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SOME REMARKS ON MULTIPLICATION
AND FLAT MODULES

MAJID M. ALI

ABSTRACT. The purpose of this work is to study some
properties of multiplication modules and flat modules. We
give some properties of multiplication modules that charac-
terize arithmetical rings. We investigate Ohm type properties
for multiplication and flat modules, and we also characterize
F-modules and FGP-modules.

1. Introduction. Throughout this paper all rings are assumed
commutative with identity and all modules are unital. Let R be a ring
and M an R-module. Then M is called a multiplication module if every
submodule N of M has the form IM for some ideal I of R, [12]. Note
that I C [N : M] and hence N = IM C [N : M|M C N, so that
N =[N : M]M. If K is a multiplication submodule of M, then for
all submodules N of M, NNK =[(NNK): K][K =[N : KIK. If
M is a finitely generated faithful multiplication R-module, then M is
cancelation [28, Corollary 1 to Theorem 9], from which it follows that
[IN : M] = I[N : M] for all ideals I of R and all submodules N of
M. If M is a faithful multiplication module, then M is locally either
zero or isomorphic to R. Thus, finitely generated faithful multiplication
modules are locally isomorphic to R. Let P be a maximal ideal of R,
and let Tp(M) = {m € M : (1 — p)m = 0 for some m € M}. Then
Tp(M) is a submodule of M. M is called P-torsion if Tp(M) = M.
On the other hand, M is called P-cyclic provided there exist m € M
and ¢ € P such that (1 — ¢)M C Rm. El-Bast and P.F. Smith [14,
Theorem 1.2] showed that M is multiplication if and only if M is P-
torsion or P-cyclic for each maximal ideal P of R. A multiplication
module M is locally cyclic and the converse is true if M is finitely
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generated, [12, Proposition 4]. Multiplication modules have recently
received considerable attention, see for example [1-12, 14, 28].

A submodule N of an R-module M is called pure if IN = NNIM for
every ideal I of R, [26]. If I is a pure ideal of R, then I is locally either
R or zero. Several properties of pure ideals and pure submodules of
multiplication modules are given in [1, 6]. The concepts of idempotent
and nilpotent submodules were introduced by the author in [1, 6],
respectively. A submodule N of M is idempotent if N = [N : M]N.
If N is a pure submodule of a multiplication module, then N is
idempotent and multiplication. The converse is true for any R-module,
[1]. A submodule N of M is called nilpotent if [N : M]*N = 0 for
some positive integer k. An element m € M is called nilpotent if the
cyclic submodule Rm is nilpotent. Several properties of idempotent
and nilpotent submodules of multiplication modules are considered in
[1].

Following [20, page 105], an R-module M is called a von Neumann
regular module if and only if every cyclic submodule of M is a direct
summand in M. It is shown [1, Proposition 12] that a faithful
multiplication R-module M is von Neumann regular if and only if every
cyclic (in fact, finitely generated) submodule N of M is idempotent in
M. So the concept of faithful multiplication von Neumann regular
modules generalizes von Neumann regular rings. It is proved [1,
Corollary 11] that if R is a von Neumann regular ring and M a
faithful multiplication R-module, then M is von Neumann regular.
The converse is true if M # PM for all prime ideals P of R. In
particular, the converse is true if M is finitely generated, faithful
and multiplication. Several properties and characterizations of faithful
multiplication von Neumann regular modules are given in [1].

Recall that an R-module M is flat if, for every short exact sequence
of R-modules 0 - K — L — N — 0, the sequence 0 - K @ M —
L®M — N®M — 0is also exact. M is flat if and only if it is
locally flat. It is shown [17, Proposition 11.20] that M is flat if and
only if I ® M = IM for each finitely generated ideal I of R. Several
characterizations and properties of flat submodules of multiplication
modules are given by the author in [2]. An R-module M is projective
if it is a direct summand of a free R-module. Projective modules are
locally free and the converse is true if M is of finite presentation, [17].
The trace ideal of an R-module M is TrM = Y ¢ cyrom (ar,r) (M) If
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M is projective, then M = Tr (M)M, ann M = annTr (M) and Tr (M)
is a pure ideal of R, [17, Proposition 3.30].

In this paper we investigate multiplication, flat and projective mod-
ules. Theorem 1 gives some properties of multiplication modules that
characterize arithmetical rings while Theorem 3 and Proposition 6 in-
vestigate Ohm type properties for multiplication modules generalizing
those for multiplication ideals, [5]. Theorem 5 shows that if N is a
finitely generated flat submodule of a finitely generated faithful multi-
plication R-module M, then N is never nilpotent. Propositions 9 and
10 give necessary and sufficient conditions for the sum and intersection
of a collection of flat modules to be flat.

Section 2 is concerned with F-modules and FGP -modules as a
generalization of F-rings and semi-hereditary rings. An R-module M
is called F-module (respectively F'GP-module) if every submodule N
of M is flat (respectively every finitely generated submodule of M
is projective). We show that, if M is a finitely generated faithful
multiplication R-module, then M is an F-module if and only if Mp
is a valuation module for each prime ideal P of R and M is an FGP-
module if and only if Mp is a valuation module for each prime ideal P
of R and Mg is a von Neumann regular Rg-module, where S is the set
of non-zero divisors of R, Proposition 16.

All rings considered in this paper are commutative with 1, and all
modules are unital. For the basic concepts used, we refer the reader to
17, 18, 20, 21, 27].

