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A CLASSIFICATION OF ONE-DIMENSIONAL LOCAL
DOMAINS BASED ON THE INVARIANT (c—6)r—4

ANNA ONETO AND ELSA ZATINI

ABSTRACT. Let (R, m) be a one-dimensional, local, Noethe-
rian domain, and let R be the integral closure of R in its
quotient field K. We assume that R is not regular, analyti-
cally irreducible and residually rational. The usual valuation
v : K — Z U oo associated to R defines the numerical semi-
group v(R) = {v(a),a € R, a # 0} C N. The aim of the
paper is to study the non-negative invariant b := (¢ — §)r — 4,
where ¢, 4,7 denote the conductor, the length of R/R and
the Cohen-Macaulay type of R, respectively. In particular,
the classification of the semigroups v(R) for rings having
b < 2(r —1) is realized. This method of classification might be
successfully utilized with similar arguments but more boring
computations in the cases b < g(r — 1), for reasonably low val-
ues of g. The main tools are type sequences and the invariant
k which estimates the number of elements in v(R) belonging
to the interval [c — e, c), e being the multiplicity of R.

1. Introduction. Let (R,m) be a one-dimensional, local, Noethe-
rian domain and let R be the integral closure of R in its quotient field
K. We assume that R is not regular and analytically irreducible, i.e.,
R is a DVR with uniformizing parameter ¢ and a finite R-module. We
also suppose R to be residually rational, i.e., R/m ~ R/tR. Called
v : K — Z U oo the usual valuation associated to R, the image
v(R) = {v(a), a € R, a # 0} C N is a numerical semigroup. Starting
from the following classical invariants:

¢, the conductor of R, the minimal j € v(R) such that j + N C v(R),
§ := Lr(R/R), the number of gaps of the semigroup v(R) in N,
r:=Llr((R: m)/R), the Cohen Macaulay type of R, the new invariant

b:=(c—06)r—2¢
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has been recently considered in the literature. The general problem
of classifying rings according to the size of b has been examined by
several authors. First, Brown and Herzog in [2] characterize all the
one-dimensional reduced local rings having b = 0 or b = 1. Successively,
in [3, 4, 6], Delfino, D’Anna and Micale consider the rings for which
b < r. Partial answers in the case b > r — 1 are given in [5].

In [10, Section 4] we obtain some improvements of the quoted results.
This is done by using the expression of the invariant b in terms of the
type sequence [rq,...,7,] (defined in (1.1)), where n := ¢ — § and rq
equals the Cohen-Macaulay type r of R, namely:

b= Z(r —r;).

=1

So, employing the properties of the type sequence, we get as a straight-
forward consequence of the preceding formula the well-known bounds

0<b<(n—-1)(r-1)

(for the positivity see [2, Theorem 1]; for the upper bound see [3,
Proposition 2.1]). Also, we recover in an immediate way the two
extremal cases:

b = 0, corresponding to the so-called rings of mazimal length, i.e., the
rings having maximal type sequence [r,7,... ., r];

b= (n—1)(r—1), corresponding to the almost Gorenstein rings, i.e.,
the rings having minimal type sequence [r,1,... ,1].

Actually, for any integer ¢ € N it is natural to ask if it is possible to
characterize the rings verifying

(g—=1)(r—1)<b<g(r-1).

In Section 3 we write explicitly all the possible values of v(R) for
1 < ¢ <2 (see Theorems (3.3), (3.4), (3.6)), but we outline that the
method used here is absolutely general and analogous although more
tedious computations might be repeated for greater values of ¢q. To
achieve our results, we utilize heavily the number

k= (r(R/(C + zR)),
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where ¢ := t°R denotes the conductor ideal of R in R and x an element
of R such that v(z) = e(R), the multiplicity. In [5] it is established
that b=r —1= %k =1 or 2 [5, Proposition 2.4], and that b =r — 1
and k = 2 = r = e — 2 [5, Corollary 2.13]. In [6] the lower bound
rk—e+1 < bis found. Improvements of these results and several other
inequalities relating the invariants k,b,r are now realized by means
of the type sequence of R (see (1.4) and (2.1)). For this purpose we
introduce in Section 1 a decomposition of the semigroup v(R) as a
disjoint union of subsets:

U(R) = {0767267"' ,p@,C,—>}UH1 U"'Ukaly

where H; := {y;,yi +e,... ,ys + lie},i=1,... ,k—1,p,1; € N, and
{yi}i=1,... k—1 have distinct residues (mod e) (see Setting 1.6). This
allows us to obtain in Section 2 the useful formula (2.2.1):

b=X+Y+Z

where X := (k—1)(r—-1) >0,Y :=k—-(e—7r) >0, Z :=
(r+l)(p+2’f_1li)+k+h—pe—1 > 0. Obviously X +Y =rk—e+1,
and so the integer Z measures how far is b from the lower bound proved
in [6].

The advantage of this formula is evident for low values of b. For
instance, for rings having b € {0, 1, 2} we state in a quite simple way all
the possible value sets (see Theorems (3.1), (3.8), (3.9)). Nevertheless,
a such type of classification might be accomplished for greater values
of b with similar arguments.

1. Preliminary results. We begin by giving the setting of the
paper.

Setting 1.1. Let (R, m) be a one-dimensional local Noetherian do-
main with residue field x and quotient field K. We assume throughout
that R is not regular with normalization R C K a DVR and a finite
R-module, i.e., R is analytically irreducible. Let ¢ € R be a uniformiz-
ing parameter for R, so that tR is the maximal ideal of R. We also
suppose that the field & is isomorphic to the residue field R/tR, i.e., R
is residually rational. We denote the usual valuation on K associated
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to R by v; that is, v : K — Z U oo, and v(t) = 1. By [9, Proposition 1]
in this setting it is possible to compute for a pair of fractional nonzero
ideals I D J the length of the R-module I/J by means of valuations:

(1.1.1) Ca(1]7) = [o(D) \ o).

The set v(R) := {v(a) | a € R, a # 0} C N is the numerical semigroup
of R. Since the conductor ¢ := (R :x R) is an ideal of both R and
R, there exists a positive integer ¢ so that ¢ = t°R, ¢zr(R/¢) = c and
¢ € v(R). Furthermore, denoting by ¢ := {x(R/R) the number of gaps
of the semigroup v(R) and r := £g((R : m)/R) the Cohen Macaulay
type of R, we define the invariant

b:=(c—98)r—2a.

