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ZASSENHAUS RINGS
AS IDEALIZATIONS OF MODULES

MANFRED DUGAS

ABSTRACT. A ring R is called a Zassenhaus ring if any
homomorphism ¢ of the additive group of R that leaves all left
ideals of R invariant, is a left multiplication by some element
a of R, i.e., ¢(z) = az for all = € R. Let M be an R-
R-bimodule. Then the direct sum R & M turns naturally
into a ring R(+)M by defining MM = {0}. This ring is
called the idealization of the module M, which is an ideal of
R(+)M. We will investigate conditions under which R(+)M
is a Zassenhaus ring.

1. Introduction. Let R be a ring and gk Mg an R-R-bimodule.

Then R(+)M = {[] ] : 7 € R,m € M} is aring with vector addition
and multiplication [ ] [;'} = [Tm,rl;m,], i.e., R(+)M is naturally

isomorphic to the ring of matrices { {;L ﬂ T € R,m € M} This ring

was first introduced in [11] and is called the idealization of M or a
trivial extension of the ring R. The very first paper [1] in this journal
is an excellent survey article on idealizations, where the ring R is
commutative. In this case, any R-module M is automatically an R-
R-bimodule. As was pointed out in [1], idealizations provide many
nice examples of interesting rings and there is usually some intriguing
connection between algebraic properties of R, M and R(+)M. We will
concern ourselves in this paper with the Zassenhaus property of a ring.
Several variations of this theme have been studied in [2-6].

A ring R is called a Zassenhaus ring if any additive endomorphism
¢ : R — R such that ¢(X) C X for any left ideal X of R is the (left)
multiplication by some element of R. On the other hand, if My is a
right R-module, we define H(R, M) = {¢ € Homgz(R, M) : ¢(r) € Mr
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for all 7 € R} and call the module M a Zassenhaus module, if each
¢ € H(R, M) is actually the (left) multiplication by some u € M, i.e.,
@(r) = pr for all » € R. (We refer to [8] for some motivation for this
nomenclature.)

Here is a partial list of our results:
o If R(+)M is a Zassenhaus ring, then Mg is a Zassenhaus module.
If Mg, is also faithful, then R is a Zassenhaus ring.

e R(+)M need not be a Zassenhaus ring, even if R is a Zassenhaus
ring and M is a Zassenhaus module.

e There exist Zassenhaus modules Mg such that Mg is not faithful.

e Let R be a left Ore domain and gMpk a bimodule such that g M
has rank at least 2 and Mg is an R-reduced module. Then R(+)M is
a Zassenhaus ring if and only if R is a Zassenhaus ring and Mg is a
Zassenhaus module.

e Let R be an integral domain and M an R-reduced R-module. Then
R(+)M is a Zassenhaus ring if and only if R is a Zassenhaus ring and
M is a Zassenhaus module. (Corollary 1 shows that “R-reduced” is
needed.)

e Assume that the additive group of R is Z-reduced and torsion-free
and M contains a strongly pure element. Then R(4)M is a Zassenhaus
ring if and only if Mg is a Zassenhaus module.

e There are subrings of algebraic number fields that are not Zassen-
haus rings and neither are their epimorphic images.

e There are subrings of algebraic number fields that are Zassenhaus
rings but not E-rings.

o If R(+)M is a Zassenhaus ring, then R need not be a Zassenhaus
ring.

2. Definitions and some general results.

Definition 1. Let R be aring, 1 € R, and pMr = M an R-R-
bimodule. We define

R ={p € Endz(R) : (X) C X for all left ideals X of R}
= {p € Endz(R) : ¢(r) € Rr for all r € R}.



ZASSENHAUS RINGS 141

Note that R- = {z — rz:r € R} C R. We call R a Zassenhaus ring
if R=R-.

For future reference, we define R = {¢ € R : o(r) € Rr? for all
r € R}.

It is easy to see that_ R is a left ideal of R and, if R is commutative,
then R is an ideal of R.

Moreover, if R is an integral domain, not a field, then RNR = {0}.

In addition, we define

M\:{gerndz(M) :o(m) € Rm for allm € M}.

Finally, let

H(R,M) = {¢ € Homz(R, M) : ¢(r) € Mr for all r € R}.