2. Multiplication modules and flat modules. The following
theorem gives some properties of multiplication modules that charac-
terize arithmetical rings. It generalizes [9, Theorem 2.1].

Theorem 1. Let R be a ring, and let Ny (A € A) be a collection of
submodules of an R-module M. Let

S=Y N\, N=[]N, A=>"[Ny: 8]
AEA AEA AEA
and

B=>Y [N:N,.

AEA
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(1) If S is multiplication, then K NS = Y .\ K N Ny for every
submodule K of M.

(2) If S is multiplication, then [S : K] = >\ A\[Nx : K] for every
finitely generated submodule K of M.

(3) If A is finite and Ny + N, is multiplication for all X # p, then
K+ N = (\ca K + N, for every submodule K of M.

(4) If A is finite and Ny + N, is multiplication for all X # p, then
IN = (Nycp INx for every ideal I of R.

(5) If A is finite and Ny are finitely generated such that Nx + N,, is
multiplication for all X # p, then [K : N| = >\ (A[K : Ny| for every
submodule K of M.

Proof. (1) Obviously, > ,., KN Ny € KNN. Since S is multiplica-
tion, it follows by [28, Theorem 2] that A+ann (m) = R for allm € S.
Let x € KNS, and let

H:{T‘ERiT‘IEZKﬂN)\}.
AEA
Assume H # R. Then there exists a maximal ideal P of R such that

H C P. We have two cases.

Case 1: A C P. Then ann (z) € P, and hence there exists a p € P
such that 1 — p € ann (z). Hence,

(1—p)m:0EZKﬁNA.
AEA

This gives that 1 — p € H C P, a contradiction. Alternatively, for all
A € A, [Ny :S] C P, and since S is multiplication Ny = [N, : S]|S C
PS, and hence S = Z)‘eA Ny CPS C S,sothat S=PS. Sincez € S
and S is multiplication, Rz = IS for some ideal I of R. Hence,

Rz =18 = IPS = P (IS) = Px,

so there exists a p € P such that (1 —p)z = 0.
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Case 2: A ¢ P. There exists a A € A such that [Ny : S] € P. There
exists a ¢ € P such that 1 — ¢ € [N, : S], and hence (1 — ¢)S C N,.
Since x € KN S,

1-qzeKn(l-qSCKNNLCY KNN,.
AEA

So1—gq € H C P, and this is also a contradiction. So H = R and

xGZKﬂN,\.
AEA

(2) Clearly
> INA: K| C[S:K].
AEA

Since R = A+ ann(m) for all m € S, it is easily verified that
R = A+ annY for all finitely generated submodules Y of S. Now,
let © € [S: K] and let

H_{reR:meZ[NA:K]}.

AEA

Assume H # R, so there exists a maximal ideal P of R such that
H C P. We discuss two cases.

Case 1: A C P. Since z € [S: K], and hence zK C S, we infer that
R = A+ ann (zK). This gives that ann (zK) ¢ P, and hence there
exists a p € P such that 1 — p € ann (zK). So (1 — p)zK = 0, and
hence

(1-pze[0:K]C[Nx:K]C > [Na:K].
AEA
Hence, 1 —p € H C P, a contradiction. Alternatively, if A C P, we get

that S = PS. Let .
K =) Rk;.
i=1

Then for all 1 < ¢ < n, zk; € S, and hence R(zk;) = IS for some ideal
I; of R. Hence,

R(iL‘kl) = IiS = IiPS =P (IWS’) = P:L'ki,
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and hence there exists a p, € P with (1 — p,)zk; = 0. Let

i

n

1_p:]‘_H(l_pi)‘

i=1

Then (1 — p)ak; =0 for all 1 < ¢ < n, and hence (1 —p)zK = 0. So

(1-p)zel0:K]CY [Nx:K|C Y [Ny:K].
A€A

Case 2: A ¢ P. There exists a A € A with [N, : S] ¢ P. Hence
there exists a ¢ € P such that 1—¢ € [Ny : S] and hence (1—¢)S C Nj.
Since zK C S, we get that (1 — ¢)aK C (1 —¢)S C Ny, and hence

(1-qz e [Nx: K] C Y [Ny:K].

Sol—gqge€ H C P, and this is also a contradiction. Hence, H = R and

€Y [Nr:K].

A€A

(3) Obviously,
K+NC[)(K+Ny).
AEA

Since A is finite and Ny + N, is multiplication for all A # u, we infer
from [9, Theorem 2.1] that B 4 ann (m) = R for each m € S. Let

AEA

and let
H={reR:ree€ K+ N}.

Let H # R. There exists a maximal ideal P of R such that H C P.
We discuss two cases.
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Case 1: B C P. Since

ze [) (K+N),
AEA

z € K+ Ny for each A € A. There exist k € K and ny, € N,
such that x = k + n),. Hence, x — k = n), € Ny C S, and hence
ann (z — k) ¢ P. There exists a p € P such that 1 — p € ann (z — k),
and hence (1 —p)(zx —k) =0. So(1-p)z=(1-pke K C K+ N.
Sol—pe H C P, a contradiction.

Case 2: B ¢ P. There exists a A € A with [N : N,] ¢ P.
There exists a ¢ € P such that (1 — ¢)Nyx C N. It follows that
(1—q)z € (1—q)(K+N)) € K+N. This also gives that 1—qg € H C P,
a contradiction. So H = R and v € K + N.

(4) Obviously,

IN C ﬂ IN,.
A€EA
Let
z € () INa,
AEA
and let

H={reR:rxcIN}.

