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ARITHMETICAL RANK OF COHEN-MACAULAY
SQUAREFREE MONOMIAL IDEALS OF HEIGHT TWO

KYOUKO KIMURA

ABSTRACT. In this paper, we prove that a squarefree
monomial ideal of height 2 whose quotient ring is Cohen-
Macaulay is a set-theoretic complete intersection.

1. Introduction. Let R be a polynomial ring over a field K. Let
I be a squarefree monomial ideal of R and G(I) the minimal set of
monomial generators of I. The arithmetical rank of I is defined as the
minimum number r of elements ay,... ,a, € R such that

(1.1) Via,... ar) =VI.

We denote it by aral. When (1.1) holds, we say that aj,...,a,
generate I up to radical. By Krull’s principal ideal theorem, we have
height I < araI. When equality holds, we say that I is a set-theoretic
complete intersection. Moreover, Lyubeznik [14] proved that for a
squarefree monomial ideal I, the projective dimension of R/I over
R, denoted by pdgrR/I (or pd R/I if there is no confusion), provides
a better lower bound for the arithmetical rank of I. Many authors
among which Barile [1-4], Barile and Terai [5, 6], Ene, Olteanu and
Terai [10], Kummini [13], Schmitt and Vogel [16], Terai and Yoshida
with the author [11, 12], investigated when aral = pdgrR/I holds.

In this paper, we prove the following theorem:
Theorem 1.1 (see Theorem 4.1). Let I be a squarefree monomial
ideal of R of height 2. Suppose that R/I is Cohen-Macaulay. Then
aral = pdgrR/I = 2.

In particular, I is a set-theoretic complete intersection.
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In other words, the ideals as in Theorem 1.1 are generated by 2
elements up to radical. Note that the equality aral = pdgR/I does
not always hold for Cohen-Macaulay squarefree monomial ideals I of
height 3 (when char K # 2) as proved by Yan [18], Terai and Yoshida
with the author [12].

We explain the organization of this paper. First in Section 2, we
state the problem that motivated this paper (Problem 2.1), which
corresponds to the Alexander dual of the results in Barile and Terai [5].
Partial answers to this problem are given in Section 3 (Propositions 3.1
and 3.2). In particular, Proposition 3.2 plays the key role in the proof
of Theorem 1.1, which is given in Section 4.

The main result of Barile and Terai [5, Theorem 1], which is the
paper that inspired the present work, required the assumption that K
is algebraically closed. At the end of this paper, in Section 5, we give
an improved proof of that result. Consequently, we can remove the
assumption on K.

2. Preliminaries and the motivated problem. In this section,
we state the problem which has motivated the present paper. First,
we recall some definitions and properties of simplicial complexes and
Stanley-Reisner ideals, in particular, Alexander duality. For more
details, we refer to [7, Section 5], [17].

Let I be a squarefree monomial ideal of a polynomial ring R over
a field K. The graded Betti number of R/I is defined by B; ;(R/I) =
dimg[Torf(R/1,K)];. The initial degree and the (Castelnuovo-Mumford)
reqularity of I are defined by

indeg I = min{j : 31 ;(R/I) # 0},
reg] = max{j —i+1:0;;(R/I) # 0},

respectively. In general, the inequality regl > indeg/ holds. When
reg I = indeg I = k, we say that I has a k-linear resolution.

Let X = {z1,22,... ,2,} be a set of indeterminates over a field K.
A simplicial complex A on the vertex set X is a collection of subsets
of X with the properties (i) {z;} € A for all z; € X; (ii) F € A and
G C F imply G € A. If A consists of all subsets of X, then A is called
a simplexr. An element of A is called a face of A. A maximal face of
A with respect to inclusion is called a facet of A. The dimension of
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A is defined by dim A = max{|F| —1: F € A}, where |F| denotes
the cardinality of F. The Alexander dual complex A* is defined by
A*={F C X : X\F ¢ A}, which is also a simplicial complex. If
dim A < n — 2, then the vertex set of A* coincides with X. When this
is the case, A*™* = A.

With a simplicial complex A on the vertex set X = {z1,z2,... ,z,},
we associate a squarefree monomial ideal Ix of K[X]| = K|z, s, . . ., Ty
as follows:

In= (@m0 1<iy <+ <ig <n, {wy,...,z,} ¢ A),

which is called the Stanley-Reisner ideal of A. The quotient ring
K[A] = K[X]/Ia is called the Stanley-Reisner ring of A. The minimal
prime decomposition of Ia is given by

(2.1) Ia= (] Pr

FeA:facet

where Pp = (z;: 2z, € X \ F).