We call M a Zassenhaus module if H(R,M) = M-={z+— mz:m €

Definition 2. A ring R with identity is called a left Ore domain, if
R has no zero-divisors, i.e., whenever rs = 0 for some r,s € R, then
r =0 or s =0, and for any two non-zero elements u,v € R we have

Ru N Rv # {0}.

Let g M be a left module and m € M. We call the element m torsion-
free, if r € R and rm = 0 implies r = 0.

We say that g M has rank at least 2, if gM contains two linearly

independent, torsion-free elements. Note that this condition implies
that g M be faithful.

Proposition 1. If Mg is a faithful Zassenhaus R-module, then R is
a Zassenhaus ring.

Proof. Let o € R. Let 0 # mg € M and define 8 : R — M by
B(r) = moa(r). Obviously, 8 € H(R,M). Thus there is some m € M
such that 8(r) = mr for all r € R. Note that a(r) = p,r for some
pr € R. We infer that (mgp, — m)r = 0 and, for r = 1, we have
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m = mgpy. It follows that mo(p,. — p1)r = 0 for all my € M. Since M
is faithful, we have a(r) — p1r = 0 for all » € R. Thus a = p;- € R
and R is a Zassenhaus ring. ]

Remark 1. Let R be aring and Mg an R-module such that MJ = {0}
for some ideal J of R. Then Mg is a Zassenhaus module if and only if
Mg,y is a Zassenhaus module.

Proof. Assume that Mpg is a Zassenhaus module. Let 5 €
H(R/J,M). Then there exist m,+y € M such that B(r + J) =
Mmpyg(r +J) = mpygr for all r € R. Now define @« : R - M
by a(r) = m,ygr. It is easy to verify that a is well-defined and
a € H(R,M). This shows that a(r) = mr for a fixed m € M and
all 7 € R. Thus B(r + J) = a(r) = mr = m(r + J), and it follows that
the R/J-module My, is Zassenhaus.

Now assume that Mp,; is a Zassenhaus module, and let ¢ €
H(R,M). Then there exist p, € M such that ¢(r) = p.r. Note
that ¢(J) = {0}. Now define g: R/J — M by @(r + J) = ¢(r). Then
¢ is well defined and ¢ € H(R/J,M) = M-, and there exists some
w € M such that ¢(r) =@(r + J) = p(r + J) = pr for all » € R. This
shows that Mg is a Zassenhaus module. a

Let Mg be a Zassenhaus module and J = anng(M). Then Mg/ is
a faithful Zassenhaus module. By Proposition 1, R/.J is a Zassenhaus
ring. Now let a € R, a(r) = p,r for all 7 € R. Define 8: R/J — R/.J
by B(r+J) = pr(r+J) = a(r)+J. Note that a(J) C J, which implies
that 3 is well defined, and thus 8 € }g/\J . It follows that there exists
some p € R such that a(r) +J =8(r+J)=(p+)(r+J)=pr+J
and thus (a — p-) € R. This shows that (a — p-)(R) C J. We conclude
that R is a Zassenhaus ring provided that { € R : p(R) C J} = {0}.

Definition 3. If R is a ring, then RT denotes the additive group of
R. Then R* is Z-reduced, if N,ennR = {0}.

Proposition 2. Let R be a ring such that R* is Z-reduced and
torsion-free. Then R = {0}.
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Proof. Let ¢ € R. Then there exists an p, € R such that o(r) = pr
for all 7 € R. Let n be a positive integer. Then np,r? = nep(r)
o(nr) = pprn?r?. Thus n(pr% — ppynr?) = 0 for all » € R and all
positive integers n. This implies ¢(r) = p,r? € N1<,nR = {0}, since

R7T is Z-reduced. o

,’,,2

Proposition 3. Let R be a Zassenhaus ring, I an index set and Mg
a submodule of the Cartesian product I = ([[; R)r. Then Mg is a
Zassenhaus module.