Assume H # R. There exists a maximal ideal P of R such that H C P.
We have B+ann (m) = R for each m € S, [9, Theorem 2.1]. We discuss
two cases.

Case 1: B C P. Then ann(z) ¢ P, and hence there exists a p € P
with (1—p)z=0€ IN. So1l—pe H C R, a contradiction.

Case 2: B ¢ P. There exists a A € A such that [N : N)] € P, and
hence there exists a ¢ € P such that (1 — ¢)Nx C N. It follows that
(1 —-¢q)x € (1 —q)INy C IN, and this implies that 1 —g € H C P, a
contradiction. Thus H = R, and hence x € IN.

(5) Obviously,

Y K : N\ C K : NJ.
AEA
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Let z € [K : NJ, and let

H:{reR:meZ[K:NA]}.

AEA

Since A is finite and Ny + N, is multiplication, R = B + ann (m) for
each m € S. Since N is finitely generated, R = B + ann N) = B. Let
P be a maximal ideal of R. Then B ¢ P. Hence, there exist p € P
and A € A such that (1 — p)Nx C N. Since z € [K : N] and hence
N C K, we infer that (1 — p)zN), CaN C K. So

(I1-pze[K:N\JC > [K:Ny,
A€EA

and hence 1 —p € H C P, a contradiction. Hence, H = R and

zed [K:Ny.

AEA
This proves the theorem. u]

The next result generalizes [9, Corollary 2.2] to multiplication mod-
ules.

Proposition 2. Let R be a ring and K, N submodules of a multipli-
cation R-module M such that K+ N 1is finitely generated multiplication.
Then

(K+N)[[KNN): M]=(KNN)[(K+N):M]
=[K:M|N=[N:M]K.
If K 4+ N is not necessarily finitely generated and M finitely generated
then the result also holds.

Proof. K + N is finitely generated multiplication gives that [K :
N] + [N : K| = R, [28, Corollary to Theorem 2]. Since M is
multiplication,

[K:M|N=[K:M][N:M|M=[N:MK.
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It follows that

[K : M]N

[K:M][K:N|N+[N:M|[N:K|K
K : M](Kmv) [N : M] (K N N)
([K:M]+[N:M])(KNN)

(K +N):M](KNN)CI[K: M]N,

1N

N

so that [K : MIN = [(K+N) : M|(KNN) = [(KNN) : M](K+N). For
the second assertion, if K + N is multiplication, then [Kp : Np|+[Np :
Kp| = Rp for each maximal ideal P of R, [28, Corollary 2 to Theorem
1]. Since M is finitely generated multiplication, the result is true locally
and hence globally. O

The next theorem gives Ohm type properties of multiplication mod-
ules. It generalizes [5, Theorem 2.2 and Proposition 3.1].

Theorem 3. Let R be a ring and Nx(A € A) a collection of
submodules of an R-module M. Let

S=Y Ny, N=[1Ny, A=) [Na:S

AeA AeA AeA
and

B=Y [N:N,.

(1) If S is multiplication, then

[S:M]* S =" [Ny: M]* Ny

for all positive integers k.

(2) If A is finite and Ny + N, is multiplication for all X # p, then

[N: M N = () [Nx: M]* Ny
A€A

for all positive integers k.
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Proof. (1) Obviously,

> [Ny : MIPNy C[S: M]*S.
A€A

Let z € [S : M]*S, and let

H= {rER:mEZ[N,\:M]kNA}.
AEA
Assume H # R. There exists a maximal ideal P of R such that H C P.
Since S is multiplication, A 4+ ann (m) = R for each m € S. We discuss
two cases.

Case 1: A C P. Since z € [S : M]*S C S, we infer that
ann(z) ¢ P. There exists a p € P with 1 — p € ann(z). So
(I1—p)z =0 € >, calNa : M]*N), and hence 1 —p € H C P, a
contradiction.

Case 2: A ¢ P. There exists a A € A such that [Ny : S] € P,
and hence there exists a ¢ € P such that (1 — ¢)S C Ny. It
follows that (1 —¢)[S : M] C [(1 —¢q)S : M] C [Ny : M]. Hence,

(1 — q)**L[S : M]kS C [Ny : M]¥N,, and hence
(1—g)* e [Na: M Ny C [Ny : MI* N,
AEA
So (1 —q)k*! € H C P gives 1 — q € P, a contradiction. This implies
that H = R, and hence
z €Y [Nx: M]* Ny
AEA

So
[S: M]*SC Y [Ny : M N,
AEA
(2) Assume A is finite and Ny + N, is multiplication for all X # . It

follows from [28, Theorem 2.1] that B + ann (m) = R for each m € S.
Obviously, [N : MJ*N C (N, co[Nx : M]*Ny. Let

z € () [Na: M]* Ny,
AEA
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and let
H:{reR:me[N:M]kN}.

Let H # R. There exists a maximal ideal P of R such that H C P.
We discuss two cases.

Case 1: B C P. So ann(z) ¢ P, and hence there exists a p € P
with (1 — p) € ann (). It follows that (1 — p)z = 0 € [N : M]FN, and
hence 1 — p € H C P, a contradiction.