On the other hand, it is well known that for a squarefree monomial
ideal I of R = K[X] with indeg I > 2, there exists a simplicial complex
A on X such that I = In. Assume that height I > 2. Then since
dim A < n—2, we can consider the ideal I* = Ia~ of R, which is called
the Alexander dual ideal of I = In. Since A** = A, we have I** = .
The minimal set of monomial generators of I* = Ia~ is given by

(2.2) G(I") = G(Ia-) = {mx\p : F € A is a facet of A},

where mx\p = Hz,-eX\F x;. Then, as it can be easily seen, (2.1) and
(2.2) imply that indeg I* = height I. Moreover, Eagon and Reiner [9,
Theorem 3] proved that I has a linear resolution if and only if R/I* is
Cohen-Macaulay.

Now we state the problem that has motivated the present paper.

Let A be a simplicial complex on the vertex set X = {z1,22,... ,2,}.
Let g be a new indeterminate and F' a face of A. A cone from xg
over F', denoted by co,, F, is the simplex on the vertex set F U {z¢}.
Then A’ := A U co,, F is a simplicial complex on the vertex set X' :=
X U{zo}. Barile and Terai [5] investigated some relations between the
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arithmetical ranks of In and Ias ([5, Theorem 1]). Moreover, they
proved that if araIn = pd K[A] holds, then araIxn. = pd K[A'] also
holds ([5, Theorem 2]). As a corollary, they proved that if a squarefree
monomial ideal I C R has a 2-linear resolution, then aral = pdgR/I
holds. (This result was first proved by Morales [15] in a different way.)

We consider the following problem which corresponds to the Alexan-
der dual of their results:

Problem 2.1. Let A be a simplicial complex on the verter set
X ={z1,z9,... ,2n} withdim A < n—2. Let F be an arbitrary face of
A* and zy a new verter. Set X' = X U{xzo}, [ = A*, IV =T Ucoy, F,
and A" = (T")*.

Are there any relations between the arithmetical ranks of In and Ipn:?
In particular, if araIn = pd K[A] holds, then does araIn: = pd K[A]
hold?

Set R = K[X], R = K[X'], I = I, I' = I, and G(I) =
{m1,...,mu}. Then

IF:I*:PGIQ'-'QPGHCR,

where G1,... ,G,, are all facets of I' = A* and m; =[] x;. We

may assume F' C (G; without loss of generality. Then

z;€Pg;

It = Ppygaoy N (Pe, R+ (z0)) N -+ - N (Pa, R + (x0)) C R

Hence
I' = (mo,zomi1, ... ,zomu)R' = moR' + oI R',

where mqy = HwiEPFu{zo} z;. Note that mg is divisible by m; since
X\Gy CX\F.

We first compare the projective dimension of K [A'] with that of K[A].

Lemma 2.2. Let A and A’ be simplicial complezes as in Problem 2.1.
Then

pd K[A'] = pd K[A].
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Proof. Let us consider the short exact sequence of R’-modules
(2.3)
0 — R'/moR NzoIR — R'/moR' & R'/xoIR' — R'/T' — 0.

Note that moR' Nzl R' = zgmoR'. Since pdr/R'/zoIR' = pdgrR/I >
height I > 2, pdg/R'/xomoR' = pdr R'/mgR = 1, the long exact
sequence obtained by applying Tor* (—, K) to (2.3) yields

pd K[A'] = pdr/R'/I' = pdgrR/I = pd K[A],

as desired. O

3. Partial answers to Problem 2.1. In this section, we give
partial answers to Problem 2.1. Throughout this section, we use the
same notation as in Problem 2.1.

First, we show a relation between the arithmetical ranks of In and
INE

Proposition 3.1. Let A and A’ be simplicial complexes as in
Problem 2.1. Then
aralar < arala + 1.

In particular, if araIn = pd K[A] holds, then araIa: coincides with
either pd K[A'] or pd K[A'] + 1.

Proof. Put h = aral and let ¢y, ... ,qp be elements of R which gen-
erate I up to radical. Then zoq1,... ,Zogn generate (zgma,...,xom,)
up to radical. This implies that mg, zoq1, ... , Togn generate I’ up to

radical. Therefore we have aral’ < h + 1.

Then the second part of the claim immediately follows from Lemma 2.2
and the inequality ara I > pd K[A']. u]

Next, we give a partial answer to the second question of Problem 2.1.