We list the elements of v(R) in order of size: v(R) := {s;}i>0, where
sp = 0 and s; < s;41, for every i > 0. We put e := s; the multiplicity
of R and n = ¢ — ¢ the number such that s,, = c. For every i > 0, let
R; denote the ideal of elements whose values are bounded by s;, that
is,

R;:={a € R|v(a) > s;}.

The ideals R; give a strictly decreasing sequence
R=RyDRi=mDRy;yD---DR,=CDR,41D---,
which induces the chain of duals:
RCc(R:R)C--C(R:R,))=RC(R:Rpy1)=t"'RC---.
Put r; :==Ilg((R: R;)/(R: R;i_1)), i > 1; the finite sequence of integers
[r1,...,mn] 1is the type sequence of R.

In particular r; = r, the Cohen-Macaulay type of R. Moreover it is
known that:

o1 <r;<rforeveryi:>1,and r; =1 for every i > n,
o f= Z? Tiy
20 —c=>7(ri—1)=>7(ri—1) (see, e.g., [10, Proposition 2.7]).
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We see now that type sequence is a suitable tool to study the behavior
of the invariant b.

Proposition 1.2. We have:

(b= Z?:l(T*Ti)-
(2)0<b< (n=1)(r—1).

Proof. For (1) see [10, Section 4].

(2) We have: Y (r—m;) =Y i o(r—m;) < (n—1)(r —1), because
ry =r and r; > 1, for every ¢ > 1. m]

Notation 1.3. Let R be as in (1.1). We set:
e z € m is an element such that v(z) = e; namely, {r(R/xzR) = e.
eFora,beZ, [a,b)={zeZ]|a<z<b}
e iy € [1,n] is such that s;,—1 = min{y € v(R) |y > ¢ —e}.
(ip = 1 if and only if ¢ = e).
e B :=[ig,n] and A :=[1,n]\ B. Note that |A] <n — 1.
o k:=(lr(R/(C+zR)) (1<k<e-—1).

Theorem 1.4. The following facts hold.
(1) k= ‘B‘ :€R(¢Rm/€) >e—r>0.
(2) k<> cpri<e—1.1If> pri=e—1, then s;,_1 =c—e.

Proof. (1) and the inequality ;. z7; < e — 1 of (2) are proved in
[10, Lemma 4.2]. Since r; > 1 for every ¢ and |B| = k, the inequality
k<> ;cpriis done.

Moreover, denoting by w the canonical module of R (see [10] for the
existence and the properties in our setting), we remark that

> ri=Lr(R/(R: Riy—1)) = |[v(wRio—1) <]
i€B
and
V(wRiy-1)<c Clc—e,c—2]
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(see the proof of the quoted lemma). Thus, >, zr = e -1 =

V(wRi,—1)<c = [c —e,c — 2], and so $;,—1, the minimal element in
v(wR;,—1), equals ¢ —e. o
The case £ = 1 is completely known and recalled below for the

convenience of the reader.

Proposition 1.5 [10, Lemma 4.4]. The following facts are equiva-
lent:

(1) k=1.
(2) v(R) ={0,e,...,pe,c =}
(3) The type sequence of R equals [e —1,... ,e—1,7,].

If R satisfies these equivalent conditions, then:

d=c—-p—-1,b=(p+1l)e—c<r—-1, r=e—1, r,=e—1-—b.

By virtue of (1.1.1) we have k = |v(R) \ v(€ + zR)|. This fact allows
to write v(R) = v(€+2R)U{0,y1,... ,Ykr_1}, obtaining the description
of v(R) as a disjoint union of the sets H; given in the next setting. The
construction is significant for k£ > 1.

Setting 1.6. Let £ > 1. We set:
v(R) = {0,¢,2e¢,...,pe,c,—} UH; U+ -+ U Hy_1,

where

e p is the integer such that ¢ — e < pe < ¢, in other words,
pe+2<c<(p+1)e. (p>0andp=0if and only if ¢ = e).

eh:=(p+1le—¢c (0<h<e-—2).
o Hy:={yi,yi+te,...,ui+lie},i=1,... ,k—1,1; € N.

e The integers y; € N are such that e < y1 < y2 < -+ < yYg—1,
yi ¢ eZ,y; #7y; (mod e) for every i,j € {1,... ,k—1}.

e The integers l;, i =1,... ,k — 1, are defined by the relations:
yi +lie<c<yi+ (li +1)e.

e For k = 2 we shortly call y := y;, [ :=1[;.
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Example 1.7. If v(R) = (10,11, 26), then: v(R) = {0, 10, 20, 30, 40,
50 -} U Hy U---U Hy where Hy; = {11,21,31,41}, Hy, = {22, 32,42},
H; = {26736746}7 H, = {33’43}7 Hs = {377 47}7 Hs = {44}7
H; = {48}. According to notations previously introduced y; = 11,
yo = 22, y3 = 26, y4 = 33, y5 = 37, y¢ = 44, y; = 48 and l; = 3,
12:l3:2, l4:l5:l, l6:l7:0- MOI‘GOVGI‘,C:E)O,[):4, h=0.

Proposition 1.8. Let k > 1, p, h, {l;} be the integers defined in
(1.3) and (1.6). Then:

(Drefe—k,...,e—1}
(2)0< 1 < <l <h<p-—1
B e—b6=p+k+>t "y 0=@p+1)(e—1)—h—3"""1+1).

Proof. Assertion (1) follows immediately from (1.4.1).
(2) By definition of [; and p, we have (I;+1)e < y;+l;e < ¢ < (p+1)e;
then [; + 1 < p, for every i = 1,... ,k — 1. Now note that

yi+lhe<c< yi71+(li71+1)€ = Yi—Yi—1 < (li71+1—li)6 =1 <l;_1.

(3) Using the integers defined in (1.6) ¢ — § and § can be expressed
as:

k-1
c=b6=p+)+0+D)++Ua+1)=p+k+> L
1

S (e 0)= 4 De—h— (pr ks 3 0)

k—1

=(p+1)(e-1)—h-> (i+1). o

1

It is natural to ask how the elements yy, ... ,yg_1 introduced in (1.6)
influence the Cohen Macaulay type of R. This will be analyzed in the
following (1.9), (1.11), (1.12).

Proposition 1.9. Let k = {g(R/(€ + zR)), and let v(R) be as in
(1.6). Further, let xq,... 2,1 € m be such that v(z;) = y;. The
following facts are equivalent:
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(1) r=e—1, i.e., R is of mazimal Cohen-Macaulay type.

(2) v(R) \ v(zR : m) = {0}.

(3) y1,--- ,Yk—1 € v(zR : m).

