, and whose length ¢ is guaranteed to be at most | Jconn (P)]
by Hilbert’s syzygy theorem. Letting f; (j ) denote the number of S-
basis elements of the free S-module F; having N x N¥-multidegree

4
Hilb (Rp,t,x) = Hilb (S, £,x)- Y (1) Y Biat'x"
i=0

(j,0) ENXN™

= Z Bi .oy (1)t x* H (1—tx7).

i=0,1,... ¢ JETJconn (P)
(§,0) ENXN"™

(2

Thus, the numerator here is the polynomial g(¢,x). o

6. Presentations and proofs of Theorems 1.2 and 1.4. Here
we further analyze the structure of rings Rp and gr(Rp), by means of
the surjections ¢ and gr(y) from Corollary 5.2.

Definition 6.1. Define three ideals within the polynomial ring
S = klUslse g (P), each with generating sets indexed by the set
II(P) that consists of all pairs {J1, Jo} of connected order ideals in P
which intersect nontrivially:

Ip := (8yZJ,,05) {11, Ja}eTI(P)
Iy = (syz3, 7,) {7, Ja}en(p)

init
IP .

(8723 1,) {1, o yeni(P)

where syz;, s,,sy25. ;,,sy27; were defined in (1.5), (1.8) and (1.9)
in the introduction.

4 An alternate argument for assertion (ii) is to apply [21, Prop. 4.6.11].
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We will see further (Proposition 6.3) that Ip and I3 are the kernels of
the morphisms ¢ and gr(y), so that Rp ~ S/Ip and gr(Rp) ~ S/I% .
We first establish a link between these rings and S/IB.

Proposition 6.2. For any P on {1,2,... ,n}, the three rings

Rp
gr(Rp)
S/ 1pit

share the same N"-graded Hilbert series, namely, ZfeAweak P) xf.

Proof. By definition, Rp has this sum Zf x/ as its N"-graded
Hilbert series. Setting ¢t = 1 in Corollary 5.3 (i) shows the same for
gr(Rp). Finally, Proposition 2.5 (ii) implies that S/IM* also has this
same generating function as its N"-graded Hilbert series, since the
monomials surviving in the quotient S/IH correspond to multisets of
nonempty connected order ideals that pairwise intersect trivially. ]

The relation between the monomial quotient S/I'%* and the rings Rp
and gr(Rp) is in fact deeper than an equality of Hilbert series. Indeed,
it fits into the theory of Grobner bases (see, e.g., Sturmfels [25, Chapter
1]). Recall that a monomial ordering on S is a total ordering < on the
set of all monomials U4 in S with these properties:

(a) < has no infinite descending chains,
(b) the monomial 1 = U? is the smallest element for <, and

(c) for any monomials U4, UB, U,
UA<UB impliess UAUY < UBUC.

Having fixed a monomial ordering =<, given a polynomial f in S, its
initial term init<(f) is its monomial with nonzero coefficient which is
highest in the < order. Given an ideal I C S, its initial ideal is the
monomial ideal init<(I) := (init<(f))ser.

Given a poset P, we define a total ordering < on the monomials in
S as follows. First choose a total order < on order ideals of P such
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that |J| < |K| implies J < K. Then when comparing two distinct
monomials

U;=U05,Uy,---U;, with Ji 2Jy =2 2y,

6.1
( ) -U'K:UYKIUsz"'UYKS with K; < Ko< -+ < K,

assume without loss of generality that r < s. Find the smallest i in
{1,2,...,r} for which J; # K;; if no such ¢ exists, so U} strictly divides
Uk, say that Uy < Ug. Otherwise, if J; < K;, say that U; < Ug
and, if K; = J;, say that Ug < Uy. It is not hard to see that such a
linear order < will satisfy the above properties (a), (b), (c) that define
a monomial ordering.

Theorems 1.2 and 1.4 amount to the following result.

Theorem 6.3. For a poset P on {1,2,...,n}, one has these ideal
equalities:
Ip =ker (¢: S — Rp)

I =ker (gr(y) : S — gr(Rp))
I3 = init<(Ip) = init< (13",

where < 1s the monomial ordering described above.

The first equality asserts that Ip is the toric ideal for the ring Rp with
respect to its minimal generating set, in the terminology of Sturmfels
[25].

Proof. Temporarily denote by K, K9 the kernels appearing on the
right sides in the proposition:

K :=ker(p:S — Rp);
K% :=ker (gr(¢) : S — gr(Rp)).

One can check from the generators of Ip and I3 given in Definition 6.1
that Ip C K and I ?f C K9, Hence, one has the inclusions

initj (IP) Q initj (K)
init<(7%") C init<(K9").
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On the other hand, since
syzf,“lifh = Uy, Uy, = init<(syzy, j,) = init< (syzgzyb),
one concludes that
P Cinit<(Ip), init<(13).
These various ideal inclusions lead to towers of surjections

(6.2) S/IPY — S/init<(Ip) —» S/init<(K)
' S/18 — S/init< (13)— S/init<(K®").

Recall, that for any homogeneous ideal I of S and any monomial

ordering =, the initial ideal init<(I) has the property that S/I and

S/init<(I) share the same Hilbert series. Together with Proposition 6.2

this shows all these quotient rings

S/K (% Rp)
SIEY (2ar(Re)
s/ 1t

S/initj (K)

S/initj (Kgr)

share the same N"-multigraded Hilbert series. One concludes that all
of the surjections in the towers (6.2) are isomorphisms. Thus,

I3 = init4(Ip) = init<(K)
I3 = init 4 (I¥7) = init< (K°"),

and the generators for Ip, I given in their definitions form Grébner
bases with respect to < for the ideals K, K9". This implies Ip = K
and I} = K9 u]

Proposition 6.4. Each of the three ideals Ip,Iy and I s
generated minimally by the generating sets appearing in Definition 6.1
indezed by II(P).
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Proof. We give the argument by contradiction for why the generator

t
2.0, = UnUs, = Unun [ [ Uso

i=1

of Ip cannot be redundant; the arguments for I3 and I are similar
and even easier. If syz;, j, were redundant, then it could be expressed
as a sum

SYZJy, 00 = > [y K - 8Y2K K

{K1,Kz2}€llp
{K1,K2}#{J1,J2}

where the fx, x, are some polynomials in the variables Uy of S. Since
the monomial Uy, U, appears on the left, it must appear on the right,
say in the term fx, Kk, - Syzk,, k., forcing one of the two monomials
Uk, Uk, or Uk,uk, [ 11y Uk in syzk, k, to divide U, Uy,. Since
U, Uy, is quadratic, this forces either the equality of sets

o {J1,J2} = {K1, K2}, a contradiction, or

em =1 (that is, K; N K, = KM is connected) and {K; U Ky, K; N
Ky} = {J1,J2}. This is again a contradiction because J; and Jy have
non-trivial intersection, that is, neither one is included in the other. O

We close this section by discussing the situation when gr(Rp) = Rp.

