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TORIC RINGS AND
IDEALS OF NESTED CONFIGURATIONS

HIDEFUMI OHSUGI AND TAKAYUKI HIBI

ABSTRACT. The toric ring together with the toric ideal
arising from a nested configuration is studied, with particular
attention given to the algebraic study of normality of the toric
ring as well as the Grobner bases of the toric ideal. One of the
combinatorial applications of these algebraic findings leads to
insights on smooth 3 x 3 transportation polytopes.

Introduction. Toric rings and toric ideals play a central role in
combinatorial and computational aspects of commutative algebra. In
[1], from a viewpoint of algebraic statistics, the concept of nested
configurations was introduced. In the present paper, the toric ring
together with the toric ideal arising from a nested configuration will be
studied in detail.

Let K[t] = KJt1,... ,tq) denote the polynomial ring in d variables
over a field K. A (point) configuration of KJt] is a finite set A =
{t?1,...,t?} of monomials belonging to K[t] for which there exists
a vector w € R% such that w-a; = 1 for all 1 < i < n. We will
associate each configuration A of K [t] with the homogeneous semigroup
ring K[A], called the toric ring of A, which is the subalgebra of K|[t]
generated by the monomials belonging to A. The toric ring K[A]
is called normal if K[A] is integrally closed in its field of fractions.
It is known that K[A] is normal if and only if Z>o{ai,...,a,} =
Z{ai,...,a,} N Q>o{ai,... ,an}. See, e.g., [9, Proposition 13.5]. In
addition, K[A] is called very ample if

(Z{al, . ,an} N on{al, . ,an}) \ Zzo{al, . ,an}
is a finite set. In particular, K[A] is very ample if K[A] is normal.

Let K[x] = K|z1,...,2z,] denote the polynomial ring over K in n
variables with each deg (z;) = 1. The toric ideal I4 of A is the kernel
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of the surjective homomorphism 7 : K[x] — K[A] defined by setting
m(z;) = t2 for each 1 < ¢ < n. It is known (e.g., [9, Section 4])
that the toric ideal I4 is generated by those homogeneous binomials
u — v, where v and v are monomials of K[x], with w(u) = w(v). Fix a
monomial order < on K[x]. The initial monomialin.(f) of 0 £ f € 14
with respect to < is the biggest monomial appearing in f with respect to
<. The initial ideal of I4 with respect to < is the ideal in< (I4) of K[x]
generated by all initial monomials in. (f) with 0 # f € I4. An initial
ideal in.(I4) is called quadratic (respectively squarefree) if in.(14) is
generated by quadratic (respectively squarefree) monomials. Let G be
a finite subset of I4, and write in(G) for the ideal (in<(g) | g € G)
of K[X]. A finite set G of 14 is said to be a Grébner basis of I4 with
respect to < if in<(G) = in<(I4). It is known that a Grobner basis of
14 with respect to < always exists.

Moreover, if G is a Grobner basis of 4, then I, is generated by G.
A Grobner basis G of 14 is called quadratic if in<(G) is quadratic. We
are interested in two implications below:

I4 has a squarefree initial ideal = K[A] is normal
= K[A] is very ample;
I4 has a quadratic Grobner basis = K [A] is Koszul
—> I, is generated by quadratic binomials.

It is known that each converse is false in general. See, e.g., [6, 7].

For the sake of simplicity, let A = {t®',... ,t?} be a configuration
of K[t] with the following properties:

e |aj| =rforeach 1 <j<m
e t; divides the monomial t2! ---t2» for each 1 <37 < d.

(Note that any configuration is isomorphic to such a configuration.)

Assume that, for each 1 < i < d, a configuration B; = {mgi), .. ,mgi)}
of a polynomial ring K [u)] = K[ugi), e ,u,(f)] in p; variables over K is
given. Then the nested configuration [1] arising from A and By,... ,By

is the configuration

A(Bla v 7Bd)

= {mgil)---my:) [ty -ti, €A, 1< jip <A forl< kgr}
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of the polynomial ring K[u®,... u®] in Z?zl w; variables over K.
Here, t;, ---t;, € A is not necessarily squarefree. If A = {t1t2}, then
K[A(By, By)] is the Segre product of K[B;] and K[B;]. Moreover, if
A = {t]"}, then K[A(By)] is the mth Veronese subring of K |[By].

Example 0.1. Let A = {t?,t1t2}, By = {u?,ujus,u3} and By =
{v3vy,v1v3}. Then, the nested configuration A(Bj, By) consists of the
monomials

4 3 2,2 3 .4 2,2 2
Up, UTU2, Uy U, UL Ug, U, UV V2, ULUV V2,

2,2 2 2 2,2 2
UgV1 V2, U V1Vg, U1U2V]1 Vg, UpU1Vy.

Then, the matrices

2 1 2 10 2 1
MA_(O 1)’ MBI_<012>’ MBZ_<1 2)’
43210210210
u o123 4/01 2 0 1 2
A(B1,B2) = 00000‘222111
00000O0I1 11222

correspond to the configurations A, By, By and A

—~

By, By), respectively.
One of the fundamental facts of the nested configuration is

Theorem 0.2 [1]. If each of the toric ideals Ia, Ip,,...,IB,
possesses a quadratic Grobner basis, then the toric ideal I5(p, .. By)
possesses a quadratic Grobner basis.