(4) z1,..., 251 € (xR :m).

(5) z;z; € xm for every 4,5 =1,... ,k— 1.

(6) Lr(m/m?) = e, i.e., R is of mazimal embedding dimension.

Proof. Since e—r = g(R/xR)—{r((zR : m)/zR) = (r(R/(zR : m)),
the equality e — 7 = 1 means |[v(R) \v(zR:m)| =1, andso 1 < 2 is
proved. In the same way we obtain that

(x) r=e—1& (zR:m) =m < m? = zm. Moreover,

(:x) vz M) CN =z ImECe¢=>me=2C=CC (zR:m).
Considering the chain of ideals

RomDC+ (z,21,... ,2,-1)RD C+ (z,21,... ,2x—2)R D

.-+ D ¢+ xR,
we see that {g(R/(C+zR))=k=>m=C+ (z,z1,...,Tk—1)R, hence

(x % %) z;m = (zx;)R + (v;25) R + 2;€ for every j =1,... ,k — 1. By
() we have immediately 1 < 6 and 1 = 5.

5 = 4. By the assumption z;z; € zm, for all 7,5 =1,... ,k — 1 and

by the obvious inclusion ;& C m¢€ = z€, from (***) we get x;m C zR,
then z; € (xR : m).

The implication 4 = 3 is obvious.

Finally, 3 = 2 holds by (). o

Remark 1.10. It is clear from (1.9) (see the equivalence 1-5) that the
condition y; +y; —e € v(R) for every i,j =1,... ,k—1, is necessary to
have maximal Cohen Macaulay type. Unfortunately, it is not sufficient.
For example, if R = &[[t5, % + ¢10 ¢4 ¢16 17 ¢19]] then k = 2, y = 9,
2y —e =12 € v(R), but r = e — 2. In this case (1.9.5) does not hold,
because (t + t19)% ¢ zR.

Proposition 1.11. Let k = {g(R/(€ + zR)), and let v(R) be as in
(1.6).
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Dr=e—k, k>2, <v(R)\v(zR:m)={0,y1,... ,Yk—1}-
(2) If r < e—1, then

(a) 2y1 < c+e,

b)yp<2l1+2andp=2L1 +2=h>0.

(3) If r = e — k, then

(@) y1+y; <c+e, for every j =1,...  k—1.
byp<lh+l1+2andp=li+l_1+2=h>0.
(4) If p > 3 and i is such that l; = 0, then 2y; > c + e.

Proof. (1) By means of (*x) stated in the proof of (1.9), we have the
inclusions (€+zR) C (zR : m) C R. Since e —r = {g(R/(zR : m)) and
k={Lgr(R/(€+ zR)), it follows that e — 7 = k < (€ + zR) = (zR : m).
To see (2.a), suppose 2y; > c¢ + e; then y; + y; > ¢+ e for every
i,j = 1,...,k — 1. Let #; € m be elements such that v(z;) = v,
and let s € m. If s € (€ + zR), then ;s € m(€ + zR) C zR. If
s ¢ (€ + zR), then v(s) = y;, for some j, 1 < j < k — 1; hence,
v(z;is) = y;+y; > c+e=x;s € € C zR. In both cases z; € (zR : m),
and so y; € v(zR : m). Thus v(R)\v(zR: m)={0} and r =e—1 by
(1.9), a contradiction.

To see (2.b), consider that by (1.3) and (1.6):
yp>c—(li+1le=(p—1li)e—h.
Combining this with the preceding (2.a), we obtain
(2p—2l1)e—2h<2y; <c+e=(p+2)e—h.
Thus (p — 213 — 2)e < h and since h < e — 2, we see that p < 2[; + 2

and also that p =20 +2 = h > 0.

To prove (3.a), it suffices to show that y; + yx—1 < ¢+ e. Suppose
Y1+ Yk—1 > c+e; then y; + yr—1 > c+ e for all i. Let xx_1 € m be an
element such that v(zx_1) = yr—_1. Asin (2.a), we get zx_1 € (zR : m),
and so y,_1 € v(zR : m), a contradiction, since the assumption e—r = k
means v(R) \ v(zR:m) ={0,y1,... ,Yr_1} (see item 1).

We prove now (3b). As in (2.b),
yi>c—(j+l)e=(p—1lj)e—h, forj=1,...,k—1,
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and by (3.a)
2p—1lj—lh)e—2h<y1+yj<ct+e=(p+2)e—h.
Hence,
p—1lj—-li—2)e<h<e—2, foreveryj=1,... k-1

We conclude
P+l +2<l +lg1+2

and also the last assertion.

For (4), note that I; =0 = y; + e > ¢, and that p > 3 = ¢ > 3e.
Thus: 2y; > 2¢ —2e = ¢+ (¢ — 2e) > ¢+ e, as desired. o

We may describe the particular case k = 2 in a more precise way.

Proposition 1.12. Assume k = 2. With setting (1.6) we have:
(1) r = e — 1<=> one of the following conditions is satisfied:
(a) 2y > c+ e
(b) 2y=(2¢g+1)e<c+e, g>1, p>2andy € v(zR : m).
(2)r=e—2=2y <c+e andif 2y = (2q+1)e, then y ¢ v(zR : m).

Proof. First recall that by (1.4.1) one has r > e — 2. For implication
= in (1), note that y € v(zR : m), by (1.9), and so 2y —e € v(m). Then
regarding the structure of v(R), we have the claim. For the opposite
implication, note that in case (a) for any s € m such that v(s) = vy,
vz ts?) =2y—e>c=a 's? € € = s? € xm; now use again (1.9)
to conclude.

(2) is immediate by (1). o

2. Bounds for the invariant b. Starting from the preliminary
result (1.2) we go on in studying the integer b. First (see (2.1)) we find
lower and upper bounds using the properties of the type sequence, then
(see (2.2)) we express b in terms of the integers k, p, l;, h occurring in
the decomposition of v(R) as in (1.6). This description becomes quite



ONE-DIMENSIONAL LOCAL DOMAINS 99

simple in the particular cases k = 2,3 (see (2.3) and (2.4)). The last
result of the present section (see (2.5)) furnishes information according
to the range (¢ —1)(r — 1) < b < ¢(r — 1) that will be basic in the next
section.

Proposition 2.1. With Notation 1.3, the following facts hold.
De—r—=—1)(r-1)<rk—e+1<b—=>,4(r—r) < k(r—1).