Case 2: B ¢ P. There exists a A\ € A with [N : N,] € P, and
hence there exists a ¢ € P with (1 —¢)Nx C N. So (1 —¢)[Na: M] C
[(1 —q)Nx : M] C [N : M], and hence (1 — q)**[Ny : M]*N) C
[N : M]FN. This gives that (1 — ¢)**'z € [N : M]¥N, and hence
(1 — ¢)**! € H C P, which implies that 1 — ¢ € P, a contradiction.
Thus, H = R, and hence z € [N : M]*N. So

() [V : NAJ* Ny C [V : M N

This concludes the proof of the theorem. ]

The fact that Ny + N, is multiplication for each X\ # p in part (2)
of the above theorem is crucial. If S is multiplication, then property
(2) of the theorem is not satisfied. For example, let R = K[X?, X?],
K is afield, I = RX?, J = RX* and L = RX®. Then I+ J + L is a
multiplication ideal of R but (INJNL)? #I°NJ*N L2

As a consequence of Theorem 3 we give the following corollary.

Corollary 4. Let R be a ring and N a submodule of an R-module
M. If N is a multiplication submodule that has no non-zero nilpotent
element, then ann N = ann[N : M]*N for each positive integer k.

Proof. Obviously ann N C ann[N : M]*N. Let N = Y ., Rna.
Since N is multiplication, it follows by Theorem 3 that

[N: M]*N =" [Rna : M]* Rn,,.
aEA
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Let y € ann [N : M]*N. Then

Yy € ﬂ ann [Rng : M]k Rng,
aEA
and hence y[Rn, : M]*n, = 0 for all a € A. It follows that
y**1[Rn, : M]Fn, = 0, and hence [Ryn, : M]*(yn,) = 0. Since
N does not have a nilpotent, we infer that yn, = 0. This is true
for each o, so yN = 0, and hence y € annN. This gives that
ann [N : M]*N C ann N, and the result is proved. o

We next give the following property of flat modules.

Theorem 5. Let R be a ming and N a submodule of a finitely gen-
erated faithful multiplication R-module M. If N is a finitely generated
flat module, then N is never nilpotent.

Proof. We first prove that, for any finitely generated flat ideal of
R, annI = annI* for each positive integer k. Assume {J)}xca is a
non-empty collection of ideals of R. We show that

() a = ( N J,\>I.

AEA AEA

Since [ is finitely generated flat, hence finitely generated multiplication,
it follows by [14, Corollary 1.7] that

<ﬂ (J,\+annI)>I: M Jal.

AEA AEA

Since ann [ is pure, it is locally either zero or R. As I is finitely
generated, it is enough to verify that

ﬂ I = ( ﬂ J,\>I
AEA AEA

is true locally. Thus, we may assume that R is a localring. Ifann I = R,
then I = 0, and both sides of the equality collapse to zero. If annI = 0,
then the result is obviously true. Next, let

annl = Z Rr,.

a€EA
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It follows by [25, Corollary 1.4] that, for all & € A, there exists an ideal
L, of R such that I = IL, and r,L, = 0. Hence, r, € ann (L), and
hence

ann] = ZRra C Zann (La> - ann< ﬂ La>.

a€cl aEA TN

Assume L = NgepLy. Then annl C ann L. Since I = IL,, we infer

that
I= ﬂILa:I<ﬂLa> =IL.

acAN aEA

Hence, I C L, and hence annL C annl, so that ann]/ = ann L.
Let n be any positive integer. To show ann/ = annI”, let = €
annI”. Then zI™ = 0, and hence zI® ! C annl = annL. So
0 = I 'L = zI" 2IL = xzI™ . By repeating the argument we
get that I = 0, and hence x € ann I. This gives that ann I™ C ann /.
As ann] C annl™ is always true, annl = annI™. Finally, let N
be a finitely generated flat submodule of M and k a positive integer.
Then [N : M] is a finitely generated flat ideal of R, [9, Proposition 3.7].
Hence, ann [N : M| = ann [N : M]*. Since M is faithful multiplication,
we get that

ann N = ann [N : M] = ann [N : M]k+1
=ann [N : M]"[N : M]
—ann [N: M|"[N: M| M
=ann [N : M]* N.
So N is not a nilpotent submodule of M. a

The next two results give other Ohm type properties for finitely gen-
erated faithful multiplication modules. The first one may be compared
with [5, Proposition 4.3] while the second generalizes [5, Proposition
4.4] to multiplication modules.

Proposition 6. Let R be a ming and K and N submodules of
a finitely generated faithful multiplication R-module M. Let K +
N be finitely generated multiplication that has mo non-zero nilpotent
elements. If[K : M|*K = [N : M]*N for some positive integer k, then
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(i) K+ ann (K+ N)M =N +ann (K + N) M.
(ii) ann K = ann N.

Proof. Since K + N is multiplication, it follows by Theorem 3 that
[(K+N):M)"(K+N)=[K:M"K+[N:M]"N,

and hence
[(K+N): M"(K+N)=[K: M"K.

Hence,

[N:M][(K+N): M**(K+N)C[(K+N): M*(K+N)
= [K: M"K.
On the other hand,

[K:M"K=|K:M][K:MF'K
C[K : M] ([(K—i—N) MY (K+N)) .

It follows that

[N : M][(K + N): M]* * (K + N)
C[K : M] ([(K +N) MUK + N)) .

Since K + N is a finitely generated multiplication submodule of a
finitely generated faithful multiplication module M, we infer from [28,
Theorem 10] that [(K + N) : M] is a finitely generated multiplication
module, and hence [(K + N) : MJ* (K + N) is finitely generated
multiplication. It follows by [28, Corollary to Theorem 9] that

[N:M]CI[K:M]+am [(K+N): M*'(K+N).