In Section 1, we study the normality of the toric ring arising from
a nested configuration. Owur first main result is Theorem 1.2: if
each of K[A], K[B],...,K[By] is normal, then K[A(Bi,...,By)] is
also normal. In general-see Example 1.3—-the converse does not hold.
However, Corollary 1.9 guarantees that, when A consists of squarefree
monomials, each of K[A],K[Bi],...,K[By] is normal if and only if
K[A(By,...,Bq4)] is normal.

In Section 2, we study Grébner bases of the toric ideal arising from a
nested configuration. A natural generalization of Theorem 0.2 will be
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obtained. In fact, Theorem 2.5 together with Theorem 2.6 guarantees
that if each of I4,Ip,,...,Ip, possesses a Grobner basis consisting of
binomials of degree at most p, then I4(p, .. p,) possesses a Grobner
basis consisting of binomials of degree at most max(2,p). Moreover,
if each of I4,Ip,,...,Ip, possesses a squarefree initial ideal, then
IA(B,,...,By) POssesses a squarefree initial ideal.

In Section 3, as one of the combinatorial applications of our algebraic
theory of nested configurations, we discuss the toric ideal of a multiple
of the Birkhoff polytope Bs. Here B3 is the convex hull of

100 010 00 1
oo=1010]|, ca={00 1), o3=[1 0 0],
00 1 100 010
100 010 00 1
oi=10 0 1], os5=(1 0 0}, as6=]0 1 0
010 00 1 100

in R3*3. The toric ideal of Bs is the toric ideal of the configuration

B,= {U11U22 U33, U12U23U31,U13U21U32, U11U23U32,U12U21U33, U13u22U31}

of polynomial ring Kuy1,... ,uss], and it is a principal ideal generated
by 212223 — z42526. Given an integer m > 1, the m multiple of Bj
is defined by mBs = {ma | a € Bs}. Since it is well known (due to
Birkhoff) that

mBaﬂZ3X3:{0i1+'”+0im ‘ lgll,,lm§6}a

the toric ideal of mBs is the toric ideal of the nested configuration A(B)
where A = {¢t"}. In [2], it is stated that Piechnik and Haase proved
that the toric ideal of the multiple 2n83 possesses a squarefree quadratic
initial ideal for n» > 1. This fact is directly obtained by Theorem 2.6
since the toric ideal of the multiple 283 possesses a squarefree quadratic
initial ideal. Similarly, since the toric ideal of the multiple 383 possesses
a squarefree quadratic initial ideal, Theorem 2.6 guarantees that the
toric ideal of the multiple 3n/33 possesses a squarefree quadratic initial
ideal for n > 1. However, since there are infinitely many prime
numbers, it is difficult to show the existence of a squarefree quadratic
initial ideal of the toric ideal of mBs for all m > 1 in this way. In
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Theorem 3.4, using another monomial order, we will prove that the
toric ideal of the multiple mBs possesses a quadratic Grobner basis for
allm > 1.

In Section 4, we give a summary of our algebraic theory of nested
configurations.

1. Normality of toric rings of nested configurations. The
purpose of this section is to study normality of K[A(By, ... ,Bg)].

Lemma 1.1 [3]. The toric ring K[A] is normal if and only if

M,
{ﬁl My, My € K[A] are monomials and
2

<%> € K[A] for some 0 < m € Z}
M,

is a subset of K[A].

Theorem 1.2. If K[A], K[B1],...,K[By] are normal, then K[A(Bx,
..., Bq)] is normal.

Proof. Suppose that K[A], K[Bi],...,K[By] are normal and that
K[A(Byi,...,By)] is not normal. Thanks to Lemma 1.1, there exist
monomials My, Ms, Msz belonging to K[A(By,...,Bj)] such that
Ml/Mz ¢ K[A(Bl, ,Bd)] and that (Ml/Mg)n = M3 for some
integer n > 1.

Let ¢ : K[A(Bj,-..,Bq)] = K[A] be the surjective homomorphism
defined by d)(mgl) : --mg-lr’)) =t;, ---t;,. € A. Then (M), ¥ (M) €
K[A] and

i

(Y(M1)/9(M2))" = $(Ms) € K[A].
Since KJ[A] is normal, we have ¢(M;)/¢¥(Mz) € K[A]. Thus,
(M) /(M) = t2ia ---t%% for some 1 < iy,...,0 < n.
Let py : K[A(B1,...,Bq4)] = K[Bg] be the homomorphism defined
by .
0y = {u§> ifi=k
1 otherwise.
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Then p(My), pr(Ms) € K[Bi] and (pi(My)/pn(Ma))" = pr(Ms) €
K|[Bg). Since K[By| is normal, pg(M1)/px(M2) € K[Bg]. Thus,
pr(My)/pr(Ms) = mglf)my:: for some 1 < ji,...,Jq < Ak. Since
By, is a configuration, it follows that py(M7) = mq(tkl) . --m,(fz)k“k and
pi(Mz) = mby - -m{E) . Then y(My) =t - 4577 and (M) =
t1' - - t¢. Thus, we have

Y(M)

Y(Mo)

Hence, M;/M> € K[A(Bj,...,Bg)], and this is a contradiction. O

= t2i1 ... % = t‘fl ---tgd.