(2)b=(k=1)(r—1)+ Xy s(r—ri) & Yiepri = e—1 and k = e—r.
(B)b=Fk(r —1)+ > ;calr —m) & r; =1 for every i € B.
(4) The following conditions are equivalent:

(a) b=(e—r—1)(r—1).
(b)b=(k—1)(r —1).
(c)e—r=k, > cgri=e—1andr;=r for everyi € A.
If these conditions hold, then s;;_1 = c —e.
(5) b > (r —1)s, where s:=|{i € [1,n] | r; = 1}|.

Proof. (1) Write the invariant b= >, (r —r;) in the following form:

() b:Z(T—Ti)+Z(T—Ti)=7‘k—2m+2(r—ri).

i€B i€A i€B i€A

Using that ;.7 < e—1 (see 1.4.2), we obtain

(%) rk—(e—1)<b—> (r—r) <k(r—1).

€A

Then, since k > e — r by (1.4.1), the inequalities of (1) are clear.

(2) Supposing b — > ;- 4(r — ;) = (k — 1)(r — 1) we have by
item (1) (k—1)(r —1) > rk — e + 1; hence, £ < e — r and since
always k > e — r, it follows that k = e — 7. From (%) >, pri =
rk—(k—1)(r—1)=k+r—1=e— 1. For the converse, it suffices to
substitute Y ;i =k +r —1in (x).

(3) Using () we have b—3", ((r—r;) = k(r—1) < > . cg(r—mr;) =
k(r —1). Since r — r; < r — 1 for every ¢ and k = |B|, the last fact is
equivalent to say that r; = 1 for every ¢ € B.
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(4) @ = b. By (1) we have immediately >, ,(r — ;) = 0 and
(e—r—1)(r—1)=rk—e+1=e—r =k, as desired.

b= c By (1) wehave) , ,(r—r;) <b—(rk—e+1) = —k—r+e <0,
then we can apply item (2) with } ., (r —r;) = 0.

¢ = a. Substitute in () the relations of (c).

The fact s;,—1 = ¢ — e is immediate by (1.4.2).

By applying [10, Corollary 3.13.2], with I = € we get (5).

Utilizing the description of the value set v(R) introduced in (1.6), we
obtain the next useful formula for the invariant b.

Theorem 2.2. With Setting 1.6, assume k > 1. The following

equalities hold:

Mb=F+)SV ' G+1)-@+D)e-r-1)+h=X+Y +2Z
where

X:=(k-1)(r—1)>0,

Y:i=k—(e—r)>0,

Z:= (r+l)<p+zlf_1li)+k+h—pe—lZZieA(7‘—Tz’)ZO-

2)c=@+1+>7 Ui+ 1)(r+1)—0b.

Proof. (1) To get the desired formula it suffices to substitute in
the equality b = (¢ — d)r — ¢ the expressions of ¢ — § and § given
in (1.8.3). The positivity of Y is clear by (1.4.1). To prove the
positivity of Z we use the second inequality of (2.1.1): X +Y =
kr —e+1 < b— 3 ,c4(r — 1), and so we have the conclusion:

Z=b—(X+Y)>> 4(r—mr;)>0.
(2) Since b+ ¢ = (r+1)(c — 6), (2) follows easily. u]

Lemma 2.3. Case k = 2. With Setting 1.6, assume k = 2.
(1) Ifr=e—1, then b=(+1)e+h < (l+2)e—2. Further:

b=(1+2)e—-2&h=e—2.
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(2) If r = e — 2, then:
b=(I+1)(e—1)+h—-p—1, c=((p+1+2)(e—1)—b.

Further we have:
(a)l+1<p<20+2andp=2l4+2=h>0.
(b) I+ 1)(e—=3)<b< (I+1)(e —2)+e— 3. In particular,

l+1)(e=3)ep=20+2,h=10orp=20+1,h=0.
l+1)e—2)+e—3=p=1+1, p>1,
h=e—2, y=e+1.

b:
b=

Proof. For k = 2, we write v(R) = {0,¢,2e,...,pe,c,—} U{y,y +
€...,y+le}, withr e {e—2,e—1},c—d=p+2+1l,c=(p+1)e—h.
(See (1.8), (1.6)). Then the expressions of b, in items (1), (2), come
from (1.8.4) with k = 2 and e — r = 1, 2, respectively. To complete the
proof of item (1), recall that h < e — 2.

The bounds for p in item (2) come from (1.8.2) and (1.11.3) and the
value of ¢ comes from (2.2.2).

Rewriting b in the form
b=(1+1)(e—2)+({—p)+h,

and recalling that [ —p < —1, h < e — 2, we obtain the upper bound
for b.

Rewriting b in the form
b=(1+1)(e—-3)+(2l+2—-p)+(h—1),
and using part a, we obtain the lower bound and also b = (I4+1)(e—3) <

p=2l4+2,h=1lorp=2l+1,h=0.

Finally, note that b = (I+1)(e—2)+e—-3=h=(p—1l—-1)+e—-2>
e—2=>p=I[+1 h=e—2= c=pe+ 2 and since by definition of [,
y +le < ¢, it follows that y < e + 2, hence y = e+ 1 and p > 1. a

Lemma 2.4. Case k = 3. With Setting 1.6, assume k = 3.
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(1) Ifr=e—3, then b= (I +12+2)(e—2)+h—2(p+1). Moreover,

p<li+lb+2=b>(1+12+2)(e—4)+h, h>0.
p:l1+l2+2:>b:(l1+l2+2)(€—4)+h—2, h > 0.

(2)If r=e—2, thenb= (l1+12+2)(e—1)+h—p—1 andp < 21 +2.
Further, p=2l; +2 = h > 0.

(3) Ifr=e—1, then b= (I3 + 12 + 2)e + h.
Proof. Recall that by (1.4) e — r < 3 and by (1.6)
v(R) ={0,¢e,2e,...,pe,c, =} U{y1,... ,y1 +lie} U{y2,... ,y2 + l2e}.
Formula (2.2.1) with k£ = 3 becomes
b=(r+1(l1+1l2+2)—(p+1)(e—7—1)+h.
By substituting r with e —1,e —2,e — 3, we get the desired expressions

for b in items (3), (2), (1), respectively. To complete the proof of (1)
and (2), apply (1.11.3) and (1.11.2), respectively. O

Proposition 2.5. Let ¢ € N be such that 0 < b < q(r — 1). Then:
(1) r > e—q—1. In particular,

(a) Ifr=e—1—gq, thenb=q(r —1),q < e— 3, and the equivalent
conditions of (2.14) hold.

(b) Ifr >e—gq, thene—1r <k <gq.

