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A LOWER BOUND OF
STANLEY DEPTH OF MONOMIAL IDEALS

RYOTA OKAZAKI

ABSTRACT. Let S := k[z1,... ,zn] be a polynomial ring
over a field k. In this paper, it is shown that Stanley depth of
the monomial ideal of S, generated by m elements, is greater
than or equal to max{1l,n — [m/2]}.

1. Introduction. Let S := k[zy,...,z,] be a polynomial ring
over a field k with indeterminates xy,...,x,, and let M be a finitely
generated Z"-graded S-module. We set X := {z; | i =1,...,n}. For
a homogeneous element u € M and a subset Z C X, uk[Z] denotes
the k-subspace of M generated by all the homogeneous elements of the
form uv, where v is a monomial in k[Z]. The k-subspace uk[Z] is said
to be a Stanley space of dimension |Z| if it is a free k[Z]-module, where
|Z| denotes the cardinality of Z. A decomposition of M into its Stanley
spaces

i=1

as Z"-graded k-vector spaces is called a Stanley decomposition of M,
and the Stanley depth of D, denoted by sdepth D, is min{|Z;| | i =
1,...,r} by definition. The Stanley depth of M is defined to be the
maximal value of Stanley depth of Stanley decompositions of M

max{sdepthD | D is a Stanley decomposition of M}

and denoted by sdepth M.

In his paper [7], Stanley posed a conjecture, and his conjecture reads
as follows;
sdepth M > depth M

holds when M = I or I/J for some monomial ideals I,J of S with
J C I. Recently, Stanley depth of monomial ideals is studied by
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several authors (1-3, 6]); in [3], Herzog, Vladoiu and Zheng gave some
technique to compute Stanley depth and gave a lower bound of Stanley
depth of monomial ideals (Proposition 2.1 in the next section). Apel [1]
detected that a Borel type monomial ideal satisfies Stanley’s conjecture
(see [3] for the definition of a Borel type ideal) and all the generic
monomial ideals in the sense of [5] also satisfy the conjecture; hence,
complete intersection monomial ideals do in particular. For complete
intersection monomial ideals, by Shen [6], their Stanley depths are
completely determined (Theorem 2.2 in the next section).

For a monomial ideal I, let G(I) denote the set of minimal monomial
generators of I. The main result in this paper is the following: for a
monomial ideal I, we have

(1.1) sdepthI > n — {GTI)J :

Recall that a monomial v € S is said to be squarefree if the exponent
of each z; in v is less than or equal to 1, and a monomial ideal I is
said to be squarefree if it is generated by squarefree monomials. If I
is squarefree, the inequality (1.1) is the question posed by Shen in [6],
which is a motivation of the study. The author’s result also improves
Herzog-Vladoiu-Zheng’s lower bound stated above. Furthermore, in
the case |G(I)| < 4 and I is squarefree, where the inequality (1.1) is
verified by Shen in [6], the author’s proof is less constructive but more
concise than his.

After the author finished the paper, he was told that Keller and Young
had already solved Shen’s problem [4]. However they showed the same
inequality under the assumption that I is squarefree, and their proof
is more combinatorial. So the author will give the main result and its
proof in this paper.

2. Main results. For a monomial ideal, the following lower bound
was given by Herzog, Vladoiu and Zhen:

Proposition 2.1 ([3, Proposition 3.4]). Let I be a monomial ideal
of S with |G(I)| = m. Then

sdepth I > max{1l,n —m + 1}.
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As is stated in the Introduction, the Stanley depth of complete
intersection ideals is completely computed by Shen.

Theorem 2.2 ([6, Theorem 2.4]). Let I be a complete intersection
monomial ideal with |G(I)| = m. Then

sdepth I =n — {%J .

The main theorem of this paper is:

Theorem 2.3. For a monomial ideal I of S with |G(I)| = m, we
have

sdepth I > max{l,n— [%J }

Let mod 7S denote the category whose objects are finitely gener-
ated Z"-graded S-modules and morphisms are degree-preserving S-
homomorphisms, that is, S-homomorphisms f : M — N such that
f(M,) C N, for a € Z™. Clearly, the following holds.

Lemma 2.4. Given an ezact sequence
0—L—M-—N—70
i modz»S, we have

sdepth M > min{sdepth L, sdepth N'}.