Proof. Let B € H(R,M), and B; is the map ( followed by the
projection in the ith coordinate of the cartesian product. Then there
exists a p, = (pgr))ie[ € II such that B(r) = p,r = (pl('r))iEIT =
(pl(r)r)ie[ for all » € R. This implies that 3;(r) = pgr)r forall r € R
and 8 € R. Thus Bi(r) = p;r for some p; € R and all r € R. This
shows that 8(r) = (pi)icrr, and since 5(1) = (p;)icr € M we infer that
B € M- and M is a Zassenhaus module. O

Remark 2. The above Proposition and the main result in [7] imme-
diately show the following:

Let x be a cardinal less than the first measurable cardinal and R
a Zassenhaus ring with identity such that the additive group of R is
slender and |R| < k. Then there exist Zassenhaus R-modules G of
arbitrarily large cardinalities. Moreover, the additive group of G is
slender and Endz(G) = R. This shows that Zassenhaus modules Mg
exist in abundance if R is a Zassenhaus ring.

Definition 4. Let R be a ring and M an R-R-bimodule.

The element m € Mpg is pure in M provided that m € Mu, u € R,
implies that u is a unit of R. The element m € M is called strongly pure
in M if, whenever s, r are non-zero elements of R such that sm € Mr,
then s € Rr. It is easy to see that any strongly pure element is pure.
Moreover, if Rr is R-reduced and m € rMpg is strongly pure, then
m €gr M is a torsion-free element.

It can happen that pure implies strongly pure:
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Let R be a commutative ring with identity and view R as a module
over itself. If s € R is a pure element of this module, then s is a unit
and thus s is also strongly pure.

There are more examples of modules where pure implies strongly
pure:

Let R be a commutative valuation domain, M a torsion-free R-
module and m € M a pure element of M. Assume 0 # s,7 € R
such that sm = m/r for some m’ € M. If s ¢ Rr, then r € Rs and thus
r = as for some @ € R. Then sm = m’'as and m = m’a for the pure
element m implies that a is a unit of R and we get the contradiction
s € Rr. This shows that the pure element m € M is strongly pure.

Let S =R(+)M ={[]]:r € R,m € M}. We want to compute S.
To this end, note that [10\/1} is an ideal of S.

Let ¢ € S. Then there exist o € Endz(R), 8 € Homgz(R, M) and

v € Endz(M) such that 1) may be presented as ¢ = {Z H Note that

v([,]) = [gﬂ o] = [Q(T;fy)(m)] It is easy to see that ¥ € S- if

and only if ¢ = [Z r())-] for some p € R and p € M.
First we need:

Lemma 1. Let R be a left Ore domain and pM_a left R-module
of rank at least 2. Then M = R-, i.e., for any ¢ € M, there is some
p € R such that p(m) = pm for allm € M.

Proof. Fix a torsion-free element m € M. Then ¢(m) = pm for
some p € R. Let my € M such that {m,m;} is linearly independent
over R. Then ¢(m;) = pymy for some p; € R and there is some
o € R such that ¢(m + m1) = o(m + my). Since m,m; are R-
linearly independent we infer that p = o = p;. Now let p € M be
another torsion-free element such that {m,u} is linearly dependent.
Then there exist 7,p € R such that rm + pu = 0 and 7 # 0 # p.
We want to show that {u, m1} is R-linearly independent. To this end,
let rg,71 € R be such that rou + r1m1 = 0. We may assume that
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ro # 0. Since R is left Ore, we have Rro N Rp # {0}, and there exist
Sp, 0 € S such that sorg = op # 0. Note that sorou + sorymi = 0, and
it follows that opu + sorym; = 0 and an obvious substitution yields
o(—rm) + sorym; = 0 and we conclude or = 0 = sory. Since R is a
domain and o # 0 # sg, we have that » = 0 = 7, which shows that
{p, m1} is R-linearly independent and ¢(m1) = pmi. Now the first
argument shows that ¢(u) = pu as well and we have that ¢(v) = pv
for all torsion-free elements v € M. Let u € M be a non-torsion-free
element, i.e., there is some 0 # t € R such that tu = 0. By way
of contradiction, we assume that there is some 0 # s € R such that
s(m + p) = 0. Since R is Ore, there are non-zero elements z,y € R
with zs = yt # 0. Now 0 = z0 = zsm + xsy = xsm + ytu = rsm,
which contradicts the choice of m being torsion-free. Thus m + pu is
torsion-free and we get ¢ () = ¢((m+p)—m) = p(m+p)—p(m) = pp.
This shows that ¢ = p-. O

We are now ready for the following:

Lemma 2. Let R be a left Ore domain, RMg an R-R-bimodule

such that M is an R-module of rank at least 2. Let o € Endz(R),
3 € Homgz(R, M) and v € Endz(M). Then ¢ = [g ?/} € R(+)M if
and only if

(a) a € R and there are p, € R such that a(r) = p,r forall0 #r € R
and

(b) There is some py € R such that y(m) = pom for allm € M, i.e.,
v € R- and

(¢c) There are p, € M such that B(r) = p,r, i.e., 8 € H(R,M) and

(d) (po — pr)m € Mr for all 0 # r € R and all m € M, i.e.,
(po — pr)M C Mr for all0 #7r € R.