Corollary 6.5. The following are equivalent for a poset P on
{1,2,... ,n}:
(i) One has I¥" = Ip and gr(Rp) & Rp.

(ii) The toric ideal Ip = ker (S 5 Rp) is homogeneous for the
standard N-grading on S in which each Uy has degree one.

(i) Every pair {J1,J2} of connected order ideals that intersects
nontrivially has Jy N Js connected.

Proof. The equivalence of (i) and (ii) is easy and well known. For the
equivalence of (ii) and (iii), note that the minimal generator syzy, s,
is homogeneous if and only if ¢ = 1, that is, if and only if J; N J3 is
connected. Now apply Proposition 6.4. ]
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An important special case of this situation where gr(Rp) = Rp
was studied by Hibi [13], namely, when every nonempty order ideal
is connected. We leave the straightforward proof of the following
proposition to the reader.

Proposition 6.6. A finite poset P has every nonempty order ideal
connected if and only if P has a minimum element 0. Furthermore, in
this case,

e the two decompositions in Proposition 2.5 (ii) and (iii) coincide,

e the statistic v(f) on P-partitions f equals the mazimum value
max(f),

e the statistic desp(w) on linear extensions w in L(P) is independent
of the poset structure P and equals the descent number des(w) :=
[Des (w)],

e the ring Rp = gr(Rp) is the same as the Hibi ring introduced in
[13] but associated with the poset P\ 0. In other words,

RP = gT(RP)

= k[yJ]JeJ(P\f))/ (yJ1 : sz - lequ ° yJ1ﬂJ2)J1,J2€j(P) .

7. Second proof of Theorem 1.1: Complete intersections. We
give here a second proof, via our ring presentations, of the precursor
Theorem 4.2, rather than Theorem 1.1 itself.

This proof uses some basic notions of commutative algebra that we
shall recall here: we refer to Stanley [23, Section 1.5] for more details
on this subject.

The Krull dimension dim (A) of a finitely generated commutative k-
algebra A is the maximum cardinality d of a subset {61,...,64} in A
which are algebraically independent over k. If A is N-graded, then the
Krull dimension coincides with the multiplicity of the pole z = 1 in the
Hilbert series Hilb (A4, z). In particular, when several algebras share the
same Hilbert series, they also share the same Krull dimension.

Let 64,...,0; be homogeneous elements in a graded k-algebra A.
Then one has the inequality

(7.1) dim (A/(91A+"'+9gA)) >dimA— /4.
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If Ais Cohen-Macaulay (which is for example the case of a polynomial
algebra over a field), then equality in (7.1) occurs if and only if for each
1 =1,2,...,¢, one has that #; is a non-zero-divisor in the quotient
A/(01A+ ---+0; 1A). Such a sequence (61,...,6;) is called an A-
reqular sequence.

We now have all the necessary tools to give our second proof of
Theorem 4.2.

Proof of Theorem 4.2. For any poset P on {1,2,...,n}, the affine
semigroup ring Rp of P-partitions has Krull dimension n, since the
cone of P-partitions is n-dimensional. But then gr(Rp) and S/I%it
also have Krull dimension n, since Proposition 6.2 asserts that they
have the same N"-graded Hilbert series.

Now the presentation for any of the three rings Rp, gr(Rp), S/I%it in
Theorems 1.2 and 1.4 exhibits them as quotients of S = k[Us] e 7.0 (P)>
which has Krull dimension | Jconn (P)], by an ideal (Ip, I} or Ii#i*) hav-
ing |TI(P)| minimal generators. Hence, one always has the inequality

(7.2) | Jeonn (P)] = [T(P)] = n

and equality occurs if and only if this is a complete intersection presen-
tation, meaning that the ideal generators in each case form an S-regular
sequence.

When these are complete intersection presentations, one obtains the
following Hilbert series calculation for gr(Rp)

< > tV<f>xf>:Hub(gr(RP),t,x)

fedren (p)
_ H{Jl,Jz}EH(P) (l - tszlxlz)
[Licqn. ) (1 —tx7)

by iterating the relation
Hilb (R/(8),t) = (1 — t9°8 (@) . Hilb (R, t)

which holds for a nonzero divisor  in a (multi-)graded ring R; see [23,
Section 1.5, page 25]. It only remains to note that when P is a forest
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with duplications, Proposition 1.4 shows | Jeonn (P)| = n + |D(P)| and
[II(P)| = |D(P)|- Equality in (7.2) follows. o

8. Koszulity. We discuss here an immediate consequence of
IY" having a quadratic initial ideal I3t coming from the theory of
Koszul algebras. The reader is referred to Froberg [9] and the book by
Polishchuk and Positselski [17] for background on Koszul algebras.

Corollary 8.1. For any poset P on {1,2,... ,n}, the graded ring
A =gr(Rp) is a Koszul algebra. In other words, (Rp,m) is nongraded
Koszul in the sense considered by Froberg [8].

In particular, the N x N"™-multigraded Hilbert series Hilb (A, t,x)
described in Corollary 5.3 has the property that Hilb (A, —t,x)™! lies
in N[t,x], as it is the Hilbert series for the Koszul dual algebra A'.

Proof. Tt is well known (see, e.g., [7, Proposition 3]) that having
an initial ideal generated by quadratic monomials, as is the case with
Init — init<(I3"), suffices to imply Koszulity. The relation between
the Hilbert series of a Koszul ring A and its Koszul dual A' is also
standard. O

Example 8.2. Since Theorem 4.2 implies that a forest with dupli-
cations P has
_ My myenee) (- £2x7x7)

Hilb t =
1 (RP7 7X) HJejcmm ®) (1 — tXJ) )

one sees that

_ [lesm ) (1+tx7)
[ myencpy (1 — £2x71x72)

Hilb (Rp, —t,x) ™!
which manifestly lies in N, x].