Proposition 3.2. Let A and A’ be simplicial compleres as in
Problem 2.1. Suppose that araIn = pd K[A] = 2. Then

arala = pd K[A'] = 2.
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In the study of the arithmetical rank, the technique based on linear
algebraic consideration has been developed by Barile [2], Barile and
Terai [5] (see also [6]). Our proof of this proposition also goes along
this current.

Proof. By Lemma 2.2, we have pd K[A’] = pd K[A] = 2. Therefore
it suffices to prove that ara Ia: < 2.

Let g1,q2 be elements of R which generate I up to radical. Note
that ¢1,92 € I because [ is a squarefree monomial ideal. Since m; €

v/ (q1,42), there exists some integer ¢; > 1 such that mf" € (q1,¢2)-
Then we can write

£; .
m;* = a;191 + @292, t=1,...,pu,

where a;1,a;2 € R. Set A = (aij)i=1,... p;j=1,2- Then
: = <q1>
m.e" q2

J = (Toq1 — a12mo, Tog2 + anmo)R’.

Set

We prove that v/ J' = I'. Since z9q1 — ajamg, Togqe + ayymgy € I', we
have v/J' C I'. We prove the opposite inclusion.

Since
A Toq1 — @12Mo | _
Toq2 + a11Mo

we have mgmfi + fimg € J for i = 1,...,u. Note that f; =
ai1aiz — aizai; = 0. Thus xomfl € J', that is, zgmq € v/ J'. Since ms
divides mg, multiplying xomfi + fimg € J' by xq implies x%mf" eVJ,
that is, zgm; € N

Here, recall that g;,¢2 € I = (my,... ,m,). Thus z¢q1,z0q2 € VJ'.
Consequently, we have a11mg, ajamo € v/J'. Since m{l = a11q1+0a1292,
we have

¢
zomy' + fimo
: , where f; = aj1a;2—ai2a:1,

-
zomy' + fumo

momfl =mo(a11q1 + a12¢2) = (a11m0)q1 + (a12mo)g2 € VJ'.
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This implies mg € v/J' since my is divisible by m;. Therefore v/J' O I’
holds, as required. ]

Example 3.3. Let A be the simplicial complex on the vertex set
{z1,z2, 23,24} whose facets are {x1,z3}, {x2, 23}, {2, 2z4}. Then

I = IA = (1‘2,334) n (Il,l‘4) n (1‘1,1‘3) = (1‘11‘2,1‘11‘4,1‘3I4).
The Alexander dual complex T of A has facets {3, 24}, {r2, 23}, {£1, z2},
that is, I' is a line segment with 4 vertices. Take the face F = {z4} € T

and a new vertex x5 := xg. Then I = ' U co, {x4} is a line segment
with 5 vertices and

IF’ = (xla $2,LE3) N ($1,$2,$5) N ($1,$4,$5) N ($3, T4, $5)-
Thus I" = I (/- is generated by

T1T2X3, T1XL2L5, T1L4L5, T3TL4L5-

In this case, mg = z1x2x3 and m; = xyx2. By the result of Schmitt
and Vogel [16, page 249, Lemma], it is easy to see that the following
two elements ¢1, qa generate I up to radical:

q1 = T1%4, Q2 = T1T2 + T3T4.
Then
(3.1) mi = —TaT3q1 + T1T2G2

By Proposition 3.2, the following two elements ¢}, ¢}, generate I’ up to
radical:

/ 2.2
g1 = T5q1 — T1T2My = T1T4T5 — T1 T3,

/ 2,.2
gy = T5q2 — T2XT3My = T1T2T5 + T3T4T5 — T1ToT3.

4. Proof of the main theorem. In this section, we prove the
following theorem, which is the main result in this paper.
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Theorem 4.1. Let I be a squarefree monomial ideal of R = K[X]
of height 2. Suppose that R/I is Cohen-Macaulay. Then

aral = pdgrR/I = height I = 2.

In particular, I is a set-theoretic complete intersection.

The Alexander dual of the ideals satisfying the assumptions of this
theorem have a 2-linear resolution. To study these ideals, we recall the
definition of generalized tree.

We say that a simplicial complex is a generalized tree if it can
be obtained by the following recursive procedure: (i) a simplex is a
generalized tree; (ii) if A is a generalized tree, then A U co,, F is also
a generalized tree for any F' € A and for any new vertex zy. Then a
Stanley-Reisner ideal Ia which has a 2-linear resolution is characterized
by the following lemma.