Proof. For r,p € R and m, u € M we have [H [T]:["'O] [I]=

m pop ] Lm
{Mf’[pm] Now let ¢ = [g ﬂ € R(+)M. Then v () = [B(jf;)(m)} =
Pr,mT

ur,mrerr,mm] for some p,,, € R and p, ., € M, and it follows that

B(r) +v(m) = pir.mr + pr.mm for all r € R and m € M.



146 MANFRED DUGAS

Moreover, «o(r) = p,r and p, = pr,, is independent of m for all
0#r € R and all m € M since R is a domain, which shows (a).

For r = 0 we get y(m) = po,,m»m which shows that v € M and thus,
by Lemma 1, we have y(m) = pom for all m € M and pom = pgmm
for all m € M. This proves (b).

For m = 0, we get 5(r) = o7, which shows (c).

We now have i, or + pom = pirmr + pym for all 0 # r € R and all
m e M, ie.,

(,Ur,m - NT,O)T = (po — pr)m,
which shows (d).

To show the converse, assume that (a)-(d) hold. Then there exist
0r,m such that (po—p,)m = o, 7. Define p,. , = pir+0, . The above

computations now show that ¢ [ ] = [,B(r)af:,)(m)] = [”Tﬂzom} =
{ Pr 0} [;], since

HKr,m Pr

frmT + e = (f + Op )T + pr = it + Op T + prm
= 7+ (po — pr)m + prm = ppr + pom.

—

This shows that ¢ € R(+)M. o

Corollary 1. Let R = Z and M = (Q® Q);. Then R is a
Zassenhaus ring and Mg is a Zassenhaus module, but R(+)M is not a
Zassenhaus ring.

Proof. Let ¢ = [8 idOM ] Then ¥ € Rm by Lemma 2 since M is
divisible. It is easy to see that ¢ ¢ (R(+)M)-. a]

The following will come in handy.

Proposition 4. Let R be a ring, M an R-R-bimodule and 8 €
H(R,M). Let ¢ = [0 0]. The following hold:

8o

(a) ¥ € R(+)M and
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(b) ¥ € (R(+)M)- if and only if B € M-.

(¢) If R(+)M is a Zassenhaus ring, then Mg is a Zassenhaus module.
If Mg is also faithful, then R is a Zassenhaus Ting.

Proof. Since § € H(R, M) there exist u, € M such that 8(r) = p,r
forall? € R. Thus ¢ [, | = [ 0 } = [ 0 0} [ ] and (a) follows.

,
m HrT pr 0
We now show (b). If 8 = p-, then we can use the last equation

to infer that ¢ € (R(+)M)-. Assume that ¢ = [z 2} - € (R(+)M)-.

Then o [;] = [Mi:m} = {ﬂ?r)] For r = 1, we get p = 0 and thus
B(r)=pr forallr € R, ie., B € M-.

Part (c) is an immediate consequence of parts (a), (b) and Proposi-
tion 1. m|

Definition 3. Let R be a ring and Mg an R-module. Then My is
called R-reduced, if NozrcrMr = {0}.

We have:

Proposition 5. Let R be a Zassenhaus Ore domain, M R-reduced
and gM of rank at least 2. Then

R(O)M = { [”' 2] . pe R, € H(R, M)} — R(+)(H(R, M)).

-

Proof. Let ¢ € R(+)M. Condition (d) of Lemma 2 now becomes
(rm — tr0)T = (po — p1)m for all m € M and 0 # r € R since R is a
Zassenhaus ring. Since Mg is R-reduced and g M is faithful, we infer
that pp = p1 =: p and ¢ has the desired form. ]

Thus we have:

Proposition 6. Let R be a Zassenhaus left Ore domain, Mg reduced
and RM of rank at least 2. Then R(+)M is a Zassenhaus ring if and
only if M is a Zassenhaus module.