The converse of Theorem 1.2 is false in general.

Example 1.3. Let A = {t}} and B; = {v,uv,v®v,uv}. Then
K[By] is not normal. However, I4(p,) has a squarefree quadratic initial
ideal and hence K[A(B;)] = K[{u'v? | i =0,1,...,8}] is normal.

Theorem 1.2 did not hold when we replaced “normal” with “very
ample.”

Example 1.4. Let A = {t;,t2}, By = {v,uv,u3v,u*v} and
B; = {w}. Then K[A] and K[B2] are polynomial rings. On the other
hand, K[B] is very ample, but not normal. However, K[A(B1, Bs)] =
Kv,uwv,u?v,uv,w] is not very ample. In fact, the monomial u?vw®

does not belong to K[A(B1, Bs)] for all a € Z>y.

Let P4 denote the convex hull of {a € Z<, | t* € A}. For a subset
B C A, K[B] is called the combinatorial pure subring ([4, 5]) of K[A]
if there exists a face F of P4 such that {b € Z¢, | t* € B} = {a €
Z%,|t® € A} N F. For example, if B = AN K[t;,,...,t;] for some
1 <4y < - <is <d, then K[B] is a combinatorial pure subring of
K[A]. (This is the original definition of a combinatorial pure subring
in [5].)

Lemma 1.5. The toric ring K[A(By,...,Bg)] has a combinatorial
pure subring which is isomorphic to K[A].
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Proof. For each ¢ = 1,2,...,d, let o; be an arbitrary mono-
mial of B; which corresponds to a vertex of Pp,. It follows that
K[A({o1},...,{c4})] is a combinatorial pure subring of K[A(By,...,
By)]. Then K[A({o1},...,{oq4})] ~ K[A]. O

It is known [8, Lemma 1] that every combinatorial pure subring of
a normal (respectively, very ample) semigroup ring is normal (respec-
tively, very ample). Thus we have the following.

Theorem 1.6. If K[A(By,...,Ba4)] is normal (respectively, very
ample), then K[A] is normal (respectively, very ample).

Lemma 1.7. Let m = max(i | t{t3 -t € A) > 1. Then
K[A(By,...,Bg)] has a combinatorial pure subring which is isomorphic
to K[A'(B1)] where A" = {t{"}. In particular, if m = 1, then we have
K[A'(By)] = K[Bi].

Proof. Let t{"t3?---t;% be the largest monomial of A with re-
spect to a lexicographic order t; > --- > t5. Let A = {t™ =
trts? - t5%,t22, ... ,t2 }. Thanks to [9, Proposition 1.11], there ex-
ists a nonnegative integer vector v such that v -a; > v -a; for
all 2 < ¢ < n. Then (m,as,...,aq) is a v-vertex of P4. Hence,
K[A(By,...,By)] has a combinatorial pure subring K[A"” (By, ... , Bg)]
with A” = {t{"t5*---t;?}. For each i = 2,...,d, let o; be an arbi-
trary monomial of B; which corresponds to a vertex of Pg,. It fol-
lows that K[A"(B1,{02},...,{04})] is a combinatorial pure subring
of K[A"(By,...,B4)]. Then K[A"(Bi,{o2},...,{0qa})] =~ K[A'(B1)]
where A’ = {t7"}. u]

Thanks to Lemma 1.7, we have the following.

Theorem 1.8. If A has no monomial divided by t? and if K[A(B,
.. Bg)] is normal (respectively, very ample), then K|[B;] is normal
(respectively, very ample).

Corollary 1.9. Suppose that a configuration A consists of squarefree
monomials. Then K[A], K[Bi],...,K[Bg] are normal if and only if
K[A(By,...,Ba4)] is normal.
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2. Grobner bases of toric ideals of nested configurations. In
this section, using the technique (sorting operator) in the proof of [9,
Theorem 14.2], we study Grobner bases of the toric ideal of a nested
configuration. The present section has three subsections:

e Grobner bases for polynomial ring case, i.e., each K[B;] is a
polynomial ring;

e Grobner bases for general case;

e Generators.

First, we introduce the sorting operator used in [9]:

Example 2.1 [9, Theorem 14.2]. Fix positive integers r and
S1y..-,8q. Let
A=ttt iy + - dig=r 0<14; <s1,...,0 < ig < sq}.
We define a natural bijection between the element of A and weakly
increasing strings of length r over the alphabet {1,2,...,d} having
at most s; occurrences of the letter j which maps the monomial
i -+t € A to the weakly increasing string
wug Uy =11.-+122...233...3...dd---d.
—— S — N——
i1 times %5 times i3 times iq times
We write @4y, for the corresponding variable in K[x]. Let
sort (-) denote the operator which takes any string over the alphabet
{1,2,...,d} and sorts it into weakly increasing order. It is known [9,
Theorem 14.2] that there exists a monomial order < on K[x] such that

{xmw---urxmvz---vr — Twiwgwar_1 Lwowy--war | wiwaw3 - Way
= sort (u1v1ugv2 + - - Upvy) }
is a quadratic Grobner basis of T4 with respect to < and inc(I4) is

squarefree. For example, x12233 — x13T23 belongs to the Grobner basis
since we have 1233 = sort(1323).