As K + N has no non-zero nilpotent element, it follows by Corollary 4
that
ann (K + N) = ann [(K + N) : M]*" (K + N).

Hence,
[N:M]C[K:M]+anmm (K+N),
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and hence

[N:M]+ann (K+ N)C[K:M]+ann (K+ N).
Similarly,

[K:M]+am (K+N)C[N:M]+ann (K+ N).

So,
[K:M]+amm (K+ N)=[N:M]+ann (K+ N).

Since M is multiplication,

K+amm (K+N)M =N +ann (K + N) M.
(ii) We have

ann [K : M]* K = ann ([K CM*K + [N M]kN>

= amn [(K 4+ N) : M]* (K + N)
=ann (K + N)CanmnK
=ann [K : M]kK.

15

Soann[K : M]FK = ann K. Similarly ann [N : M]*N = ann N. Hence

ann K = ann N, as required. O

Proposition 7. Let R be a ring, and let K and N be submodules
of a finitely generated faithful multiplication R-module M. Let N be a
finitely generated multiplication module that has no non-zero nilpotent

element. If K + N is multiplication, then
[K: NJ* + ann N = [[K MFK [N M]kN} +ann N

for each positive integer k.

Proof. Since [N : M|k N is multiplication, we infer that

(1) [K:M"Kn[N:M*N

- [[K:M]kK: [N:M]kN} [N : M]*N.
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As K + N is multiplication, it follows by Theorem 3 that

(2) (KNN): M"(KNN)=[K: M*Kn[N:M"N.

Since N is multiplication, K "N = [K : N|N. As M is finitely
generated faithful multiplication, [(K N N) : M] = [[K : N|N : M| =
[K : N][N : M]. So

(3)  [(KNN):M]"(KNN)=[K:N"[N:M]*(KnN).
Combining (1), (2) and (3), one gets that

[[K:M]kK:[N:M]kN] [V: M]* N C[K:NJ*[N: M]* N,

Since [N : M]*N is finitely generated multiplication and contains no
non-zero nilpotent element, we infer that

[[K M*K [N M]’“N} C [K : NJ* + ann ([N : M]kN>
=[K: N]IC + ann N.
So
[[K MPK [N M]kN] +ann N C [K : N]* + ann N.
The other inclusion is always true, and hence

[K : N]* + ann N = [[K:M]kK: [N:M]kN] +ammN. O

The following theorem gives several properties of flat modules.

Theorem 8. Let R be a ring and N a submodule of an R-module
M.

(1) [22, Theorem 4.1] and [8, Corollary 2.7]. If M is multiplication
and ann M s a pure ideal of R, then M is flat.

(2) If M is a finitely generated faithful multiplication and N a pure
submodule of M, then N is flat.
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(3) Let M be both a finitely generated faithful multiplication and von
Neumann regular module. If N is a (finitely generated) submodule of
M, then N is (projective) flat.

(4) If M is cancelation and N a non faithful projective and mazimal
submodule of M, then N is idempotent.

Proof. (1) Let P be a maximal ideal of R. Since ann M is pure,
(annM)p =0p or (ann M)p = Rp. If Rp = (ann M)p C ann (Mp) C
Rp, then ann (Mp) = Rp. So Mp = Op and hence M is locally flat
(hence M is flat). We may assume (annM)p = Op. It follows that
Mp # 0p. Otherwise Mp = 0p gives that for all m € M,(Rm)p =
Op. So ann((Rm)p) = ann(Rm)p = Rp, and hence (annM)p =
Nmemann (m)p = Rp. Next, since M is multiplication and Mp # Op,
it follows by Anderson’s theorem [10, Theorem 2.1] that Mp is cyclic
and ann Mp = (ann M)p. This shows that Mp is faithful cyclic, so
Mp = Rp and M is again locally flat, hence it is flat.

(2) N is pure means that IN = N N IM for every ideal I of R. Let
K be a submodule of N. Since N is pure,

[K:N]N=Nn[K:NJMDNN|K:MM=NnKD|[K:N|N,
so that KNN = [K : N]N and N is multiplication. Since M is faithful
multiplication, ann N = ann [N : M]. By (1) it is enough to show
that ann [N : M] is a pure ideal of R. From [6, Corollary 1.2], and [4,

Lemma 9] [N : M] is a pure ideal of R. Let [N : M] =)\ Raq. Let
P be a maximal ideal of R. We discuss two cases.

Case 1: [N : M|p = 0p. Then for each a € A, (Ray)p = 0p, and
hence Rp = ann ((Ray)p) = ann (a)p. It follows that

Rp = () am (a)p = ( () ann (aa)>P = (ann [N : M])p.

aEA a€EA

Case 2: [N : M]p = Rp. So

(ann [N : M])p C ann [N : M|, = 0p,



18 MAJID M. ALI

so that (ann[N : M])p = Op. This gives that ann (N : M) is a pure
ideal of R, and the proof of (2) is completed. Alternatively, since N is
pure and M is a finitely generated faithful multiplication R-module, it
follows by [6, Theorem 1.4] that [N : M] is a pure ideal of R. Hence,
[N : M] is a flat ideal of R, and hence N =[N : M|M 2 [N: M| @ M
is a flat submodule of M.