Lemma 4.2 (See Barile and Terai [5, Lemma 2]). Let A be a
simplicial complex which is not a simplex. Then In has a 2-linear
resolution if and only if A is a generalized tree.

Now we prove Theorem 4.1. The proof is an application of Proposi-
tion 3.2.

Proof of Theorem 4.1. Since R/I is Cohen-Macaulay, we have
pdrR/I = height I = 2. First, we note that when p(I) < pdgR/I +1,
it is known that aral = pdgrR/I holds; see e.g., [11, Theorem 2.1].
Thus in our situation, aral = pdgR/I = 2 holds if u(I) < 3.

If indeg I = 1, then [ is of the form (z1,m2) by the assumptions on
I. In this case, ara I = 2 trivially holds.

Assume that indeg I > 2. We proceed by induction on the number
|X| of variables. The minimum number |X| in which there exists an
ideal I satisfying our assumption is 3 and such an ideal is of the form

I = (x1,22) N (@1, 23) N (22, 3) = (T122, T123, T2T3).

Then, since u(I) = 3, we have aral = pdgR/I = 2.
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Now assume |X| > 3. Since I* = Ir has a 2-linear resolution, T' is
a generalized tree by Lemma 4.2, and there exist a vertex z € X, a
generalized tree I on the vertex set X \ {z} and a face F € T such that
I' = T Uco,F by definition of generalized tree. Note that I is not a
simplex because height I = indeg I > 2. Then J := I+ has a 2-linear
resolution.

If height J = 1, then J is of the form (z1) N P,, and I* is of the form
I=1Ir= PFU{z} N (:cl,ac) N (PQR + (l’))
Therefore u(I) < 3.

Thus we may assume height J > 2. Then I := (J)* satisfies the
assumptions of Theorem 4.1. By the induction hypothesis, we have
aral = pdgrR/I = 2. Hence, we have aral = pdrR/I = 2 by
Proposition 3.2. m]

The next example, which is a generalization of Example 3.3, presents
a class of ideals which satisfy the assumptions of Theorem 4.1.

Example 4.3. Let us consider the squarefree monomial ideal I,, of
K[zy1,22,... ,2,] (n > 4) generated by the following n — 1 elements:

(R L T T T )

Tn—iTn—i+1

That is, I,, is the Alexander dual ideal of the Stanley-Reisner ideal It ,
where T',, is the simplicial complex whose facets are {z1, 22}, {22, 23},

oo y{®n_1,2,}. Theideals I,I' in Example 3.3 are I, I5, respectively.

m

Then the height of I, is equal to 2, and the quotient ring is Cohen-
Macaulay. Therefore by Theorem 4.1, we have ara I, = 2.

For n = 4,5, two elements q:(ln), qén) which generate I,, up to radical

are given in Example 3.3, i.e.,

49 = mi?, £ = aag® — o,
(4) ( (5) (4) (5)

) _
QG - =my; ' +mg’, Qs ' = X5qy " — XToxzmy .
In general, two elements qgn), qé") which generate I,, up to radical are
given by the following recursive formula:
+1 - -1 +1
{ﬂ">:wm@m;w i,

qén+1) (n) (nfl)mgnqu)

(4.1) o
= Tn+1q2 = — Tp_242

n > 5.

)
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We prove this by induction on n. Note that I, = I,y; with F =
{z,}(C Gy = {zpn_1,2,}) and 2y = x4 with respect to the notations
of the proof of Proposition 3.2. Hence by the proof of Proposition 3.2,
it suffices to check the following equality by induction on n under the
hypothesis that ¢; ), qén) generate I, up to radical:

(42)  (m{")" 2 = —an= 3¢ Vg™ £ an 3V > 5,

When n = 5, since
(4) ()+q(4) (5)

= 7q§4)(x q§ ) — T1To mg )) + q§4)(aj qé ) Igﬂ?gmgS))
= (z1220" — z2w3g{Y)mY
= (m{")?’m{® by (3.1),

4 5 5
and a(mi")mi” = (mi”)?,

we have the desired equality. Similarly,
for general n,

qén—l)q%n) + qgn—l)qén)

= —gt" V(@ng" Y — 2 el" P mi™)

n—1 n—1 n n

+at" "V (@ngd" ™ — anZiel" Y m™)
— (xn7§Q§n Z)qén 1) — " gqé —-2) (" 1)) (n)

= (mgn_l))”*?’mgn) by the induction hypothesis

and x,” 2(m§” 1)) 3m§") (mi"))"—2 yield the equation (4.2).