Example 8.3. The naturally labeled poset P from Example 3.3 had
Hilb (Rp,t,x) equal to
17t2(x(l,2,1,1,0)+x(1,2,1,1,1)+x(2,2,2,1,1))+t3(x(2,3,2,1,1)+x(2,3,2,2,1))

(1—tx7) ’

HJEJconn (P)
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and hence Hilb (Rp, —t,x) ! equal to

J
HJEJconn (P) (1+tx )
]_7(t2(x(1,2,1,1,0)+x(1,2,1,1,1)+x(2,2,2,1,1))+t3(x(2,3,2,1,1)+x(2,3,2,2,1)))

which again manifestly lies in N[t, x].

9. The ideal of P-partitions, and the MAJ formula for
forests. When the poset P is not naturally labeled, the P-partitions
A(P) form a proper subset of the affine semigroup .A"¢*%(P) of weak
P-partitions. In fact, this subset A(P) is a semigroup ideal, in the sense
that

Ak (P) 1 A(P) = A(P).

Definition 9.1. For a poset P on {1,2,... ,n}, let Zp C Rp denote
the ideal of the affine semigroup ring Rp spanned k-linearly by the
monomials x/ where f runs through A(P).

From the Rp-module filtration Zp > mZp D m? O - -+, one can form
the associated gr(Rp)-graded module

gr(l'p) = Ip/mIp D mIp/mQIp D mQIp/m?’Ip DS---.

Recall that Corollary 5.2 showed that Rp, gr(Rp), respectively, were
generated as k-algebras by the collection of monomials {x’};c 7 (P)
and their images within m/m?, respectively. Similarly, Proposition 2.4
shows that the ideal Zp within Rp is finitely generated, by the mono-
mials

(9.1) { H xvlni ;e E(P)},
i€Des (w)

and hence their images within Zp/mZp will generate gr(Zp) as a
gr(Rp)-module. As it is finitely generated, we can deduce the following
result exactly as in Corollary 5.3.

Corollary 9.2. The N x N"-graded Hilbert series for gr(Zp) is

Hilb (gr(Zp),t,x) = »_ t'x/
FEA(P)
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and can always be expressed in the form

h(t,x)
g (p (1 —tx7)

for some polynomial h(t,x) in Z[t, x].

Remark 9.3. Note that the monomials in (9.1) will not necessarily
generate Zp munimally in general. For example, let P = P; be the
poset with order relations 3 <p 1,2 among those in Example 2.2. Then

L(P)={3-12, 3.2-1}

where here dots have been added indicating descents. The generating
set for Zp described in (9.1) is in this case {z3, =3 -x223}. However,
it is easy to check (or see Proposition 9.5 below) that in this case Zp is
the principal ideal within Rp = k[zs, 123, X223, T1Z223] generated by
the single monomial {x3}.

Although we do not know a minimal generating set in general for the
ideal Zp within Rp, it turns out to be easy to characterize when Zp is
principal, that is, generated by a single element. This is equivalent to
the existence of a minimum P-partition fumi, in A(P) with the property
that

fmin + AV (P) = A(P).

Such a characterization was provided by Stanley (see [21, Lemma
4.5.12]) in the special case where P is strictly labeled; we explain here
the obvious modification of his characterization for the general case.

Definition 9.4. We define a candidate for f;,, the function
0 : P — N whose value §(¢) is the maximum over all saturated chains
in P>; of the number of strict covering relations in the chain, that is,
covering relations ¢ <p j for which ¢ >N j. It is easily checked both
that

(a) 0 lies in A(P), and
(b) every f in A(P) has f(z) > 6(¢) for all 3.
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Say that the poset P on {1,2,...,n} satisfies the labeled-6-chain
condition® if, for every i, all saturated chains in P>; have the same
number of strict covering relations, namely, §(i).

Proposition 9.5. The P-partition ideal Zp within the (weak) P-
partition ring Rp is a principal ideal if and only if P satisfies the
labeled-0-chain condition. Furthermore, in this case fumin = 9.

Proof. The second assertion follows from properties (a) and (b) above:
if fmin exists, then (a) implies § > fiin, while (b) implies fpin > 9.

For the first two assertions, note that the values of § satisfy

=0 if ¢ is maximal in P
(9.2) 5(5) 8 > 0(j) if i <p j and i > j for some j
>0(j)+1 ifi<pjandi>Njfor some j.

It is then easily seen that the labeled-§-chain condition is equivalent to
the assertion that changing the inequalities in (9.2) to equalities gives
a well-defined recursive formula for 4.

Thus, when the labeled-§-chain condition holds, any f in A(P) has
f—6 in AV°2k(P): the recursive formula for § shows that f—J is weakly
decreasing along each covering relation ¢ <p j.

Conversely, if the labeled-d-condition fails, then there exists some
covering relation 7 <p j for which the inequality in (9.2) is strict. In
this case, one can check that the function defined by

Flk) = (k) if k € P>; but k # j,
| o(k)+1 ifkeP\Ps;ork=j,

gives an element f of A(P) with the property that f — § does not lie
in Aveak(p):
(f=0)(@) =0>1=(f-0)3)

so f — 0 fails to be weakly order-reversing along the cover relation
1<pj. O

5 The reason for this terminology is that, in the special case where P is strictly
labeled, it was called the §-chain condition by Stanley in [21, subsection 4.5].
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When P satisfies the labeled-d-chain condition, let maj (P) := [0| =
>, 6(z). The following is then simply a translation of Proposition 9.5.

Corollary 9.6. A poset P on {1,2,...,n} satisfies

Z xf = xfmin Z x/f

fEA(P) fEAveak(p)

for some vector fmin tn N™ if and only if P satisfies the labeled-J-chain
condition. In this case, fmin = 0, and one has

S M =P (1 - g)(1 - ) (1 - ¢") - Hilb (Rp,q).
weL(P)

Example 9.7. Recall from the introduction that a forest poset P is
one in which an element is covered by at most one other element. Thus,
any forest poset P on {1,2,...,n} always satisfies the labeled--chain
condition, since for each 4 there is only one maximal chain in P>;.