(3) Let N =3 cx Rmqa. By [1, Lemma 8] we have that ann (mq) =
ann (e, ) for some idempotent e, of R. So

ann N = ﬂ ann (mg) = ﬂ ann (eq) -

a€EA acA

We show that ann IV is pure. It is enough to show that ann N is locally
either R or zero. Thus, we may assume that R is local. Hence, either e,
or 1—e, is a unit. If e, is a unit for some «, then 0 = ann (e,) 2 ann N,
so that ann N = 0. If 1 —e,, is a unit for all & € A, then ey (1 —ey) =0
gives that e, = 0 for all @ € A. Hence ann(e,) = R, and hence
ann N = R. Since M is a von Neumann regular module, it follows by
[1, Proposition 12] that Rm, = Rfams = foM for some idempotent
fa of R. Since M is a finitely generated faithful multiplication (hence
cancelation),

[N:M]= [ZfaM:M] =Y Rfa.

aEA a€cA

So [N : M] is an ideal of R that is generated by idempotents and hence
[N : M] is a multiplication, [18]. Since ann [N : M] = ann N is pure,
[N : M]is aflat ideal of R. So N =[N : MM =[N : M]® M is
a flat submodule of M. For the case where N is finitely generated,
[N : M] = Rf for some idempotent f, so N = fM is a projective
submodule of M.

(4) Suppose N is a non faithful projective. Then N = Tr (N)N, Tt (N)
is a pure ideal of R and ann N = ann Tr (N), [17]. Next, since
N =Tt (N)N C Tt (N)M C M,

and N is maximal, either N = Tr(N)M or Tr(N)M = M. If
Tr (N)M = M and M is a cancelation, Tr(N) = R, and hence
ann N = annTr (V) = 0, a contradiction. So N = Tr(N)M, and
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hence [N : M] = Tr(N). So N = Tr(N)N = [N : M]N is an
idempotent submodule of M. This finishes the proof of the theorem. O

We have three remarks on Theorem 8. First, let I be a projective
ideal of R. Then I is a multiplication, [28]. Also, I = Tr(I)I, Tr () is
a pure ideal of R and annl = annTr (I), [17]. Since Tr (I) is pure, it
follows by the proof of part (2) of Theorem 8 that ann I = annTr (I) is a
pure ideal of R. So I is a multiplication with pure annihilator. Hence, I
is flat. This gives an alternative proof to the fact that projective ideals
are flat. Second, in fact if M is a multiplication module such that
ann M is pure, then for each maximal ideal P of R either Np = 0p or
Np = Mp, [6, Theorem 1.1]. So N is locally flat and hence N is flat.
This generalizes part (2) of the theorem. Third, let M be cancelation
and N a maximal flat submodule of M. For all 0 # r € ann IV, there
exists an ideal L = L, of R with N = LN and rL = 0, [25, Corollary
1.4]. So N = LN C LM C M. Since N is maximal, N = LM or
LM =M. If LM = M,L =Rand annL = 0. But 0 # r € ann L.
Hence N = LM, and hence [N : M] = L. So N = LN =[N : M|N
and N is idempotent. This generalizes part (4) of the theorem.

The next two results give necessary and sufficient conditions for the

sum and intersection of flat modules to be flat. Compare with [28,
Theorem 8§].

Proposition 9. Let R be a ring, and let N;(1 < i < n) be a finite
collection of finitely generated submodules of a finitely generated faithful
multiplication R-module M. Let N; + N; be a flat submodule for all
i< j.

(1) S =3"p_, Nk is a finitely generated flat submodule of M.

(2) Assuming further that N; are flat submodules, then N = N}_; Ny
is a finitely generated flat submodule of M.

Proof. (1) Since M is a multiplication, N; = [N; : MM, and hence

As M is finitely generated faithful multiplication, hence cancelation,
we get that
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is a finitely generated flat (hence multiplication) ideal of R, [7, Propo-
sition 3.7]. It follows by [28, Proposition 4] that

R=[[N;: M]:[N;: M| +[[N; : M]: [N; : M]],

and hence R = [N; : N;] + [N; : N;]. By [9, Lemma 1.1], we have that

R:i[Ni:S]QZ[(NiJrNj):S]gR,

i=1 i£j

so that >, ;[(V; + N;) : S] = R. To prove S is flat, it is enough to
prove the result locally. Thus, we may assume that R is local. Hence,
there exist k, [ € {1,... ,n} with k # [ such that S = Ny + NN} is flat.

(2) As mentioned above, [N; : N;] + [N, : N;] = R. Hence,

n

> IN: Ny =R,

k=1

[9, Lemma 1.1]. It follows that there exists an xp € [N : Nj] with
ZZ:I T = 1. SO,

N = zn:-'lka C zn:ﬂcka CN,
k=1 k=1

so that

N = iwka
k=1

is finitely generated. To show that N is flat it is enough to prove it
locally. Thus, we may assume that R is local. Since Y ;_,[N : Niy] = R,
there exists a k € {1,... ,n} such that N = Nj, . Hence N is flat. o

Proposition 10. Let R be a ring, and let N;(1 < i < n) be a finite
collection of submodules of an R-module M such that [N; : N;] + [N :
Ni] =R for all i < j. If N; + N; is flat, then

(1) S =3p_; N is flat.