Let R := k[z1,...,2,_1]. Note that by the natural surjective map
S —- R, a Z" '-graded R-module has a structure of Z"-graded S-
modules. To prove Theorem 2.3, we shall verify that the following
key lemma holds.

Lemma 2.5. Let vy,...,v, be monomials in S. Assume x, divides
vi fori =1,... 7 but not fori =r+1,... ,m, wherel <r <m-—1. Let
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a, b be monomial ideals of S generated by v1,... ,v, and vpy1,... ,Um,
respectively, and set [ :==a+b, I' ;= a+ z,b. Then

I)I'~bNR

as Z"-graded S-modules, where the structure of Z™-graded S-modules
of bN R is given as above.

Proof. The inclusion b C I and z,,b C I’ induces the S-homomorphism
o:b/z,b —I/I'.

By the construction, its kernel is (I’ N b)/x,b, and its cokernel is
I/(I' +b). It is, however, clear that I' N"b C z,b and I = I' + b,
which indicates that ¢ is an isomorphism. Moreover, the composition
of the inclusion b N R — b and the natural map b — b/x,b gives an
isomorphism as Z"-graded S-modules, which completes the proof. O

For a monomial v € S, let deg (v) denotes the multi-degree of v, and
for a:= (ai,...,a,) € Z™, set |a| := Y ., a; by abuse of notation.

Proof of Theorem 2.3. By Proposition 2.1, it suffices to show
that sdepthl > n — [m/2]. Set G(I) = {v1,...,vn} and e(I) :=
Yot |deg (v;)|(> m). We use induction on &(I). In the case n = 0,1,
there is nothing to do. Assume n > 2. The case m < 2 is a direct
consequence of Proposition 2.1, and it suffices to consider only the case
m>3. Fori=1,...,n, we set

ti(I) == |{v; € G(I) | ; divides v;}|

(t;(I) is called the type of x; in [6]).

If t;(I) < 1 for all ¢, then I is a complete intersection, and hence
sdepth I = n— |m/2| by Theorem 2.2. In particular, if £(I) = m, then
the assertion holds. Thus we may assume that ¢;(I) > 2 for some ¢,
and hence, without loss of generality, that ¢, (I) > 2.

If t,,(I) = m, then each v; can be divided by x,,. Set v} := v;/z,, and
let I’ be a monomial ideal of S (minimally) generated by v},...,v,.
Since I and I’ are isomorphic to each other up to degree shifting in
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modz- S, it follows that sdepth I = sdepth I’, and moreover we have
e(I') < e(I). Therefore, by our inductive hypothesis we have

sdepth I = sdepth I’ > n — [%J .

The remaining case is that 2 < ¢,(I) < m — 1. We set r := t,(I).
Without loss of generality, we may assume that z, divides v; for
it =1,...,r but not for i = r +1,... ,m. Let a,b be a monomial
ideal generated by vy, ... ,v, and v,41,--. , Uy, respectively, and hence
I =a+bhold. Set I' := a+ z,b, and consider the exact sequence

0—I' —I—I/T'—0.
It follows from Lemma 2.4 that
sdepth I > min{sdepth I', sdepth (I/I')}.
We set G(I') := {u1,...,ugu)} (note that |G(I')] < m). Each
minimal generator of I’ can be divided by z,; let I" be the monomial
ideal generated by wj/xn,... ,u|G(1,)|/xn. By the same argument
as in the case t,(I) = m, we have sdepthI” = sdepthI’. Since
e(I") < e(I) —r < e(I) — 2 (recall that r = t,(I) > 2), applying
our inductive hypothesis yields

!
sdepth I’ = sdepth I" > n — {@J >n— {%J ,

As for I/I', we can apply Lemma 2.5, and it follows that
sdepth (I/I') = sdepth ((vy41,--- ,vm) NK[T1,... ,Tp_1])-
Note that (vr41,...,9m) NK[Z1,... ,2,_1] is minimally generated by

Vril,--- ,Um as an ideal of k[z1,... , 2, 1]. Since Y " . |deg (v;)] <
e(I), applying our inductive hypothesis, we have

sdepth ((vp41,.-. ,vm) NKk[z1,... ,Zpn_1]) >N —1— m2rJ

m—2

>p-1-|2—%

>n-1- |22
m

(1)

fn_[@

= 5]

since r > 2.
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Summing up, we conclude that sdepthl > n — |m/2| holds even if
2 <t,(I) < m — 1, which completes the proof. O
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