Let, as before, A = {t®,...,t®} and B; = {mgi),... ,mf\?} for
1 <4 < d. Let K[x] be a polynomial ring with the set of variables
1<4 <+ <4, <d, 1<k<n
(k) ti -t =t € A

(1,51) - (4rsdr) . .
mg-lll) - -mg-l:) € A(By,...,By)
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and let K[y] = Ky1,..-,yn] and K [z(i)] =K [zy),... ,zg\?} (1 =
1,2,...,d) be polynomial rings. The toric ideal I, is the kernel of the
homomorphism 7y : K[y] — K[t] defined by setting mo(yx) = t**. The
toric ideal I3, is the kernel of the homomorphism ; : K[z()] — K[u(?]

defined by setting wi(z](-i)) = mg-i). The toric ideal I4(g,,...,5,) is the
kernel of the homomorphism 7 : K[x] — K[u®, ... u®] defined by
tti (=P ) = m{) .ol
SELUNG ML (i1,j1) (i) = i mj,
(k) (k)

Lemma 2.2. Let py = be a

F(inga) (i) D (iren o) (izrdar)
quadratic monomial in K[x|, and let sort (-) be the sorting operator

over the alphabet

{(17 ]-)7 (17 2)7 e (1a )‘1)7 (27 ]-)7 e (da )‘d)}
with respect to the ordering

(1,1) = (1,2) = - = (1, A1) = (2,1) > --- = (d, Aa)-

k) (k)

Then :.’E(. NS . . Trer ngar s Lo where
» P2 (41,31 (15,35) - (3105 1) " (35,55) (84,3) -+ (45,.,55,.)

(i1,1) -+ - (i35 J,-) = sort (i1, J1) - - - (2, Jor))

is a monomial belonging to K[x| and, in particular, we have py — ps €
IyB,,..,By)-
Proof. Suppose that xgk,) N s e .,
i1501) (85503) - (1, _ 1505, 1
K[x]. Then we have tirtin ooty # t2 and hence there exist
integers 1 < ¢ < d and « such that ¢t divides t® and does not
divide ¢;t;; ---tyy . Since ij < .-+ < 45, it then follows that
t7* does not divide t;t; ---t; . Thanks to (i},57) - (i, 75,) =
sort ((i1,J1) - - (d2r, Jor)), we have t; t;, - -ti,, = tityy ---t;; . Hence
2% does not divide t;,t;, - -t;, . It follows that t& does not divide
either #;t;,-+-t;. or ¢t , - ti,.. Thus, either ¢;t;, ---¢; or
ti.y1ti, o ti,, is not equal to t*. This contradicts that p; is a
monomial of K[x].

) is not a variable in
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On the other hand, by virtue of (¢}, ji) - - (45,, 75,) = sort ((i1, 1) - - -
(i2r, jor)), we have m(p1) = 7(p2), and hence p; — pa € Io(p, .. B,) as
desired. O

Lemma 2.3. Let yk, -+ Yk, — Yk, Ykl be a binomial in 14, and let

p
H x(kz)
(i(e—1)yr412d(t=1)r41) " (Per,der)
=1

be a monomial in K[x]. Then, there exists a binomial
TG Gansen ~ 1L (i)
ie—1)r+1,J(e—1)rt+1)- (Ler,der o yer1die—1ymar) (Gl
P (£—1)r+1>J(e—1)r+1 triJe P (e—1)yr+19(e—1)rt1 Yy,
€ I4(By,...,Ba)»
where sort ((ilvjl) e (iprajpr)) = sort ((2117.7{) e (Z;JT‘M]II)T))

Proof. Let mo(yy,) = tity_yyys "t for each 1 < ¢ < p. Since

Yky * Yk, — Ykl - Yy belongs to I, we have ITos, ti, = 1102, tiy.
Hence there exist jj,... ,j,, such that

sort ((i1,51) -+ (iprs Jpr)) = s0rt (41, 41) -+ (Epr> dpr))-
It then follows that
| EXIN IR STRPRES | A AR
=1 =1
€ I5(B,,...,By)>
as desired. ]

Fix a monomial order <; on K[z(i)] for each 1 <i <d. Let G; be a
Grobner basis of I, with respect to <;. For each M € A(By,...,By),

the expression M = mgil) - -m;?) is called standard if
(ie)
H Zjee

te=J,
1<e<r
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is a standard monomial with respect to G; for all 1 < j < d. In
order to study the relation among I4, I, and I4(p,,. . B,), we define
homomorphisms

)

) _
n,jl)---(ir,jr)) = Yk

. (w'r)): I =

ip=j, 1<L<r

wo : K[x] — Kly], (:EE
p;j K[x] — K[z(j)], (acg

where mgil) S mg-ir) is the standard expression defined above.