(2) N =nNp_, Ny is flat if and only if Ny, are flat.
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Proof. We only prove the “only if” part of (2). We have

n

Y IN:Ni] =R.

k=1

Let N be flat. To show that Ny are flat, it is enough to prove the result
locally. Thus, we may assume that R is a local ring. There exists an
1 e{1,...,n} such that [N : N;] = R, and hence N; = N is flat. Next,
R = [N:Nl] - [Nk :Nl] = [Nk :Nk+Nl], so that R = [Nk : Nk+Nl]
for all k # [. It follows that Ny, = Ny + N; is flat. ]

3. F-modules and FGP-modules. Let R be a commutative
ring with unity. R is called a P.P., (respectively P.F.) ring if every
principal ideal of R is projective (respectively flat). Equivalently, R is
P.P. (respectively P.F.) if and only if, for all @ € R, ann (a) = Re for
some idempotent e of R (respectively ann (a) is a pure ideal of R),
[15, 16, 23]. It is shown [15, 23] that R is a P.F. ring if and only
if, for all prime ideals P of R, Rp is an integral domain and R is a
P.P. ring if and only if, for all prime ideals P of R, Rp is an integral
domain and K, the total quotient ring of R, is a von Neumann regular
ring. Thus, R is a P.P. ring if and only if R is P.F. and K is von
Neumann regular. An R-module M is said to be C.P. (respectively
C.F.) if every cyclic submodule of M is projective (respectively flat).
Equivalently, for each m € M, ann (m) = Re for some idempotent e of
R (respectively ann (m) is a pure ideal of R). It is shown [1, Lemma
8] that a faithful von Neumann regular module is a C.P. (hence C.F.)
module. It is also proved that R is P.P. if and only if every projective
R-module is C.P. and R is P.F. if and only if every flat R-module is
C.F., [15]. We start this section with the following result.

Proposition 11. Let R be a ring.

(1) R is P.F. if and only if every multiplication R-module with pure
annihilator is C.F.

(2) Let M be a finitely generated faithful multiplication R-module.
Then R is P.F. if and only if M is C.F.

Proof. (1) Follows by the first part of Theorem 8.
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(2) Let M be a C.F. module. Let P be a prime ideal of R. Since M is a
finitely generated faithful multiplication, Mp = Rp. If M is an R-C.F.
module, then Mp is an Rp-C.F. module. For, let © € Mp. There exists
ay € M with Rz = (Ry)p. Hence, ann (z) = ann ((Ry)p) = ann (y) p.
Since ann (y) is pure in R, ann (z) is pure in Rp. So Rp is a P.F. ring.
Since Rp is local, Rp is an integral domain and hence R is a P.F. ring.
The converse follows by (1). mi

The following result generalizes the fact that R is P.F. if and only
if Rp is an integral domain for all prime ideals P of R to the module
case.

Proposition 12. Let R be a ring and M an R-module. If M is C.F.,
then Mp is a torsion free Rp-module for all prime ideals P of R. The
converse is true if M is finitely generated, faithful and a multiplication.

Proof. Let M be C.F., and let P be a prime ideal of R. Then Mp
is a C.F.-Rp-module. Let 0 # x € Mp. There exists a y € M with
ann (z) = ann (y)p, and hence ann (z) is pure in Rp. Since Rp is
local and ann(z) # Rp, ann(z) = Op. Hence, Mp is torsion-free.
Conversely, by Proposition 11, it is enough to show that R is a P.F.
ring. Since Mp is torsion-free and Mp = Rp, Rp is an integral domain;
hence, R is P.F. O

Proposition 13. Let R be a ring and M an R-module.

(1) R is P.P. if and only if every faithful multiplication R-module is
a C.P-module.

(2) Let M be a finitely generated faithful multiplication R-module. R
is P.P. if and only of M is C.P. and Mg s a von Neumann regular
module, where S is the set of non-zero divisors of R.

Proof. (1) Let R be P.P. Let M be a faithful multiplication. Let
m € M; then Rm = IM for some finitely generated ideal I of R, [24,
Note 3.7]. Let

I= i Rai.
=1
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Then

n

ann] = ﬂ ann (a;) = ﬂ R (1 —¢;) =Re,

i=1 i=1

where

e=1-J[(1-e)

i=1

is an idempotent element of R. Since M is faithful multiplication,
ann (m) = annl = Re. So M is C.P. Conversely, consider R to be a
faithful multiplication R-module. Then R is a C.P. R-module; hence,
R is a P.P. ring.

(2) Assume that M is a finitely generated faithful multiplication R-
module. Let R be P.P. By (1), M is C.P. Next, K = Rg is a von
Neumann regular ring. It follows by [1, Corollary 11] that Mg is a von
Neumann regular module. Conversely, since Mg is a finitely generated
faithful von Neumann regular Rg-module, it follows by [1, Corollary
11] that Rg is a von Neumann regular ring. If M is C.P., then it is
C.F. and, by Proposition 11, R is P.F. So, Rp is an integral domain
for each prime ideal P of R, and hence R is P.P. O

Proposition 14. Let R be a ring and M an R-module. If M 1is
C.P., then Mp is torsion-free for every prime ideal P of R and Mg is
a von Neumann reqular module, where S is the set of non-zero divisor
of R. The converse is true if M 1is finitely generated, faithful and a
multiplication.