Note also that, for forest posets, since no duplications are used in their
construction, D(P) is empty, so that II(P) is empty, and Jeonn (P) is
simply the set of all principal order ideals P<;. Thus one concludes
in this case, from Theorem 1.1 and Corollary 9.6 that, for arbitrarily
labeled forest posets P,

Z qmaj (w) qmaj (P) _ [n]'q )
weL(P) Hi:l [|PSin

This is the major index g-hook formula for forests of Bjorner and Wachs
[1, Theorem 1.2]. See also [2, Section 6].

Example 9.8. More generally, there is an easy sufficient (but not
necessary) condition on the labeling of a forest with duplications P
to make it satisfy the labeled-J-chain condition: for every duplication
pair {a,a’} and every duplicated pair of covering edges (i.e., either
of the form b <p a,a’ or of the form a,a’ <p b), assume that both
covering edges in the pair have the same weak/strict nature, that is
either b <y a,a’ or b > a,d’.
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Then for such labelings of a forest with duplications, one has

Z gmei (@) = gmaj (P) [n]ly - H [[J1] + |J2|]q/
)

weL(P) {J1,J2}€ll(P
I o,

JEJconn (P)

Remark 9.9. Because they are normal affine semigroup rings, a result
of Hochster [4, Theorem 6.3.5 (a)] implies that the weak P-partition
rings Rp are always Cohen-Macaulay. We have seen that Rp is a
complete intersection whenever P is a forest with duplications, and it
will be shown in the next section that the converse also holds.

Thus, one might ask for a combinatorial characterization of when Rp
has the intermediate property of being Gorenstein, that is, the canoni-
cal module Q(Rp) is isomorphic to Rp itself. This was already answered
by Stanley’s work on the é-chain condition that was mentioned earlier,
as we now explain.

A result [4, Theorem 6.3.5 (b)], often attributed both to Danilov and
to Stanley, implies that the canonical module Q(Rp) is isomorphic to
the ideal within Rp spanned k-linearly by the monomials x/ as f runs
through the set A" P) of all strict P-partitions. Hence Q(Rp) = Rp
exactly when

Astrict (P) _ fmin + Aweak(P)

for some fuin. Stanley showed that such an fp;, exists (and equals
) exactly when P satisfies his original §-chain condition, that is, for
every ¢, all maximal chains in P>; have the same length.

10. Characterizing complete intersections: Proof of The-
orem 1.3. Recall that in the second proof of Theorem 1.1 in Sec-
tion 7, it was noted that any of the presentations of three rings
Rp,gr(Rp), S/I% given in Theorem 1.2 had the same number of gen-
erators and relations. Thus, any of these is a complete intersection
presentation if and only if it is true for all three of them; we will say
that P is a c.i. poset when this holds. It was further shown there that
forests with duplication P are c.i. posets. Our goal now is to show that
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this property characterizes forests with duplication. In the process,
we will encounter more equivalent characterizations, including one by
forbidden induced subposets (Theorem 10.5).

10.1. Nearly principal ideals. Given a subset A of a elements in
a poset P, let I(A) denote the smallest order ideal of P containing A,
that is,

I(A) :={p € P: there exists a € A with p <p a}.

Recall also that II(P) denotes the set of pairs {J1,J2} of nonempty
connected order ideals of P that intersect nontrivially.

Definition 10.1. Define the set B(P) of all connected, nonprincipal
order ideals of P, and define a map

(P) =~ B(P)
{Jl, J2} '—)Jl U JQ.

It is easy to check that 7 is well defined. It is also surjective: any non-
principal connected order ideal J with maximal elements j1, j2,... , jm
for m > 2 can be written as the union J = J; U Jy where J; := I(j;)
and Jo := I(j2,--- ,jm)-

Say that an order ideal J in B(P) is nearly principal if its fiber 7= 1(J)
for this surjective map 7 contains only one element. In other words, J is
connected, nonprincipal, and there is a unique (unordered) pair {Jy, Jo}
of connected ideals that intersect nontrivially with union J; U Jy = J.

It turns out that one can be much more explicit about the nature of
nearly principal ideals; see Proposition 10.4 below. But our immediate
goal is to show how they help characterize the posets P for which
Rp = S/Ip is a complete intersection presentation.

Proposition 10.2. For any poset P on {1,2,...,n}, the following
are equivalent:
(i) any or all of the presentations Rp = S/Ip and gr(Rp) = S/I}
and S/IH are complete intersection presentations.
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(if) I(P)| = |B(P)| = |Teconn (P)| — | PI.
(iii) The surjection m : II(P) — B(P) is a bijection.

(iv) Every connected order ideal of P is either principal or nearly
principal.

Proof. The equivalence of (i) and (ii) already appeared in the second
proof of Theorem 1.1. The equivalence between (ii) and (iii) is trivial,
since by definition one has the equality |B(P)| = |Jconn (P)| — |P|. The
equivalence of (iii) and (iv) is immediate from the definition of a nearly
principal ideal. u]

Say that Q is an (induced) subposet of P if one has an injective map
i: Q — P for which i(q) <p i(¢') if and only if ¢ <g ¢’. Condition (iv)
of Proposition 10.2 lets one deduce the following.

Corollary 10.3. Induced subposets of c.i.-posets are c.i.-posets.

Proof. Given an injective map 7 : Q — P as above, and an order
ideal J of @ which is connected (respectively principal, respectively
nearly principal), one readily checks that the order ideal I(i(J)) of
P is connected (respectively principal, nearly principal). Thus if the
subposet @ is not c.i., then it contains a connected order ideal J which is
neither principal nor nearly principal by Proposition 10.2 (iv), and then
P contains the connected order ideal I(i(J)) which is neither principal
nor nearly principal, so that P is also not c.i. ]

Corollary 10.3 implies that c.i.-posets are exactly the posets avoiding
some family of “forbidden” posets as induced subposets. This forbidden
family might, a priori, be infinite.® Our next goal is to show that c.i.

6 For example, consider the family of crown posets {Cn}n>,, where Cp, has 2n
elements {a1,...,an,b1,...,bn} and relations

a; <by >az <bx>a3z <bg>---<bp_2>an-1<bp, >an <by,>al.