Lemma 2.4 [1]. Let f be a binomial in K[x]. Then f € Ia(s,,... B,)

if and only if v;(f) € Ip, for all 1 < i < d. Moreover, if f belongs to
Ix(B,,... By, then we have po(f) € 14.

2.1. Polynomial ring case. First, we study the case when all of
K|[B;] are polynomial rings.

Theorem 2.5. Let Gy be a Grobner basis of 14 with respect to a
monomial order <. If each B; is a set of variables, then the toric

ideal I5(p,,... B, Possesses a Grobner basis consisting of the following
binomzials:

[ H @
Pt (i(e—1)yr+1,J(e—1)r+1) (Ger,Jer) (éfe 1)7‘+1’J(l 1yr) (Gd)

where Y, * Yk, — Yk, - Yk, € Go and

sort ((ilvjl) T (iPTa.jpT)) = sort ((2117.71) U (l;)m];;r))

(2)

k) g g
(21,51) - (@rsdr) (g1, Jrg1) - (G2r552r) (i1,31)(508) (15, 1,35, 1)
B
(15,95 (i4,34) - (15,,95,.)

—
=

where sort ((i1,71) - - - (32r, J2r)) = (81, 41) - - - (45,., j5,.) with respect to the
ordering (1,1) > (1,2) > --- = (1, A1) > (2,1) > --- > (d, Aa)-
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(3) 2 (k') (k)

(i1,51) (e, de) - (imodr) ™ (By,01) (800, )+ (i7037) 7 (Bagn) (5,557, )+ (ir i)

L)
(19,31) - (ie,ge) - (3.,51.)
where k < k', iy = 1) and j; > jj.

The initial monomial of each binomial is the first (underlined) mono-
mial and, in particular, the initial monomial of each binomial in (2)
and (3) is squarefree. Moreover, the initial monomial of each bino-
mial in (1) is squarefree (respectively, quadratic) if the corresponding
monomial Y, - - - Yk, is squarefree (respectively, quadratic).

Proof. Let G denote the set of binomials above. Thanks to Lemmas
2.2 and 2.3, it is easy to see that G is a (finite) subset of I4(p,,... B,)-

Claim 1. There exists a monomial order such that the initial
monomial of each binomial in G is the underlined monomial.

By virtue of [9, Theorem 3.12], it is enough to show that the reduction
modulo G is Noetherian. Suppose that there exists a sequence of
reductions modulo G which does not terminate. Let v be a monomial
in K[x], and assume v % o' with g € G. Then we have

{ QOO(U) >0 (P()(UI) if g in (]_),
wo(v) = po(v')  otherwise.

Hence, the number of binomials in (1) appearing in the sequence is
finite. Thus we may assume that the binomials in (1) do not appear
in the sequence. Let v be a monomial in K[x], and assume v 2 v/
where g € G belongs to either (2) or (3). Since g belongs to either (2)

! _ p (klf)
or (3), v and v are of the form v = [],_; T i oyretrcetyrsn)(iersjer)?
/ D (ke)
v = X, . ., ... Let
=1 (12871)7‘4»1’]Eﬂfl)r‘ﬁ»l)'"(zzr’]zr)

r—1)+1<E<tr
Olr—1)+1<¢ </(r
ig =gty Je > Je
k‘g<k‘g!

Inversion (v) = ¢ (£,¢)
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r—1)+1<E<tr
Or—1)+1<¢ < r
ke < kg

Inversion (v') = < (&,£')

Then the cardinality of these sets satisfies #|Inversion (v)| > #|Inver-
sion (v')| where equality holds if and only if g belongs to (2). Hence,
the number of binomials in (3) appearing in the sequence is finite. Thus,
we may assume that the binomials in (3) do not appear in the sequence.
However, any sequence of reductions modulo the set of binomials in (2)
corresponds to the sort of the indices and hence it terminates. This is
a contradiction.

Claim 2. The set G is a Grobner basis of Ly(p,,... B,)-

Suppose that G is not a Grobner basis of I4(p,, ... B,). Thanks to
Lemmas 2.2 and 2.3, there exists a binomial f = p; —p2 € I4(B,,... B,)
such that neither p; nor py is divisible by the initial monomial of any
binomial in G. By virtue of Lemma 2.4, we have ¢o(f) = ¢o(p1) —
wo(p2) € Ia. If po(p1) —wo(p2) # 0, then there exists a binomial g € Gy
such that the initial monomial of g divides either g (p1) or ¢g(p2). This
contradicts that neither p; nor p- is divisible by the initial monomial
of any binomial in (1). Hence, we have o(p1) = @o(p2)- Thus, f is of
the form

p p
_ (ke) (ke)
f = x,. . . . — xX,., .y Y A
Py (i(e—1)yr+1,J(e—1)r+1) " (Ser,Jer) Pt Cleryrprd(e—1yrp) (Tmidey)

Since neither p; nor po is divisible by the initial monomial of any
binomial in either (2) or (3), it follows that p; = p2 and hence f = 0. O

2.2. General case. We now study the general case.

Theorem 2.6. Let Gy be a Grébner basis of 14, and let G; be
a Grobner basis of Ip, with respect to <;. Then the toric tdeal
I4(B,,.. By Possesses a Grobner basis consisting of the binomials (1),
(2) and (3) appearing in Theorem 2.5 together with the following bino-
maials:
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(ke) P (ke)

p —
(@) ITems 201, en) ety ~ Ll Bty )iy, oy Where the

P
binomial 0 # H ZJ('Z)l e zj(-z)q
=1 Y

P
— H z(.f) z(f) belongs to G;.
0,1 Je,q,

The initial monomial of each binomial is the first (underlined) mono-
mial and, in particular, the initial monomial of each binomial above
is squarefree (respectively, quadratic) if the corresponding monomial

p () (@)

z A

=175 is squarefree (respectively, quadratic).