(2) If (g—1)(r — 1) < b < g(r — 1), we have:

(c)k—1<g<n-1.

@) @@=k -1 ~1) < Toealr =) < (¢ - B)r— 1) +e— 1 F.

Proof. (1) First we deduce the inequalities
(©) (e—r—1)(r—1)<b<q(r—1),

by combining (2.1.1) with the assumption. Hence we get r > e—q—1.
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(a) If r = e — 1 — g, then relations (®) give b= (e —r — 1)(r — 1),
and so the conditions of (2.1.4) hold.

(b) Assertion (##) in the proof of (2.1) insures that kr — (e — 1)
Hence assuming r > e—q, we have rk <b+e—1<g(r—1)+e—
(g+1)r —1; then k < q.

<b.
1<

(2) Put M := ), ,(r—r;). We have to compare the two inequalities
of (2.1.1)

k—1)(r-1)+M+k—(e—r)<b<k(r—-1)+M
with the assumption
(=D(r—1)<b<q(r—1).
We obtain the following:

(k—1D(r-1)+M+k—(e—7r)<q(r-1), and also
(g—D(r—-1)<k(r—1)+ M.

The first inequality gives ¢ > k—1land M < (¢—k)(r—1)+e—1—k.

The second one says that M > (¢—k—1)(r—1). Moreover, combining
the hypothesis with (2.1.2) (¢—1)(r—1) < b < (n—1)(r —1), and this
implies ¢ < n — 1, as desired. ]

3. Classification. Our aim is now to classify the value sets for
one-dimensional local domains having

0<b<2(r—1).

On this topic several results are presented in the literature. For
semigroup rings R = k[[t* a € S]], S C N a numerical semigroup,
Brown and Herzog in [2, Corollary after Theorem 4] illustrate the
case b = 1. This result can be extended to rings R as in Setting 1.1
(see (3.1)). Successively Delfino in [5, Corollaries 2.11, 2.14] gives a
characterization of rings satisfying the condition b < r — 1 and exhibits
all the possible value sets in the case b < r, under the additional
assumption r = e — 1. See also Proposition 2.7 from [3] for a further
generalization. An exhaustive description of the cases 0 < b < r —1
can be found in [10, Theorem 4.6].
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In this section we assume Setting 1.1 and Notation 1.3. Moreover,
t.s.(R) will denote the type sequence of R, defined in (1.1).

First we recall in (3.1) and (3.2) the quoted known results, which now
become an easy consequence of our preceding statements.

Theorem 3.1. Case b =0. The following conditions are equivalent:
(1) b=0.

(2) Either R is Gorenstein, or v(R) ={0,e,... ,pe, (p+ 1)e —}.

(3) t.s.(R) =r,...,T].

Proof. By (2.1.1) 0 =b > (k—1)(r — 1); hence either r =1 or k =1,
and this last condition gives, by (1.5), v(R) = {0,e, ... ,pe, (p+1)e =},
or equivalently, t.s.(R) = [e — 1,...,e — 1] = [r,...,r]. Hence
1=2<=3 are clear. Of course, in the Gorenstein case we have
t.s.(R) =1L,...,1]. Implication 3=>1 is immediate by (1.2.1). o

Theorem 3.2 [10, Theorem 4.6.1]. Case 0 < b < r—1. The following
facts are equivalent:

(Ho<b<r—1.
(2) v(R) = {0,e,...,pe,c =} withpe+2 < c < (p+1e.
3) t.s.(R)=[e—l,e—1,...,e—1,r,], rn > 1.

If these conditions hold, then:

b<e—2, r=e—-1, r,=e—1-b, k=1, c=(p+1)e—b.

Theorem 3.3. Caseb=r—1. Ifb=r—1> 0, then eitherr =e—1
orr=e—2.

1. Subcase r = e — 1. The following facts are equivalent:
(a)b=r—1>0andr=e—1.

(b) v(R) ={0,e,... ,pe,pe +2 =}, e > 2.

(c) ts.(R)=[e—1,...,e—1,1],e> 2.
(d)b=r—-1>0andk=1.

2. Subcase r = e — 2. The following facts are equivalent:
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(e)b=r—1>0andr=e—2.

(f) either v(R) = {0,e,2e — 1,2¢,3e — 1 —}, e > 3, or v(R) =
{0,e,y,2e =}, with 2y < 3e, e > 3.

(g) either t.s.(R) = [e—2,e —2,1,e — 2], with e > 3, ort.s.(R) =
[e — 2, 7o, T3], withro+r3=€—1,€e>3.

(h)b=r—-1>0and k= 2.

Proof. Applying (2.5.1) with ¢ = 1, we obtain that » > e—2. Further,
ifb=7r—1,thenr =e—2 & k =2 by (2.5.1a) and (2.1.4); also, if
b=r—1,thenr =e—1< k =1 by (2.5.1b). This proves the first
assertion and the equivalences a < d, e & h.

(1) First note that (a) implies e > 2; in fact, e = 2 would imply
r=1b=0.

d = b. Since k = 1, the equivalent conditions of (1.5) hold, and
v(R) ={0,e,... ,pe,c =}, withc=(p+1)e—b=pe+2,e > 2.

b= c. If (b) holds, then by (1.5) t.s.(R) =[e—1,... ,e—1,7,], with
r—r, =b=r—1, hence r, =1, as in (c).

¢ = a. By (1.2.1), (c) impliesr =e—land b=r—r, =r—1,asin
(a).

(2) First note that (a) implies e > 3; in fact, e = 3 would imply r = 1,
b=0.

h = f. Since k = 2 we use (2.3.2) recalling that p < 2l + 2:
e—-3=b=(I+1)(e-=1)+h—-p—-1>({+1)(e—-1)+h—20-3.

Hence we get I(e — 3) + h < 1 and the following possibilities occur by
(2.3.2¢):

(l,p,h) =(0,1,0), or (I,p,h) =(0,2,1), or h=0, e=4, I =1.

(i) If (I,p,h) = (0,1,0), then ¢ = 2e, v(R) = {0,e,y,2e —} with
2y < 3e, e > 3.

(i) If (I,p,h) = (0,2,1), then v(R) = {0,e,2e,c —} U {y}, with
c—90=4,

c=(p+1le—h=3—-12y<cte=4de—-1=y<2e—-1,
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c—e€v(R)=y=2e—1. Hence, v(R) = {0,¢e,2¢ — 1,2¢,3¢ — 1 —},
e> 3.