No two crowns C;, C; for i # j contains one another as an induced subposet, so the
family of posets avoiding crowns as induced posets is not characterized by avoiding
some finite subfamily.
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posets are characterized by avoiding the three posets P;, P», P; shown
in Theorem 10.5 below. For this, it helps to start with a more explicit
description of nearly principal order ideals.

Proposition 10.4. A connected nonprincipal order ideal J of a finite
poset P is nearly principal if and only if

(a) it has ezxactly two mazimal elements j1, ja, and

(b) for every common lower bound £ <p ji,j2, the open intervals
14, j1[ and 1€, ja2[ coincide.

Proof. For the “only if” assertion, let J be a connected nonprincipal
order ideal in P that fails one of the two conditions above.

o If J fails (a), having distinct maximal elements j1, j2,. .. , jm With
m > 3, then it can be written in at least two ways as a union of
connected order ideals intersecting nontrivially:

J= I(Jl) UI(j27j37j47"' 7]m)
= I(]Z) UI(j17j3j47" . 7.7m)

Hence, J is not nearly principal.

o If J satisfies (a) so that it has two maximal elements j; and ja, but
fails (b) by having a lower bound ¢ <p j1, j2 and an element k of |¢, ji|
not lying in ]¢, jo[, then J can again be written in at least two ways as
a union of connected order ideals intersecting nontrivially

J = I(j1) UI(j2)
= I(j1) U I(j2, k).

Note that I(j2, k) is connected because it is the union of two principal
ideals that both contain ¢. This shows J is not nearly principal.

For the “if” assertion, assume that J is a connected nonprincipal
ideal satisfying conditions (a) and (b) above. We wish to show that,
given any expression J = J; U Jo where J; and J; are connected order
ideals intersecting nontrivially, one can reindex so that J; = I(j;) and
Jo = I(j2). By condition (a), one can reindex without loss of generality
so that j; € Jy \ J2 and jo € J3 \ Ji. Therefore, I(j;) C Jp, so it only
remains to show the reverse inclusion, that is, J; \ I(j1) is empty. If not,
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then by the connectivity of Jy, there must exist k, ¢ with k € Jy \ I(j1)
and ¢ € I(j1) such that k, ¢ are comparable in P.

If k <p ¢, then together with £ <p jy, this contradicts k ¢ I(jy).
If ¢ <p k, then note that k € J = I(j1,j2) together with k ¢ I(j1)
forces k < jo. Thus, ¢ <p k < js so that £ is a lower bound for j1, jo.

However, then k lies in ], j5[ but not in |4, jo[, contradicting condition
(b). O

10.2. Two further characterizations of c.i. posets.

Theorem 10.5. The c.i. posets are those which do not contain any
of the following three posets { Py, Py, Ps} as induced subposets:

a

Proof. Each of P;, P, and Pj5 is not a c.i.-poset because it is itself
an order ideal J = P; which is connected but neither principal nor
nearly principal. For example, one can exhibit these two different
decompositions into connected order ideals intersecting nontrivially:

P, =I(a)Ul(d) =I(a) UI(b,d)
P, =1(e)UI(g,i) =I(e, g)UI(i)
Py = I(k)UI(¢, m)=I(k, )UI(m).

By Proposition 10.2 (iv) and it only remains to show that, if a poset
P contains a connected nonprincipal order ideal J failing either of the
conditions (a), (b) in Proposition 10.4, then P contains one of Py, Py, P;
as induced subposets.
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First, assume J fails condition (a), having distinct maximal elements
J1,J2, -+ »Jm with m > 3. Then connectivity of J forces I(j;) N
I(j2,73,--- ,Jm) to contain at least one element, which we will denote
{1, and reindex so that ¢; <p ji,j2. Again, connectivity of J forces
I(41,72) N I(js, ja,--- »Jm) to contain at least one element, which we
will denote /3, and without loss of generality, one can again reindex so
that {5 <p ja2,j3. Now there are three cases:

e if ¢4 <p j3 (which holds in particular if ¢; <p ¥¢3), then
{41, J2,j3,¢1} induces a subposet of P isomorphic to Ps;

e in a symmetric way, if ¢ <p j; (which holds in particular if
by <p ), then {j1, j2,j3,¢2} induces a subposet of P isomorphic to
Ps;

e otherwise, {1, {2 are incomparable in P and {j1, ja, j3, {1, {2} induces
a subposet of P isomorphic to Ps.

Finally, assume that J satisfies condition (a), so that J = I(j1, j2),
but J fails condition (b), due to the existence of a lower bound
¢ <p j1, jo and (without loss of generality by re-indexing) some element
k in ]¢, j1[ but not in )¢, jo[. Then {j1, j2, k, £} induce a subposet of P
isomorphic to P;. o

Theorem 10.6. The set of c.i. posets is exactly the set of forests
with duplications.

Proof. It has already been proved in Section 7 that a forest with
duplication is a c.i. poset. Conversely, given a c.i. poset P, we will
show by induction on |P| that it is a forest with duplications.

The base case |P| = 1 is trivial. In the inductive step, if P contains
no two comparable elements, then P is a disjoint union of posets with
one element, and hence a forest with duplication. Otherwise, let a be
a non minimal element of P, and we consider two cases.

Case 1. Every element o’ incomparable to a in P has I(a')N1(a) =
J.

In this case, consider the (nonempty) induced subposets P., and
P\ P., in P. Both are c.i. posets by Proposition 10.3, and both
have fewer elements than P, so they are forests with duplication by
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induction. And, it is straightforward to check that, in this situation, P
is isomorphic to the poset obtained by hanging P, below a in P\ P,.
Therefore, P is also a forest with duplication.

Case 2. There exists an element a’ incomparable to a in P for which
I(a")N1I(a) # 2.

In this case, decompose P into four induced subposets
(10.1) P=PUP.yqUPcy\ Pego UPcy \ Pego

where P := P \ (P<qUP<q), and where P, \ Py and P., \ P, are
allowed to be empty, but P.g 4 is not. This decomposition is depicted
schematically here:

A
< 0 o P:=P\(P<auP<a’)>

)

We will show that P is isomorphic to the poset ) built by this process:

(1) Start with P \ {a'}.

(2) Hang P, o below a in P \ {d'}.

(3) Duplicate the hanger a in the result, with duplicate element
denoted a'.