Proof. If M is C.P., then M is C.F.; hence, Mp is torsion-free. If
M is C.P., then Mg is a C.P.Rg-module. Since every non-zero divisor
of Rg is a unit, we infer from [13] that Mg is a von Neumann regular
an Rg-module. Conversely, assume M is finitely generated faithful
and multiplication such that Mp is torsion-free; then Rp & Mp is
an integral domain. Moreover, Mg is a finitely generated faithful
multiplication von Neumann regular Rg-module. So Rg is a von
Neumann regular ring, [1, Corollary 11]. Hence, R is P.P. and, by
Proposition 13, M is C.P. u]

A ring R is semi-hereditary (respectively F-ring) if and only if every
finitely generated ideal of R is projective (respectively every ideal is
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flat). It is well known that, if every finitely generated ideal of a ring
R is flat then every ideal is flat. So, R is an F-ring if and only if
every finitely generated ideal is flat. It is well known that R is semi-
hereditary (respectively F-ring) if and only if Rp is a valuation domain
for each prime ideal P of R and K, the total quotient ring of R, is
von Neumann regular (respectively Rp is a valuation domain). So
R is semi-hereditary if and only if R is an F-ring and K is a von
Neumann regular ring, [15]. We say that M is an F-module if every
finitely generated submodule of M is flat and M is FGP if every finitely
generated submodule of M is projective.

Proposition 15. Let R be a ring and M a faithful multiplication
R-module.

(1) If R is an F-ring, then M is an F-module. The converse is true
if we assume further that M is finitely generated.

(2) If M is finitely generated, then M is an FGP-module if and only
if R is a semi-hereditary ring.

Proof. (1) Let ® : R — M be defined by ®(a) = am, a € R.
Then @ is a ring homomorphism and onto. Let R be an F-ring. Let
N be a finitely generated submodule of M. Then ®~!(N) is a finitely
generated ideal of R. Hence, ®~!(IV) is flat, and hence a multiplication.
It follows that N = ®(®~!(IV)) is a multiplication. Moreover, since M
is faithful multiplication, it is easy to verify that ann N = ann ®~1(N)
is a pure ideal of R. Hence, N is flat by Theorem 8 and M is an F-
module. Alternatively, if IV is a finitely generated submodule of M,
then N = IM for some finitely generated ideal I of R. Since R is an
F-ring, I is flat. Since M is faithful multiplication, M is flat. Hence,
N =1IM =2 1® M is flat, and hence M is an F-module. Conversely,
let M be F-module. Let P be a prime ideal of R. Then Mp is an
F-Rp-module. Since M is a finitely generated faithful multiplication,
Mp = Rp. Hence, Rp is an F-ring, and hence a P.F. ring. Since Rp
is local, Rp is an integral domain, and hence R is a P.F.-ring. Let

I= i Rai
=1
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be a finitely generated ideal of R. Then

ann] = ﬂ ann (a;)
i=1

is a pure ideal of R, [6, Corollary 1.3]. Next, since Rp is an F-ring,
Rp = (Rp)p is a valuation domain. Hence, Ip is principal, and
hence I is a multiplication, [10, 11]. So I is flat and R is an F-ring.
Alternatively, if I is an ideal of R, IM is a flat submodule of M and
by [7, Proposition 3.7] I = [IM : M] is a flat ideal of R. So R is an
F-ring.

(2) Let M be FGP. Let I be a finitely generated ideal of R. Then
IM is finitely generated submodule of M. So IM is projective and,
by [7, Proposition 3.7], I = [IM : M] is projective. So R is semi-
hereditary. Conversely, let N be a finitely generated submodule of
M. Then [N : M] is a finitely generated ideal of R, [28, Theorem 10].
Hence, [N : M] is projective, and hence N =[N : M|M = [N : M| M
is projective. So M is FGP. o

An R-module M is called a valuation if, for all 0 # m, n € M, either
Rm C Rn or Rn C Rm, [3]. Consequently, if M is finitely generated,
then M is cyclic. The next result shows under certain conditions that,
if every 2-generated submodule of an R-module M is cyclic, then M is
a valuation module.

Proposition 16. Let R be a local ring and M a torsion-free R-
module. If every 2-generated submodule of M is cyclic, then M is a
valuation module.

Proof. Let 0 # m,n € M. Then Rm+ Rn = Rk for some 0 # k € M.
Hence, kK = am + bn for some a,b € R. Since Rm C Rk and Rn C Rk,
there exist ¢,d € R with m = ck and n = dk. So k = ack + bdk, and
hence k(1 — ac — bd) = 0. Since M is torsion-free, ac + bd = 1. Since
R is local, either ¢ or d is a unit. Hence, Rm = Rk or Rn = Rk. So
Rm C Rn or Rn C Rm and M is a valuation module. m|

We close our work by the following result characterizing F- and FGP-
multiplication modules.
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Proposition 17. Let R be a ring and M a finitely generated faithful
multiplication R-module.

(1) M is an F-module if and only if Mp is a valuation torsion-free
module for each prime ideal P of R.

(2) M is an FGP module if and only if Mp is a valuation torsion-free
module for each prime ideal P of R and Mg is a von Neumann reqular
module, where S is the set of non-zero divisors of R.

Proof. (1) Let M be an F-module. Then R is an F-ring. Hence, Rp
is a valuation domain, and further Mp = Rp is a valuation torsion-free
module. The statement is reversible.

(2) If M is an FGP-module, then M is an F-module and, by (1), Mp
is a torsion-free valuation module. Also, M is FGP implies that M is
a C.P. module, and hence Mg is a C.P.-Rg-module. Since every non-
zero divisor of Rg is a unit, Mg is von Neumann regular. Conversely,
since Mp = Rp, Rp is a valuation domain. Moreover, Mg is a finitely
generated faithful multiplication von Neumann regular module. So,
by [1, Corollary 11], Rg is a von Neumann regular ring. Hence R is
semi-hereditary, and by Proposition 15 M is FGP. O
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