(i) If h=0,e=4,l=1,thene—3=b=(I+1)(e—1)+h—p—-1=
p=4=2l42= h >0, which is absurd. Hence, h = f is proved.

f = g. Denoting Ry = &[[t?, d € v(R)]] the monomial ring such that
v(Rp) = v(R) = {0,e,2e — 1,2¢,3¢ — 1 —}, we have r(Ry) = e — 2.
Since r(R) < 7(Ro) and r(R) > e — 2 by (1.4.1), we conclude that
r(R) = e — 2. The other invariants are easily derived from v(R):
c—0=4,=3e—5,b=(c—06)r—9 = e—3. By substituting in (2.1.1),
we obtain ), 4 (r — ) = 0; hence ro =e —2 and r3 + 74 =€ — 1, as
desired. The same reasoning holds for v(R) = {0, e,y, 2e —}.

To see g = e, it suffices to recall that b= Y, _, (r—rp), see (1.2.1). O

Theorem 3.4. Caser—1 < b < 2(r—1). We haver—1 < b < 2(r—1)
if and only if v(R) is one of the following:

(1) v(R) = {0,e,...,pe,c =} U{y}, with y ¢ eZ, and either
2y >c+e,pe+5 < c<min{fy+e(p+1)e}, e > 5, ore = 2¢,
y=3€e,p=2,4¢' +5<c<5e,e>10,y € v(zR: m).

(2) v(R) = {0,e,2e,c =} U {y}, withy ¢ eZ, 2y < c+ e and:
if 2y # 3e, then 2e +3 < c < 3e—2, e > 5;
if 2y = 3e, then e = 2¢’, 4’ +3 < ¢ <5e’, e > 6, y ¢ v(zR : m).

(3) v(R) = {0,e,y,¢c —}, withy ¢ eZ, e > 5, 2y < c+ e,
e+4<c<2-—1.

In each case k = 2; in case (1), r =e—1 and b > r + 1; in cases (2)
and (3), r =e—2.

Proof. Assume r —1 < b < 2(r —1).
Step 1. Claim: k=2 ande—2<r<e—1,r > 2.

We have r > 2, since r = 2 = 1 < b < 2, which is absurd. Further
(2.1.1) gives (k — 1)(r — 1) < b, and so k < 2. But k£ = 1 would imply
b<r—1by (1.5), then k = 2. We conclude using (1.4.1).
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Now utilizing the notation in (1.6) we write:

v(R) = {0,¢e,2e,...,pe,c, >} U{y,y +e,...,y+le},
(%) p>1,y>e y¢e,
y+le<e=(p+le—h<y+({+1e I+1<p.

Step 2. Claim: [ = 0 and e > 5. Further, if r = e — 2, then p < 2.

(i) If r = e — 1, then, by (2.3.1) we know that b = (I + 1)e + h,
I,h >0. Hence b < 2(r—1)=2e—4= (I—-l)e+h<—-4=1=0,
h < e — 4; further, we get : ¢ = (p+1)e—h > pe+5, e > 5 and
b=h+e>e=r+1.

(ii) Ifr=e—2, wehave (I+1)(e—3)<band [+ 1<p<2+2
by (2.3.2). Then b < 2(r —1) = 2(e — 3) =1 = 0 and p < 2; also, the
assumption e — 3 < b < 2e — 6 implies e > 5.

Step 3. When r = e — 1, recalling the relations proved in Step 2, we
obtain v(R) = {0,e,...,pe,c =} U{y}, with e > 5, pe+5 < ¢, as
in item (1). Recall that by definition of p and ! we have ¢ < (p + 1)e
and ¢ < y + e. Moreover, by (1.12.1) one of the following conditions is
satisfied:

either (a) 2y > c+eor (b) 2y = (2¢+ 1)e < ¢+ e, p > 2 and
y € v(zR : m). Further, as noted in (1.11.4), p > 3,1 =0 = 2y > c+e¢;
hence, in case (b) we have p = 2 and consequently (2¢+ 1)e < c+e <
4e = ¢ = 1. This proves (1).

Step 4. When r = e — 2, we have by Step 2 that [ =0 and p < 2.

In the case p = 2 we get item 2. In fact from (2.3.2) we obtain
¢ = 4e — 4 — b and the bounds for ¢ follow at once. The last assertion
in item 2 comes from (1.12). Analogously, in the case p = 1 we get
item 3. Notice that when p = 1 we cannot have 2y = 3e < ¢ + e,
because ¢+ e < 3e — 1.

To complete the proof, let v(R) be as in items (1), (2), (3); we claim
that r—1 < b < 2(r —1). In every case k = 2; in case (1) r = e—1 and
in cases (2), (3) = e — 2 by (1.12). The rest is a direct computation
based on relation (2.2.2): ¢= (p+2)(r + 1) —b. u]

Example 3.5. We supply an example for each case of the above
proposition.
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e Case (1) with 2y > ¢+ e. Let R = &[[t5,#19,¢12,#1° —]]. Then:
y:12ap:2ac:157r:4,b:5.

e Case (1) with 2y = 3e. Let R = &[[t1%,¢!5,¢20,¢25 —]]. Then:
y=15,p=2,¢=25r=9,b=15.

e Case (2). Let R = x[[t10,#15 4 16 ¢20 425/ ]]. As above, y = 15,
p =2, c =25, but r = 8 by 1.9 since (¢'5 + ¢16)? ¢ zm. Then b = 11.

e Case (3). Let R = &[[t°,t5,t°,—]]. Herey =6, p=1,c=9,7 =3,
b=3.

Theorem 3.6. Case b = 2(r — 1). b=2(r — 1) > 0 if and only if
v(R) is one of the following:

1. (a) v(R) = {0,e,e +2,e+4 =}, e >4
(b) v(R) = {0,¢,2¢,2¢ +4 =} U{y}, e >4,y € v(zR : m).
p=>3.
2. (a) v(R) ={0,e,e+1,e+3 =}, e >4.

(b) v(R) = {0,¢,y,2¢,2¢ + 2 =}, e > 5,2¢e+4 < 2y < 3e+ 2,

(c) v(R) ={0,e,2¢,3e — 1,3e,4e — 1,4e,5e — 1 =}, e > 4.

(d) v(R) = {0,¢,2e,y,3e,y + e,4e =}, e > 4, 2y < be.

3. (a‘) v R) {anaylay%?e _>}7 e>5,y1 +y2 < 3e.

(b) v(R) = {0,€,2e — 2,2e — 1,2¢,3¢ — 2 —}, e > 5.