Je,qy

Proof. Let G denote the set of binomials above. Thanks to Lemmas
2.2, 2.3 and 2.4, G is a (finite) subset of I4(p, .. B,)-

Claim 1. There exists a monomial order such that the initial
monomial of each binomial in G is the underlined monomial.

By virtue of [9, Theorem 3.12], it is enough to show that the reduction
modulo G is Noetherian. Suppose that there exists a sequence of
reductions modulo G which does not terminate. Let v be a monomial
in K[x], and assume v % o' with g € G. Then we have

@i(v) >; ¢;(v') if g is in (4) and arising from G;,
@;j(v) = p;j(v') otherwise.

Hence, the number of binomials in (4) appearing in the sequence is
finite. Thus, we may assume that the binomials in (4) do not appear
in the sequence. However, as we proved in the proof of Theorem 2.5,
there exists no sequence of reductions modulo the set of binomials in
(1), (2) and (3) which does not terminate. This is a contradiction.

Claim 2. The set G is a Grobner basis of Lo, .. By)-

Suppose that G is not a Grobner basis of I4(p,, ... B, Thanks to
Lemmas 2.2, 2.3 and 2.4, there exists a binomial f = p; — py €
Iy(B,,..,By) such that neither p; nor ps is divisible by the initial
monomial of any binomial in G. By virtue of Lemma 2.4, we have
@i(f) = pi(p1) — pi(p2) € Ip, for all 1 <7 < d. If pi(p1) — pi(p2) # 0
for some 4, then there exists a binomial ¢’ € G; such that the initial
monomial of ¢’ divides either ¢;(p1) or ¢;(p2). This contradicts that
neither p; nor po is divisible by the initial monomial of any binomial
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in (4). Hence we have p;(p1) = @i(p2) for all i. Moreover, thanks to
the argument in the proof of Theorem 2.5, we have ¢q(p1) = po(p2)-

Thus, f is of the form

p

SIE? S
h (ie—1yr+1,de—1)r+1) - (ier,der) ([ 1)T+17J(£ 1)7‘+1) (i5,0d00)°
=1

where sort (i1, 1) - - - (ipr, Jpr)) = sort ((i1,51) - - (i Jprr))- Since nei-
ther p; nor ps is divisible by the initial monomial of any binomial in
either (2) or (3), it follows that p; = ps, and hence f = 0. mi

If G; possesses a binomial of degree 3, then we need the following
binomials:
(k1) k2 (k3) (k1) k2 ke
(@) @ hryga o g T e xMi( )My UM, 30) M1 M) M Mo, ) M

where 2 (D) _ (Z) ) e Gg;.

J1 7J2 7Js8 Jl ]2 ]3
(k1) 2k2) 21 (k2) (@)
(b) xMi(%Jl)( g M0 My TM (1,30) ) My P M (i) Aty WRET 25,

(8) () (4)
2y 25 = 2 zJ2 z], € Gg;.

We do not need (b) if A has no monomial divided by t. In general,
we have

(ke)
deg < H ZJe L R, q[> Z e > p = deg (H mMi(wz 1)+ (i, e, qe)M>

The binomials of type (a) are not always needed for a minimal Grébner
basis even if G; has a cubic binomial. In such a case, I4(p,,... B,) may
have a quadratic Grobner basis. In Section 3, we will show an example.

2.3. Generators. Thanks to a part of the argument in the proof of
Theorem 2.6, we have the following.

Proposition 2.7. Let Hy be a set of binomial generators of 14, and
let H; be a set of binomial generators of Ip,. Then, the toric ideal
Ia(B,,...,By) 18 generated by the following binomials:
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(1) (ke H
h (Z(e Dr41,J(e— 1)r+1) (ierder) Z 1)T+17]([ 1)T+1) (ZZTJ“)
=1 =1
where yYi, - Y, — Yk - Yk, € Ho and

sort ((il,jl) T (iPTajpT)) = sort ((7’/17.71) U (Z;wa];l;r))

(2)
O (k) (k)

Llir,g1)Cirdr) Llirra,drer) - (izr jor) (13,31 (35,58) (15 _ 1,550 _1)
(k)

(i5:35) (13,34) + (i3,.,33,.)