Another class of ideals which satisfies the assumptions of Theorem
4.1 was found in Barile [1, Section 3]. It is essentially the Alexander

dual of the class of Ferrers ideals (see [4, 8]). In [1], Barile constructed
2 elements which generate the ideals up to radical in a different way.

5. Improved proof of the result by Barile and Terai. Let A
be a simplicial complex on the vertex set X. Let F be a face of A and
xo a new vertex. Set A’ = A U coy,F. Throughout this section, we
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will use these notations. Note that these are different from those of
previous sections.

In the paper motivating the present one, Barile and Terai [5], the
main result [5, Theorem 1] depends on the base field K. Precisely, it
needs the assumption that K is algebraically closed. In this section,
we give an improved proof which does not depend on the base field K.

Theorem 5.1 (cf. [5, Theorem 1]). Let A be a simplicial complex
on the verter set X = {x1,%2,...,2,}, F a face of A and xy a new
vertex. Set A' = A Ucoyz,F. Then

araIa < max{arala + 1,n — |F|}.

As a consequence of our improvement, we can also omit the assump-
tion on K for other results in [5]:

Theorem 5.2 (cf. [5, Theorem 2]). Let A be a simplicial complex
on the vertex set X, F a face of A, and xy a new verter. Set
A" = AUcoy F. If aralan = pd K[A] holds, then arala = pd K[A']
also holds.

Corollary 5.3 (cf. [5, Corollary 3]). Let I be a squarefree monomial
ideal of R = K[X]. Suppose that I has a 2-linear resolution. Then

aral =pdrR/I.

Corollary 5.3 was first proved by Morales [15, Theorems 8 and 9] in
a different way, but he also assumed that K is algebraically closed.

Now, we prove Theorem 5.1. The proof is divided into two steps. We
construct max{araIa + 1,n — |F|} elements which generate Ia: up to
radical in the last step (Step 2). The first step (Step 1) is performed to
transform elements which generate Ia up to radical so that the elements
constructed in (Step 2) belong to Ia:.
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In our proof, (Step 1) is the same as in the paper by Barile and Terai
(see also Barile [2, Theorem 1]). Thus we omit the details. Our im-
provement is in (Step 2). In Case 1 of (Step 2), the elements which
generate Inr up to radical are the same as in the paper by Barile and
Terai. The difference is that we use the cofactor matrix instead of
Cramer’s rule which they used, and we do not use Hilbert’s Nullstel-
lensatz. In Case 2 of (Step 2), we give ara Ia: elements generating Ias
up to radical; these are different from those given by Barile and Terai.
This is our main improvement.

Proof of Theorem 5.1. (Step 1). First, we fix the notation. Set
R = K[X] and R’ = K[X'] where X' = X U{zo}. If F = X, then
In = Inr = 0 and the assertion is trivially true. Thus we assume
F # X. Let G be a facet of A which contains F'. We can assume
that G = {@s41,... ,2n} and F = {@41,... ,2,}, where s < ¢t. Then
In) = IAR' + (zoz1, ... ,z0zt)R'. We set araln = h. Then we can
rewrite the claim as

araIn, < max{h+1,t}.

Assume that q1,... ,qp generate Ian up to radical. Since In C Pg =
(1,...,25) and ¢; € Ia, we can write

S
q; = E Q35T 5, i:1,2,...,h,
j=1

where a;; € R. Since Ia is generated by monomials, we may assume
that all monomials appearing a;;z; belong to In. Let ¢: R — R be
the ring homomorphism defined by ¢(z;) = x?, i=12,...,n. Weset
G; = ¢(¢;) and @;; = ¢(aij)z; for i =1,2,... ,h; j=1,2,...,s. Then

S
q; = E a;;x;,
i=1

and @;; € Ia. Moreover, qy, ... ,q, also generate In up to radical; see
[5, Proof of Theorem 1].

(Step 2). Now we find max{h + 1,t} elements which generate Ins up
to radical. We distinguish between two cases.
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Case 1. Suppose that h +1 >t. We show that aralas < h+1. We
set A = (@ij)i j=1,..,t, where @;; = 0if j > s. Let A = A+ zoldy,
where Id; denotes the ¢ X ¢ identity matrix. Set

Jl = (det A1 — Ig,ql + ToZ1,. .. ,Gt + xOxtaat+17 v 7qh)Rl‘

We prove that v/J; = Ia. Since a;j € Ia, we have det A; —zb € InR'.
Moreover since q; € In, @ =1,2,... ,h and zoz; € In+, j = 1,2,... 1,
we have /J; C In,. We prove the opposite inclusion. To do this,
it suffices to show that g; € v/Ji, i = 1,2,...,t and zoz; € V/J1,
i=12,...,t.