Further: in case 1, r = e —1 and {g(R/(€ + zR)) = 2; in case
2, 7 =e—2 and lg(R/(C + zR)) = 2; in case 3, r = e — 3 and
(r(R/(€ +zR)) = 3.

Proof. Let, as above, k = {g(R/(€ + xR)). First we assume b =
2(r—1) > 0 and we observe that by (2.1.1) (k—1)(r—1) <b=2(r-1),
then k£ < 3. Since k = 1 implies b < r — 1 by (1.5), one of the following
cases occurs:

or k=2 and r=e-1
or k=2 and r=e—2
or k=3 and r=e—3.
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In case k = 2 by Setting 1.6 we have:
v(R) ={0,e,2e,...,pe,c,—>}U{y,y+e,...,y+le},
(%) p>1y>e y¢eL,
y+tle<c=p+le—h<y+({l+1e I+1<p.

Step 1. Assuming » = e — 1 and k = 2, we prove that v(R) has the
form described in item 1. By (2.3.1) and the assumption we have the
equalities b= (I + 1)e+ h = 2e — 4; hence (I —1)e+ h=—-4=1=0,
h=e—-4,e>4,c=((p+1lle—h=pe+4 Now, I =0=y >
c—e=(p—1)e+4, and so v(R) = {0,e,...,pe,pe+4 =} U {y}, with
(p—De+4<y<pe+2 e>4 Forp=1weget (1l.a). In fact, by
(1.121) 2y > c+e=2e+4=>y>e+2=>y=e+2. Forp=2we
get (1.b). For p > 3 we get (1.c).

Step 2. Assuming r = e — 2 and k = 2, we prove that v(R) satisfies
item 2. First, by (2.3.2) we have that [ + 1 < p < 2]+ 2 and also that

(%) (+1)(e—3)<(+1)(e—1)+h—p—1=b.
Then b = 2(e — 3) > 0 implies (I +1)(e —3) < 2(e — 3), i.e., I < 1.
Case [ = 0, and consequently 1 < p < 2.
(1) If1 =0, p=1, then by (**), h = e — 3; thus, ¢ = e+ 3, and (2.a)
holds.
() Ifl=0,p=2, then h =e — 2 and ¢ = 2¢ + 2; hence, (2.b) holds.
Case | = 1. Now, relation (**) combined with the assumption
b= 2¢—6implies h—p—1=—4, 2 < p < 4 and two possibilities
occur:
() p =4, h =1, ¢c = 5e — 1. The relation ¢ < y + (I + 1)e gives
y > 3e — 1, the relation 2y < ¢+ e gives y < 3e — 1. Hence (2.c) holds.
(-) p=3, h =0, ¢ = 4e; hence, (2.d) holds.
Step 3. Assuming r = e — 3 and k = 3, we prove that v(R) has the
form described in item 3. First, by Setting 1.6 and by (2.4.1) we have:
U(R) = {0)67"' ape,Cﬁ}U{ylayl +e...,n +l1€}
U{yZay2 +€a"' y Y2 +l26}
(%) p>1, y2>y1 >e yi & €L,
yitlie<c=(p+le—h<y + i+ e, l; +1<p,
b= (ll+lz+2)(e—2)+h—2(p+1).
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By (1.11.3), since r = e — k, then p < Iy + 13 + 2.

(1) If p < Iy + 13 + 2, then substituting b = 2(e — 4) > 0 in (¥) we get
(i +1)(e—4)+h<0,h>0. Hence, h=1; =l =0,p=1, ¢ = 2e,
y1 +y2 < ¢+ e by (1.11.3), and so we have (3.a).

(1) If p = I3 +12+2, then analogously we get (I; +12)(e—4)+h—2 =0,
with 0 < h < 2. The case h = 1 is impossible. In fact, h =1 =1, +1s =
1 (in particular, by (1.8.2), I < l;; hence, I =0,1; = 1),e=5,p =3,
c=(p+1)e—h =19. The relation of (1.6) ¢ < y; + (I; + 1)e gives
y1 > 19—-10 =9, y2 > 19—-5 =14, but y1 +y2 < c+e = 24 by
(1.11.3); the only possibility would be y; = 9, yo = 14. Absurd that
Y1 = Y2 (mod 5). Hence, h=2,1; =1l =0,p=2,c=3e —2 and

v(R) ={0,e,2¢,3e — 2, >} U{y1,y2}-

Since I; = 0, the bound ¢ < y; + e gives y; > 2e — 2. Recalling that
by (1.11.3) y1 + y2 < ¢+ e, we conclude y; = 2e — 2, y2 = 2e — 1, as in
(3.b).

Vice versa, we assume in the following v(R) having the form described
in items 1,2,3, and we prove that b =2(r — 1) > 0.

For a v(R) as in item 1 we see that r = e — 1 using (1.12). In fact, in
case (l.a) we have y = e+ 2, 2y = ¢+ e and in case (1.c):

2y >2(p—1)e+8>c+e=(p+1)e+4.

In conclusion in each case of item 1 we have {r(R/(¢ + zR)) = 2,
r=e—1,1=0. Using (2.3.1) b=e+h = 2e—4 = 2(r — 1), as desired.

In case (2.a), y = e+ 1 ¢ v(zR : m), then r = e — 2 by (1.9). In
case (2.b) by hypothesis 2y < ¢ + e and 2y # 3e, then r = e — 2 by
(1.12). In case (2.c) we get by a direct calculation v(zRg : m)\v(Rp) =
{4e+1,... ,5e —2}; then r = r(Ry) =e — 2. In case (2.d) 2y < c+e
and 2y ¢ eZ; then r = e — 2 by (1.12). In conclusion, in each case
of item 2 one has: {g(R/(€ 4+ xR)) = 2, r = e — 2, and so by (2.3.2)
b=(+1)e—1)+h —p—1. Putting in this formula

()l=0,p=1,h=e— 3, in case (2.a),

()1=0,p=2, h=e—2,in case (2.b),

()l=1,p=4, h=1, in case (2.c),
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()1l=1,p=3, h=0, in case (2.d),
we get b=2e — 6 = 2(r — 1), as desired.

In both cases of item 3 we have r = e—3. In fact, y1+y2 —e ¢ v(R) =
y1, Y2 ¢ v(zR:m) = e—r = 3 by (1.11.1). Hence {g(R/(C+zR)) = 3,
r=e—3,l; =1y =0, and by (2.4.3) b = 2(e—2)+h—2(p+1). Putting

in this formula
() h=0, p=11in case (3.a),
() h=p=21in case (3.b),
we get b =2e — 8 =2(r — 1), as desired. O

With similar arguments one can evaluate the semigroups v(R) of
rings having b > 2(r — 1). For instance, if 2(r — 1) < b < 3(r — 1)
there are few possible cases and the classification is tedious but easy.
Now, for each ¢ > 3 we construct a family of rings of multiplicity
e and Cohen Macaulay type r = e — 1 having b = ¢(r — 1) or
(g—1(r—1)<b<g(r—1).