Theorem 1. Let R be a left Ore domain and gMpg an R-R-bimodule
such that g M has rank at least 2.
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(a) Assume that Mp is R-reduced and faithful.

Then R(4+)M is a Zassenhaus ring if and only if R is a Zassenhaus
ring and Mg 1s a Zassenhaus module.

(b) Let Rt be Z-reduced and torsion-free. Assume that there is some
strongly pure element mg € M.

Then R(+)M = {[Pﬁ 2] pERBE H(R,M)}.

Thus, R(+)M is a Zassenhaus ring if and only if Mg is a Zassenhaus
module.

Proof. First we prove (a). If R(+)M is a Zassenhaus ring, then Mg

and R are Zassenhaus by Proposition 4 (c¢). To show the converse,

assume Y = [g 3} € R(+)M. By Lemma 2, there is some p,py €

R, € M such that a(r) = pr, B(r) = pr for all » € R and y(m) = pom
for all m € M. Moreover, (po — p)ym € Mr for all r € R,m € M.
Since grM is faithful and Mg is R-reduced, we infer pg = p and thus

P = {Z ?)} -, which shows that R(+)M is a Zassenhaus ring.

—

We now prove (b). Let ¢ = [g 3} € R(+)M with a(r) = p,r for all

0 #r € R and 3(r) = p,r for some p, € M. Moreover, y(m) = pom
as in Lemma 2. By Lemma 2 (d), we have that (pg — p,)mo € Mr, and
it follows that pg — p, € Rr for all r € R since my is strongly pure. We
infer that (por — pr7) = (po - —a)(r) € Rr?. Thus (py) — a € R = {0}
by Proposition 2. This shows that ¢ = [pﬁo' p(;_} for some 8 € H(R, M)

o —

has the desired form. By Lemma 2, any ¢ of this form is in R(+)M.

We infer that Rm = {[% :3_} pER,PE H(R,M)}. Moreover,
R(+)M is a Zassenhaus ring if and only if Mg is a Zassenhaus
module. O

Corollary 1 shows that the hypothesis “R-reduced” is needed in the
following:

Corollary 2. Let R be an integral domain and M an R-reduced R-
module such that M has rank at least 2. Then R(+)M is a Zassenhaus
ring if and only if R is a Zassenhaus ring and M is a Zassenhaus
module.
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Note that if Q ; R is a field and M is an R-vector space, then
H(R,M) = Homgz(M). This is an example where neither R nor M is
Zassenhaus. We will now show that even Zassenhaus rings may have
non-Zassenhaus modules.

Example 1. Let R be a Dedekind domain, not a field, but a
Q-algebra. Then there exists an R-module M such that M is not
Zassenhaus.

Proof. Let II be the set of prime ideals of R. For P € Il let Rp denote
the localization of R at P and mp € R such that mpRp is the maximal
ideal of the discrete valuation domain Rp. Note that there are Q-
subspaces Cp,; of Rp such that 73R, = ®;>,Cp,; foralln =0,1,2,....
Pick any ap € Endg(Rp) such that ap(Cp;) C Cpg; for all i > 0.
Note that for any r € Rp, there is some n and a unit © € Rp such that
r = m%u. This implies that ap(r) = ap(rhu) = 72y for some y € Rp.
Thus ap(r) = mpyu !t (rpu) = mp,r for mp, = rpyu—'. This shows
that ap € f:; but ap ¢ Rp-. Now let M = [[p.y Rp, and define
a € Endq(M) by o = (ap)pen. Let @ denote the natural embedding
from R into M followed by a, i.e., &(r) = (mp,r) = (mp,)r = m,r
for m, = (mp,)pen. Note that mp, € Rpr, and thus there is no
mp € Rp such that mp, = mp for all r € R. This shows that
a € HR,M), but @ ¢ M-. If R = Q[z] is the rational polynomial
ring, then, by [3, Corollary 4], R is a Zassenhaus ring and M is a
torsion-free, R-reduced R-module but not Zassenhaus. o

Proposition 7. Let the Q-algebra R be a discrete valuation domain
and M an R-module. Then R(+)M is not a Zassenhaus ring.