where sort ((i1, 1) - - (lgr,jgr)) = ( SRR (zQT,jo) with respect to the

ordering (1,1) > (1,2) > --- = (1, 1) > (2,1) > -+ > (d, Aq)-
() (k) _®
(3) @3y ja ) Ciesde) (i i) B 3100 ™ Eliada)oo (i) (i)

k' . . . .
in’l?ji)---(u,jz)---(';,j;) where k < k', i¢ = iy and jo > Jp-
b (k) p (k)
(4) ITe= 1$Mz(z,m) GieapM; — L=t Bagy gy )iy, oy Where the

p
binomial 0 # H N R @ _ H z(f) . zj(f) belongs to H;.
£

]Z ag 1 X

3. Toric ideals of multiples of the Birkhoff polytope. Let
c = (e1,69,c3) € Z>0, and let r = (ry,ra,73) € Z>0 be vectors with
c1 +co+cg =ry+re+rs. Then 3 x 3 transportation polytope Ty is
the set of all non-negative 3 x 3 matrices A = (a;;) satisfying

3 3
E a;r = ¢ and E Qg =Ty
i=1 j=1

for 1 < k,¢ < 3. It is known that this is a bounded convex polytope of
dimension 4 whose vertices are lattice points in R3*3. The toric ideal
of Ty is the toric ideal of the configuration {t* | a € Tpc N Z3*3}.

Example 3.1. Let ¢ = r = (1,1,1). Then the transportation
polytope B3 := Ty is called the Birkhoff polytope. The lattice points
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in B3 are
1 00 0 10 0 01
g1 = 0 1 0 , 09 = 0 0 1 , 03 = 1 0 0 5
0 01 1 00 010
1 00 0 10 0 01
04 = 0 0 1 , 05 = 1 0 0 , O = 01 0
010 0 01 1 00

The toric ideal of Bj is the toric ideal of the configuration
{U11U22u33, U12U23U31, U13U21U32, U11U23U32, U12U21U33, U13U22U31}a

and it is a principal ideal generated by z12223 — 242526.

The following is proved by Haase-Paffenholz [2]:

e The toric ideal of the 3 x 3 transportation polytope is generated by
quadratic binomials except for Bs.

e The toric ideal of 3x 3 transportation polytope possesses a quadratic
squarefree initial ideal if it is not a multiple of Bs.

Thus, it is natural to ask whether the toric ideal of a multiple of B3
possesses a quadratic Grobner basis except for Bs. The following fact
is due to Birkhoff:

e Every non-negative integer p X p matrix with equal row and column
sums can be written as a sum of permutation matrices.

Hence, in particular, we have
nB3NZ¥3 ={o;, +-- - +o;, |1 <i1,...,i, <6}

Thus, in order to study the toric ideal of n multiples of B3, we consider
the following:

Example 3.2. Let A = {t7}, and suppose that By satisfies | B1| = 6
and Ip, = (212023 — 242526). U n = 1, then A(B;) = B; and
{z12223 — 24576} is the reduced Grobner basis of I4(B,) with respect
to any monomial order. If n > 1, then, by virtue of Theorem 2.6, I 4(p,)
has a Grobner basis consisting of the following binomials:
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(a) TIM; L2MoL3M3 — L4M;L5MoL6Ms

(b) LjrjaMiLisMy — Ljyjs My LjgMas where {jl’j27j3} = {1’273} and
{]47]57.76} = {47576}7

(€) TjyowjnTirordon = Tiliheriy,_y Tibiyeib,» Where sort (jy -+ jan) =
U e i/
J1 Jon-

Since the Grobner basis in Example 3.2 is not quadratic, we have to
consider another monomial order to find a quadratic Grobner basis.

Remark 3.3. In [2], it is stated that Piechnik and Haase proved that
the toric ideal of the multiple 2nBB3 possesses a squarefree quadratic
initial ideal for n > 1. This fact is directly obtained by Theorem 2.6
since the toric ideal of the multiple 285 possesses a squarefree quadratic
initial ideal. Similarly, since the toric ideal of the multiple 385 possesses
a squarefree quadratic initial ideal, Theorem 2.6 guarantees that the
toric ideal of the multiple 3nBs possesses a squarefree quadratic initial
ideal for n > 1. However, since there are infinitely many prime
numbers, it is difficult to show the existence of a squarefree quadratic
initial ideal of the toric ideal of mBs for all m > 1 in this way.

Theorem 3.4. Let A = {t7} with n > 1, and suppose that B
satisfies §|B1| = 6 and Ip, = (212223 — 242526). Then, I5(p,) has a
quadratic Grobner basis consisting of the following binomaals:

(1) $j1j2M1$j3M2 — $j4j5M1wj6M2 where {jl,jg,jg,} = {1,2,3} and
{j47j57j6} = {47 57 6};

(ii) Tjyorsjn L1 jon ~L1o1G -, T11gl ooojf, WheTe sOT (J1++d2n) =

1---14y -+ 7%, and jj > 1.