Example 3.7. Let ¢ > 3. Following notations of Setting 1.6 we
consider v(R) = {0, ¢, 2e,... ,pe,c = }U{y,y+e, ... ,y+le}, withe > p,
p = 2q,l = ¢—2. In this case k = 2. Using (1.12) we see that r = e—1,
because y+ (¢—1)e > ¢ > 2ge = y > (¢+1)e = 2y > 2(q+1)e > c+e.
Then by (2.3.1) b = (¢ — 1)e + h, with 0 < h < e — 2. Now, with an
additional hypothesis on the conductor, we are in goal. In fact:

1) Assuming ¢ = pe+p, we have h = (p+1)e—c= —p+e = —2q+e;
then b= (¢ —1)e+ (—2¢+e) =g(e —2) = g(r — 1).

2) Assuming ¢ > pe + p, i.e., e — h > 2q, we have (¢ — 1)(e — 2) <
(g—De<b=(¢g—1l)e+h=gqg(le—2)+2¢—e+h < g(e —2); hence
(g—1D(r—-1)<b<gq(r—1).

As a further application of the previous results we describe exhaus-
tively the cases b =1 and b = 2 (see next (3.8), (3.9); for b = 1 see also
[2, Section 4]). With regard to the formula

n

b= Z(r—ri)

i=1
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it becomes natural to consider the invariant b as a measure of how far

is the type sequence [rq,...,7,] from the maximal one [r,...,r]. For
instance, for b = 1 one expects a type sequence of the form [r,... ,r —
1,...,rl,forb=2[r,...,r—=1,...,r=1,...,r]or[r,... ,7—=2,...,7],

and so on. Surprisingly, after finding by a direct computation all the
possible value sets and the corresponding type sequences, we discover
that very few choices are possible. For b = 1 (respectively b = 2) either
e < 4 (respectively e <5) or t.s.(R) =[e—1,...,e—1,e—1—1b].

Corollary 3.8. Case b = 1. Here t.s. stands for t.s.(R). b =1 if
and only if v(R) is one of the following:

v(R) = {0,4,7,8,11 =}, with t.s.[2,2,1,2];

v(R) ={0,4,5,8,—}, witht.s.[2,1,2];

v(R) ={0,e,...,pe,(p+1e—1,—}, e >3,
witht.sfe—1,...,e—1,e—2].

Proof. First recall that b > 0 = r > 1 by (1.2.1). Let, as in (2.2.1),
b=X+4+Y+Z, where X == (k—-1)(r—1)>0,Y:=k—(e—r) >0,
and Z := (r+1)(p + Z’fflli) +k+h—pe—12>0. Assuming b =1,
we have to consider the choices:

XY Z
@) 1 0 0
B 0 1 0
¢c) 0 0 1

Ina) k=r=2,2-(e—2)=0=e=4. By (3.3.2) with e = 4 we
find:
v(R) ={0,4,7,8,11 —},

u(R) = {0,4,5,8, ).

Inb) k=1,1—(e—r) = 1, whichisabsurd. Inc) k=1,1—(e-r) =0 =
r=e—1,e>3, Z=ep+1l+h-pe—1=1=h=1=c=(p+1l)e—1.
By (1.5) we find:

U(R):{0767"'7pea(p+1)€_1,—>}, 623 ]
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Corollary 3.9. Case b = 2. As above, t.s. stands for t.s.(R). b =2
if and only if v(R) is one of the following:

v(R) = {0,4,5,7, =}, with t.5.[2,1,1];

v(R) = {0,4,8,11,12,15,16,19, =}, with t.5.2,2,2,1,2,1,2];
v(R) = {0,4,8,9,12,13,16, -}, with t.5.2,2,1,2,1,2];
o(R) = {0,5,9,10, 14, —}, with t.5.[3,3,1,3];

o(R) = {0,5,6,10, =}, with t.s.[3,1,3];

v(R) ={0,5,7,10,—}, with t.s.[3,2,2];

o(R) = {0,5,6,7,10, =}, with t.5.[2,1,1,2];

v(R) = {0,5,6,8,10, =}, with t.5.12,2,1,1];

v(R) = {0,5,8,9,10,13, =}, with t.5.[2,2,1,1,2];

v(R) ={0,e,...,pe,(p+1e—2,—}, e>4,

witht.sle—1,...,e—1,e—3].

Proof. As in the preceding proof, assuming b = 2, we have to consider
the following choices:

X Y 7
a) 0 1 1
B 1 0 1
¢c) 1 1 0
d 2 0 0
e) 0 2 0
£ 0 0 2

First recall that k =1=r =¢e—1 by (1.5), and so X = 0 (with r > 0)

=k —(e—r)=Y =0 and cases a) and ¢) are impossible.
Ind) X =1=k=r=22-(e-2) =Y =0 = e = 4; hence,
b=2(r — 1) and we can apply (3.6.2) with e = 4. We find:
v(R) ={0,4,5,7,—1},
o(R) = {0,4,8,11,12,15,16, 19, =1,
v(R) = {0,4,8,9,12,13,16, —}.

In c) X
+

=3(p

1:>k:r:2,2—(e—2)=Y=1=>€=3,
_l’_

1)+ h—3p—1=0= 3l+h+1=0, which is absurd.
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In d) the condition X = (k — 1)(r — 1) = 2 implies two possibilities:

di)k=2,r=3,2-(e—3)=0=e=5 Weareincaseb=r—1,
. By (3.3.2) with e = 5 we find:

\3
Il

o
|

N

o(R) = {0,5,9,10,14, -1},
v(R) = {0,5,6,10, -},
v(R) = {0,5,7,10, =}

dy) k=3,r=2,e=5 Weareincase b=2(r—1),r =e—3, and
(3.6.3) with e = 5 we find:

U(R) = {Oa 5,6, 7,10, _>}7
v(R) ={0,5,6,8,10,—},
v(R) = {0,5,8,9,10,13, ).

Infk=1,r=e—-1,Z=ep+14+h—-pe—1=2=>h=2=c=
(p+1)e — 2. By (1.5) we find:

U(R):{0767"'7pea(p+1)€_2,—>}, e > 4. ]
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