(4) Hang P, \ P, (if it is nonempty) below a, and hang P., \ P<,
(if it is nonempty) below o’ in the resulting poset.
Since ﬁ\{a’} and Pc, o/, and Pc,\ P<or and Pcor \ P, are all induced
subposets of P, they are all c.i. posets by Proposition 10.3. Since they

have smaller cardinality than P, they are all forests with duplication
by induction. Therefore, @ is also a forest with duplication.
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It only remains to show that P is isomorphic to . Their underlying
sets are the same. It should also be clear that, by construction, P and
@ have the same restrictions to the last three pieces on the right side of
(10.1). For the first piece P this is also true, for the following reason:
since P« o is assumed to contain at least one element ¢, any element b
of P will have b >p a if and only b >p a’, else {b,a,a’, ¢} would induce
a subposet of P isomorphic to P;.

Now given two elements x,y lying in two different pieces from the
decomposition (10.1), one must check that z,y are related the same
way in P and @. This is checked case-by-case, according to the two
pieces in which they lie.

x lies in Pcq \ P<qy and y lies in Pcgr \ Peg.

Here transitivity implies that x,y are incomparable both in P and in
Q.

x lies in Pcq \ P<q; 07 Pegr \ Poq and y lies in Pcg o

Then z,y are incomparable in (). But the same holds in P: if x <p y
then it would contradict & ¢ P, 4 by transitivity, and if y <p x, then
{a,a’,z,y} induces a subposet of P isomorphic to P;.

x lies in Pcq \ P<q, and y lies in p.

Then y <g = and y <p z are both impossible by transitivity. Thus
one must check that © <g y if and only if z <p y. One has = <g y
if and only if a <p y, and it is true that a <p y implies x <p y by
transitivity. Thus, it remains to check the converse: a £p y implies
x £p y. Assuming a £p y, if one had x <p y; then pick ¢ to be any
element of the nonempty subset P, /. Either £ £ y and {y,z,q,d’, ¢}
induces a subposet of P isomorphic to P, or £ < y and {/,y,a,a'}
induces a subposet isomorphic to Ps;. Contradiction.

x lies in Pcy \ P<, and y lies in p.
Swapping the roles of a,a’ puts one in the case just considered.
x lies in Pcg o and y lies in p.

Again y <g z and y <p x are both impossible by transitivity. Thus
one must check that z <g y if and only if x <p y. One has z <g y if
and only if either a <p y or @’ <p y. Furthermore, either a <p y or
a' <p y will imply =z <p y by transitivity. Thus, it remains to check
the converse: if both a £p y and @’ £p y then this forces x £p y. This
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follows since otherwise if z <p y then {y,a,a’,z} induces a subposet
isomorphic to P3 in P.

This completes the proof that P is isomorphic to the forest with
duplication Q. O

11. Geometry of I, graph-associahedra and graphic zono-
topes. Our goal in this section is to explain the geometry underlying
Proposition 2.5 (ii) and the initial ideal I3  in terms of a subdivision
of the cone of P-partitions. We explain how

e the cone of P-partitions is the normal cone N, at a particular vertex
w in the graphic zonotope Z associated to the Hasse diagram graph
G of P,

e the normal fan of Z¢ is refined by the (simplicial) normal fan of
Carr and Devadoss’s graph-associahedron Pp(g) associated to G, and

e the initial ideal I is exactly the Stanley-Reisner ideal T a(p) for
the simplicial complex Ap describing the triangulation of the cone N,
by the normal fan of Ppq)-

Definition 11.1. Let Ap denote the simplicial complex having
the squarefree monomial ideal I in the polynomial algebra S =
kU] 1€ Tuonn (P) @8 its Stanley-Reisner ideal In,. By definition, this
means that Ap is the abstract simplicial complex with vertex set
indexed by the collection Jeonn (P) of nonempty connected order ideals
Jin P, and a subset {Jy,...,Jq} forms a (d — 1)-simplex of Ap if and
only if the {J;} pairwise intersect trivially (either disjointly, or nested).

Recall that a flag (or cliqgue) complex is an abstract simplicial complex
A on a vertex set V having the following property: whenever a subset
o C V has every pair {i,j} C o spanning an edge of A, then the entire
subset o spans a simplex of A.

We refer the reader to Stanley [23, Sections IT1.2 and II1.10] for the
notions of shellability and regular triangulations used in the next result.

Proposition 11.2. For any poset P on {1,2,... ,n}, the simplicial
complex Ap is a flag simplicial complez, giving a regular triangulation
of a shellable (n — 2)-dimensional ball.
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Proof. The fact that Ap is a flag comes from the fact that it
is generated by (squarefree) quadratic monomials. The fact is that it
gives a regular (and hence shellable) triangulation of a ball comes from
a general result of Sturmfels on initial ideals and regular triangulations;
see [25, Chapter 8]. o

We wish to relate Ap to the normal fans of two polytopes associated
to the (undirected) graph G on vertex set {1,2,...,n} which is the
Hasse diagram of P:

e the graphic zonotope Zg, and
e the graph-associahedron Py of Carr and Devadoss [5].

For a discussion of polytopes, normal fans and zonotopes, see Ziegler’s
book [26, Chapter 7]; for graphic zonotopes and graph-associahedron,
see [19, Sections 5-7].

Recall that, for two subsets A, B C R", their Minkowski sum is

A+B={a+b:ac Abe B}.

Definition 11.3. The graphic zonotope Zq is the Minkowski sum of
the line segments {[0,e; — €;]}; j}cp. In particular, taking G = K,,
one has that Zg  is the n-dimensional permutohedron.

Definition 11.4. The graphical building set B(G) is the collection
of all nonempty vertex subsets J C {1,2,...,n} for which the vertex-
induced subgraph G| is connected.

The graph-associahedron Pp ) is the Minkowski sum of the simplices

{conv({e;}jes) 1 J € Po(a)}

where here conv (A) denotes the convex hull of the vectors in A.

Recall that, for a convex polytope P in V = R", its normal fan
N (P) is the collection of cones in the dual space V* which partitions
linear functionals according to the face of P on which they achieve their
maximum value. We will repeatedly use the following well-known fact
about normal fans of Minkowski sums.
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Proposition 11.5 (see, e.g., Ziegler [26, Proposition 7.12]). The
Minkowski sum Py + - -+ + Py has normal fan N'(P1 + -+ + Py) equal
to the common refinement of the normal fans N'(Py),... ,N(Pa).