Proof. Let G denote the set of binomials above. Since A = {t}},
each binomial in (ii) and (iii) belongs to I4(p,). In addition, thanks to
Lemma 2.3, each binomial in (i) belongs to I 4(p,). Hence G is a (finite)
subset of I4(p,)-

Claim 1. There exists a monomial order such that the initial
monomial of each binomial in G is the underlined monomial.
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By virtue of [9, Theorem 3.12], it is enough to show that the reduction
modulo G is Noetherian. Suppose that there exists a sequence of
reductions modulo G which does not terminate. Let v be a monomial
in K[x] and assume v % v/ with g € G. Then we have

{s01(v) >1¢1(0) if gin (i),
v1(v) = p1(v')  if g in (ii).

Hence, the number of binomials in (i) appearing in the sequence is
finite. Thus we may assume that the binomials in (i) do not appear
in the sequence. Let v = [[j_; Zi(, 1), 01ier V' = [1i=y Tl st
and let m, (respectively, mj) denote the number of 1’s appearing in

i(¢—1)r+1 - ter (respectively, il(£—1)r+1 -++4p,.). Then, we have

Z |m€1 - me2‘ Z Z |m21 - ml€2|

1< <l2<q 1<41<l2<q

)

if g € G belongs to (ii). (The equality holds if and only if g =
Tjyoerjn Lingrrgon — Tlo1g ot T1odgl oo, satisfies that the difference
between the number of 1’s in j;---j, and that in j,q1---J2, is at
most one.) Hence, we may assume that 1’s in the indices are stable.
Then, since the inversion number is strictly decreasing in the sequence
of reductions modulo binomials in (ii), the sequence is finite.

Claim 2. The set G is a Grobner basis of Lx(p,)-

Suppose that G is not a Grébner basis of I4(p,). Then there exists
a binomial 0 # g = p;1 — p2 € I4(p,) such that neither p; nor
po is divisible by the initial monomial of any binomial in G. Let
p1 = [17, Ti(y_yypirrviees P2 = -, Tily o er By Lemma 2.4,

T T
we have ¢1(p1) — p1(p2) = ngl Zig — ngl ziy € (212023 — 242526)-

.
Yer

Suppose that Hg;l Zi — ’5”:1 Zi # 0. We may assume that Hg;l 2,
is divided by z;z223. Since p; is not divided by the initial monomial of
any binomial in (i), p; is divided by a cubic monomial x1 s, T2, T3ns,
where 2,3 ¢ My, 1,3 ¢ My and 1,2 ¢ Ms. Note that M; # &
by m > 1. Since p; is not divided by the initial monomial of any
binomial in (ii), the number of 1’s in iM; is different by at most one.
Since 1 appears in neither 2My nor 3M3, we have 1 ¢ M;. Thus,
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M, C {4,5,6}. Then p; is divided by the initial monomial of the
binomial g = =1, T2m, — T120; T 0y Where sort (1M12M») = 12M1 M,
and g belongs to (ii).

Suppose that [¢Z; 2, — [I72, zi, = 0. Since neither p; nor py is
divisible by the initial monomial of any binomial in (ii), there exists
0<p <pand 0 < B <rsuch that

P’ P
P1=pr2= H Tle—1yrs1Cer H ZOp—1)rt1--Ocr
=1 e=p'+1

where ((y_1)p4n = 1foralll <n <3, 04_1)p4n = 1foralll <n <3-1
and (g+1 < - - < G < Giprr S n S G S oo S (et S
- < Cp’r < 9p’r+ﬁ <o < 9(p’+1)r < 9(p’+1)r+ﬁ <--- < 0(p’+2)r <
s < Op-1)r48 < -0- < O Hence, g = p1 —p2 = 0, and this is a
contradiction.

Thus, there exists no binomial 0 # g = p1 — p2 € I4(p,) such that
neither p; nor py is divisible by the initial monomial of any binomial
in G, and hence G is a Grobner basis of I4(p,) as desired. a

4. Observation. Finally, we conclude this paper with a summary
of our algebraic theory of nested configurations. For a configuration
A, let G, denote the reduced Grobner basis of I4 with respect to a
monomial order <. Let

A(4) = min (max (deg (g) | g € G<))-

(If T4 = (0), then we set A(A) = 0.) Thanks to the results in Section
2, if A(A(By,. .., Bg)) # 0, then

max (2, A\(4)) < A(A(By, ... , Bq)) < max(2,A\(A), A(By),... , A(Ba)).

Moreover, if A\(A(Bi,...,Bg)) # 0 and A consists of squarefree mono-
mials, then

MA(By,. .., Bg)) = max(2, \(A), \(B1), ... , A(Ba))-

Let n > 2 be an integer, and let X be the one of the following algebraic
properties:
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1
2
3
4
)
6
(7) The toric ideal is generated by binomials of degree < n.

The toric ring is normal;

The toric ideal has a squarefree initial ideal;

The toric ideal has a quadratic initial ideal;

The toric ideal has a squarefree quadratic initial ideal;

The toric ideal has an initial ideal of degree < n;

(1)
(2)
(3)
(4)
(5)
(6)

The toric ideal is generated by quadratic binomials;

Then we have

A, By, ..., By have the property X
= A(B4y,...,B4) has the property X.

A(B4y, ..., Bg) has the property X = A has the property X.

Moreover, if A consists of squarefree monomials, then we have

A, By,..., By have the property X <=
A(Bj, ..., Bg) has the property X.
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