Let Bj be the cofactor matrix of A;. Then By A; = (det A;)Id;. Since

gy +xoz1 1
: = Al )
qy + Toxy Zy
we have
61 + o1 T 1
B1 = B1A; = (det Al)
g + Toxt Ty Ty

Then (det A;)z; € Jy for j = 1,2,...,t since g; + zoz; € Jq for all
i=1,2,...,t. Multiplying det Ay — z, € J; by z;, we have zfz; € J;.
Hence zoz; € VJy for j = 1,2,...,t. Since §; + xoz; € Ji, we have
G, € V/Jy for i =1,2,... ,t, as required.

Case 2. Suppose that h + 1 < t. We show that araIan, < t. Note
that in this case, s < t — 1 because if s = t, then ¢ is the height of
the minimal prime Pg of Ian and Krull’s principal ideal theorem shows
that ara Ian > t. This contradicts aralpn = h <t — 1.

We set A = (@ij)ij=1,.. t—1, where a;; = 0if ¢ > h or j > s. Let
Ay = A+ x0ld;_1, where Id; ; denotes the (¢t — 1) x (¢ — 1) identity
matrix. Set

J2 = ((detAg)(l‘O + l‘t) - Ig,ql + LOLLyeeo

— !
Jn + ToTh, ToThi1,--- ,ToZe—1) R,
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We prove that /Jo = Ia. As @;; € Ia, similarly to Case 1, we have
V/Jo C In. We prove the opposite inclusion. Let By be the cofactor
matrix of A;. Then ByA; = (det A3)Id; ;. Since we have set @;; = 0
for ¢ > h, we can write formally zox; = q; +xox; fori =h+1,... ,t—1.
Using this notation, we have

gy +xoT1 1
. = A2
Qi1+ ToTi—1 Ti—1
Thus
q; + xox1 1 1
By = By A, = (det Ag)
q; 1 T ToTp— Ti1 Ti_q

Then (det Az)z; € Jy for j = 1,2,...,t — 1 since g; + zoz; € Jo for
all i = 1,2,...,t — 1. Multiplying (det A2)(zo + x;) — 2z € J2 by
z;, we have zfz; € Jo for j = 1,2,...,t — 1. Hence zoz; € /]2
for j = 1,2,...,t — 1. Since g; + zox; € Jo, we have g; € /J for
i=1,2,...,t—1. In particular, g; € v/J> for i = 1,2,... ,h. Since

\/m = I and @;; € Ia, we have
Eij € (qla e 7611) - AV, J2, for all l,]

Therefore (det As)(zo+x:) —zb € Jo implies x5 (zo +21) — 2f € /Ja.
Thus we have mffl:t:t € v/ Ja, that is zgz; € /J2. This completes the
proof. i

Example 5.4. Let A be the simplicial complex on the vertex set
{z1,x9, 3,24} whose facets are {xi,z2}, {x1,z4}, {z2, 23}, {x3, 24}
Then

In = (z1,22) N (1, 4) N (22, 23) N (T3, T4)
= (7123, T2T4).
Thus Ia is a complete intersection. In particular, h = ara In = 2. Set
g1 = r1x3 and go = xax4. Take the face F = {z4} € A, and let zg be
a new vertex. Then Ia: is generated by the following 5 elements:

L1T3,T2L4, LoL1, LoL2, LoL3-
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Then t = 3. We take the facet G as {z3,z4}. Then Pg = (r1,22). In
this case, we have

— 2 — 2
qp = 213 - T1, o = XT2Ty - T2-

Since h+1 = 3 = t, we apply Case 2 of the proof of Theorem 5.1. Since

2 2
-  (x1xz3 O [ x5+ xo 0
A_< 0 :L‘g.’EZ)’ A2_< 0 Tazi + 10 )

the ideal Ia- is generated by the following 3 elements up to radical:

2 2 3
(123 + 0) (2227 + 20) (20 + X3) — )
2 2., .2 2., .2 2.2
= ToT3 + Tox1X3 + TT2Ty + ToT1T2X3Ty
3 2 3,.2
+ ToT1T3 + ToT2X3%y + T1T2T3Ty,

2.2 2,2
TiT3 + Tox1, THTy + Tox2.
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