Proposition 11.6. Let G be a graph on vertezx set {1,2,... ,n}.

(i) The normal fan N (Z¢g) is the collection of cones in R™ cut out
by the graphic arrangement of hyperplanes {x; = z;}(; jyeE-

(i) In particular, when G is the complete graph K,, this graphic ar-
rangement is the usual type A, _1 braid or Weyl chamber arrangement.

(iii) The braid arrangement N'(Z,,) refines the normal fan N (Pg(q))-
(iv) The normal fan N (Ppc)) in turn refines the normal fan N'(Z¢).

Proof. Assertion (i) is well known and follows from the fact that the
hyperplane x; = x; is normal to the line segment [0, e; — e;], see e.g.,
[19, Section 5].

Assertion (ii) is simply a definition of the type A, i braid arrange-
ment, as the collection of all hyperplanes z; = z; for 1 <i < j < n.

Assertion (iii) is asserting another well-known fact: that Ppg) is
a generalized permutohedron in the sense of Postnikov [18]; see [19,
Example 6.2]. This follows from Proposition 11.5 by checking that
each simplex conv ({e;};cs) has its normal fan refined by the braid
arrangement. The latter holds because a typical edge of conv ({e; };c.s)
between vertex e; and vertex e; is normal to the hyperplane z; = z;.

Assertion (iv) follows from Proposition 11.6 by noting that, for each
edge {i,j} of G, the normal hyperplane z; = z; to the Minkowski
summand [0, e; — e;] of Z¢ is the normal hyperplane to the Minkowski
summand conv ({e;, e;}) of Pp(q)- o

We next review basic facts about the structure of the normal fans for
the permutohedron Zg , graphic zonotope Zg, and graph associahe-
dron Pp(g), all inside R".

Permutohedron. Rays in the normal fan N(Zg,) are indexed
by nonempty proper subsets J of {1,2,...,n}; such a ray is the
nonnegative span of the characteristic vector Xy in R™. The maximal
cones are indexed by permutations w = (wy,... ,w,) and defined by
the inequalities ., > Ty, > -+ > Xy,. A ray indexed by a subset
J lies in the cone indexed by w if and only if J = wlj ;) for some
1=1,2,...,n— 1
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Graphic zonotope. Maximal cones in the normal fan N(Zg), or
vertices in the graphic zonotope, are indexed by acyclic orientations w
of the graph G; such a cone corresponds to the subset of R™ defined
by the conjunction of the inequalities x; > x; whenever w directs an
edge of G as ¢ — j. In slightly different terms, the transitive closure
of an acyclic orientation w gives a partial order P, on {1,2,...,n},
and the maximal cone N, of N(Zg) corresponding to w is the cone
of (weak) P,-partitions. The decomposition of Proposition 2.4 comes
from expressing this cone A, as the union of the maximal cones of
N(Zk, ) corresponding to permutations w in the set of linear extensions
L(P,).

Graph associahedron. Rays in the normal fan N (Pg(g)) are a
subset of the rays in N(Zk,): one only includes the rays indexed
by nonempty proper subsets J of {1,2,...,n} for which the vertex-
induced subgraph G|; is connected. In other words, J is required to
be an element of the graphical building set B(G). A collection of rays
{J1,...,Ji} spans a cone in N (Pp(g)) if and only if pairwise one has
that J;, Jy intersect trivially (either they are disjoint or nested) and if
disjoint, then J; UJj induces a disconnected subgraph G|y, s, (that is,
J1 U Jz is not in B(G)). Such collections form the simplices in what is
called the nested set complex Ap(g) for the building set B(G).

Proposition 11.7. Given a poset P on {1,2,... ,n}, with Hasse
diagram G, let w be the acyclic orientation having P as its transitive
closure.

Then the simplicial complex A, having In, = I® describes the
triangulation of the P-partition mazimal cone N, in the fan N (Zg)
by cones of the normal fan N (Pg(q))-

Proof. Temporarily let I'p denote the simplicial complex describing
the triangulation of N, in the fan N (Zg) by cones of the normal
fan N(Pp(c)). We wish to show that Ap = I'p. As a preliminary
reduction, assume that P is connected: when P is a disjoint union
P, U P, of two other posets, one can check that

AP = Apl * AP2

FP = FPl * sz

where here * denotes the simplicial join operation, cf. [19, Remark 6.7].
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—
G= | | v
—3

N(2g)

N(Zk,) N(Ps(c))

FIGURE 2. Normal fans for the graphic zonotope Zg, the permutohedron Zg  , and
the graph associahedron Pp(q), for the graph G shown, having n = 4 vertices. The
normal fans live in R* but are depicted inside the hyperplane x1 + z2 + 3 +x4 = 0
via their intersection with the hemisphere of the unit sphere in which ;1 > z4. Note
that N'(Zk,, ) refines N(Pp(g)), and the latter refines N'(Z¢).
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Since Ap is a flag complex, it suffices to check that I'p is also a flag
complex, and that their 1-skeleta (=vertices and edges) are isomorphic.

Recall that Ap has vertex set given by the set Jeonn (P) of connected
order ideals J in P, with two vertices {J1, Jo} spanning an edge of Ap
if and only if the order ideals Jy, J; intersect trivially (either disjoint,
or nested).

On the other hand, I'p is the subcomplex of the nested set complex
Ap() indexing the cones of N (Pp(q)) that lie in the cone N,,. Note
that a cone lies in AV, if and only if each of its extreme rays lies in N,.
Thus, I'p is a vertex-induced subcomplex of the flag complex Ag (g
and hence is itself flag.

Vertices of Ap(g) are indexed by nonempty proper subsets J of
{1,2,...,n} for which G|; is connected. The extra condition that
J indexes a ray inside N, is equivalent to X s being a weak P-partition,
that is, J is an order ideal of P. Thus vertices of I'p are indexed by
the connected order ideals J in Jeonn (P), the same indexing set as the
vertices of Ap.

The condition for a pair of connected order ideals {J1, J2} to index
an edge in the nested set complex Ap gy is that they intersect trivially
(either disjointly or nested) and if disjoint then they furthermore have
G|uJ, not in B(G), so that J; U J2 is not a connected order ideal.
But it is impossible for two order ideals Jy, J> of P to be disjoint and
have J; U J2 a connected ideal: this would imply that there is some
Hasse diagram edge connecting them, giving an order relation between
some pair of elements {j1, j2} with j; in J; for i = 1,2, and would force
either j; or js to lie in the intersection J; N Jo. Thus, {Ji, J2} index
an edge of I'p if and only if they intersect trivially, that is, if and only
if they index an edge of Ap. Hence, Ap and I'p are isomorphic flag
complexes. ]

The maximal cones in Pp(g) correspond to what were called B(G)-
trees in [18, Section 7] and [19, subsection 8.1]. This means that the
maximal simplices of the triangulation Ap will correspond to what we
might call P-forests: forest posets F' in which every principal ideal F'<;
is a connected order ideal of P, and whenever i, j are incomparable in
the poset F', one has that the ideal F'«; U F<; of P is disconnected.
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Example 11.8. For the poset P on {1,2,3,4} in which 1,3 <p 2,4,
the Hasse diagram is the graph G shown in Figure 2. The acyclic
orientation w of G whose transitive closure gives P corresponds to a
quadrangular cone N, which is the lowest on the page among the three
quadrangular cones depicted in N'(Zg). This cone N, is subdivided
into four cones in N'(Zk, ), corresponding to the set of linear extensions
L(P) = {1324,1342,3124,3142}. On the other hand, the cone N,, is
subdivided into only two cones in N (Pg(g)), labeled in the figure by
the two B(G)-trees 1,3 <2 <4 and 1,3 <4< 2.

Note that unlike the usual triangulation of the cone N, of P-
partitions corresponding to the order complex AJ(P) that was dis-
cussed in subsection 1.1, the maximal cones in the triangulation Ap
are not unimodular. In fact, each such maximal cone corresponding
to some P-forest F will decompose into |L(F')| different unimodular
cones from the triangulation by AJ(P), that is, from the normal fan
N (Zk,) of the permutohedron.

12. Other questions. Here we collect some questions and problems
left unresolved in this work.

12.1. Resolving the rings Rp over S and Ferrers posets. The
following problem is motivated by our desire to count linear extensions
for more posets P.

Problem 12.1. Find more posets P where one can compute
Hilb (Rp,x), possibly by writing down an explicit S-resolution of Rp,
or gr(Rp) or /L™,

One particular instance originally motivated us but has proven elusive
so far. Given a number partition A, consider the finite poset P = P
on the set of squares (7,7) in the Ferrers diagram for )\, partially or-
dered componentwise, with the square (1,1) as the maximum element.
Gansner [10] showed how the Hillman-Grassl algorithm proves an in-
teresting hook formula that counts weak P-partitions f by an interme-
diate multigrading, where one specializes the variable z; ; associated
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with square (¢, j) to the variable y;_; recording its content i — j:

21 Y [T 49 =1] (1— II yi’—j’>_1a

feAweak (Py) (i,5) €N (,4)€EX (i,3")EH (i,5)

where here H(i,j) denotes the set of squares of A lying in the hook of
square (i, 7).

Question 12.2. For these posets P = Py, can we explain (12.1) via
an analysis of the structure of the ring Rp, or gr(Rp) or S/I%i® that
leads to its Hilbert series? Is one of these rings easy to resolve over S,
for example?

12.2. Further structure for the ideal Zp of P-partitions. It
can be shown (e.g., using [16, Proposition 3]) that, for any poset P
on {1,2,...,n}, the ideal Z(P) of P-partitions is a Cohen-Macaulay
module, either over the ring Rp of weak P-partitions, or over the
polynomial algebra S = k[Us]jez.... (p)- This raises several related
questions about the modules Z(P), beginning with the issue of their
minimal generating sets, raised in Remark 9.3.

Problem 12.3. Describe the minimal monomial generators for Z(P)
over Rp.

Beyond minimal generating sets, one ultimately wants the following.

Problem 12.4. Given any poset P on {1,2,...,n}, describe for
Z(P)
(i) an explicit resolution of Zp as an S-module or an Rp-module, or
both, and

(ii) the multigraded Betti numbers in the minimal free resolutions,
that is, the multigraded vector spaces Tory (Zp, k) and Torf? (Zp, k).

Of course, there are similar questions one can ask about the associated
graded ring gr(Rp) and associated graded modules gr(Zp) over it, and
over S.
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Example 12.5. Counsider the poset P = P, from Example 2.2,
having order relations 2 <p 1,3. Then S = k[Us, Uj2, Uss, U123], and

1

(1 — 1,'2)(1 — $1:U2)(1 — CEQZL‘g)(l — 1,'1372333)
1

(1-q@)(1—¢*)2(1—-¢%)

Hilb (S, x) =
(12.2)

Hilb (S, q) =

It turns out that the generating set {z2,x2x3} described in (9.1) for
the ideal Zp ¢s minimal in this case, leading to the following minimal
free S-resolution

S(_(Oa271)) S(—(O,I,O))
0—> @ A, ® —  Ip
S(_(la271)) S(_(Oa]—al))
€9 > T2
€23 —r I3

where

Uz —Ulas
A= .
[—Uz U1z ]

Together with the Hilbert series for S given in (12.2), this allows one
to calculate

T2 + ToTg — w%wg — xlx%:pg
(1 —22)(1 — z129)(1 — z23)(1 — z12023)
Hilb (Zp. q) a+—(P+q") q+¢
(1-91-¢)*(1-¢*) (Q-q(1-¢*)(1-¢°)

Yo W =g+
weL(P)

Hilb (Zp,x) =

Lastly, given Stanley’s characterization for when Rp is Gorenstein
discussed in Section 9 above, it is reasonable to ask the following.

Problem 12.6. Characterize when Zp is Gorenstein, that is, when
one has an isomorphism Q(Zp) = Zp, up to a shift in grading.
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This should be approachable, as the canonical module Q(Zp) has a
simple description (via [16, Proposition 3]): it is the ideal within Rp
spanned k-linearly by the monomials x/ as f runs through those weak
P-partitions f : P — N for which

f@) >~ fU)ifi<pj
f@@) >~ f(H)if i <n J.
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