Proof. The case where R is a field follows from [6, Proposition 5].
If R is not a field, we have seen in the proof of Example 1, that there
is some a € R such that a(r) € Rr? for all r € R. It follows from

—

Lemma 2 that ¢ = [g‘ 8] € R(+)M but ¢ ¢ (R(+)M)-. O
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3. Subrings of algebraic number fields.

Notation 1. Let F' = Q(w) be an n-dimensional Galois extension
of Q with primitive element w and Galois group G = {g1,92,--- ,9n}
and ldF =Jg1-

Let O denote the ring of algebraic integers of F', and let {aq,az, ...,
an} be an integral basis of Op. Let A = [g;(a;)|i<i j<n.

Note that A is an n X n-matriz with entries in Op.

Let p be a prime integer such that p does not divide ma = det(A).

Let R be a full, integrally closed subring of F' and N a finite rank
torsion-free R-module.

For any (prime) ideal P of OF, let Fix (P) = {g € G : g(P) = P}.

Note that for any ¢ € Endq(F') there are unique r; € F such that
© = 1<icnTibi, i-e., Endq(F) = F[G], the group ring of G over F.

We need the following

Claim 1 [10, Lemma 2.5] (see also [3, Proposition 3]). With the
notations as above, let ¢ = >, ., 1ig; € Endz(Or), and let P be
a prime (mazimal) ideal of O lying above the prime integer p (i.e.,
p € P) such that o(P*) C P* for all positive integers k. Then r; = 0
for all i such that g; ¢ Fix (P).

Claim 2. With the notations as above, let S = (Op)p D OF be
the localization of OF at the prime ideal P. Then S = S[Fix (P)], the
group ring of Fix (P) over S.

Proof. Since {P*S : k > 1} is the list of all non-trivial ideals of
the discrete valuation domain S, we have that S[Fix (P)] C §. For
the other inclusion, let ¢ € S. There exists a unit u € S such that
up(Or) € Op. Note that up(P*) = up(P*S N OFr) C up(P*S) N
up(Or) C PESNOp = P*. This shows that up € Endg(OF) is such
that up(P¥) C P* for all k > 1 and we have up € Op[Fiz(P)] by
Claim 1. Thus ¢ € v OF[Fix (P)]N S C S[Fix(P)]. o
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Example 2. We will construct a finite rank discrete valuation
domain S that is not Zassenhaus and not a Q-algebra. Moreover, S
does not admit any Zassenhaus modules Mg.

Proof Let F = Q(v/3,i) = Q(i + V3) = Q(v—1,V/=3). Let
K = Q(v/-1) and L = Q(v/-3). Then F = KL. Note that
and —1 = 3mod4 and thus K has discriminant —4. Moreover,
—3 = 1lmod 4 which implies that the discriminant of L is —3. This
shows that K, L have relatively prime discriminants whose product
squared is the discriminant of F and O = OgOp, by [9, page 68,
Proposition 17]. Moreover, 5 does not divide the discriminant of F,
which means that the prime 5 is unramified in Op. The primitive
element w = i + /3 has minimal polynomial m(z) = z* — 422 + 16 and
m(z) = (z* + 2% + 1)mod 5. Note that z* + 2% + 1 = u(x)v(z) where
u(r) = 22 + 2+ 1 and v(z) = 22 — z + 1 are irreducible mod5. Let
D = 9Op, P = u(w)D + 5D, and Q@ = v(w)D + 5D. Then P,Q are
prime ideals of D such that 5D = P(Q) is the prime factorization of 5D.

Note that u(w) =3+v3+1i+2iv3 and v(w) =3-v3—i—23.
Let G = {idr,a, (3,7} be the Galois group of F where a(v/3) =
—V3,a(i) = i and B(v3) = V/3,8(i) = —i. Of course, v = af.
Obviously, v(u(w)) = v(w), which implies v(P) = Q. It is easy to verify
that 13a(u(w)) = 13a(3 + V3 +i +2iv3) = 13(3 — V3 +i — 2iV/3) =
(34+v/3+i+2iv/3)(—5+2v3+12i —10i1/3) € P and we infer a(P) = P
and Fix (P) = {idp, a}.

Now let S = Dp be the localization of D at the prime ideal P. Then
S is a discrete valuation domain and all non-trivial ideals J of S have
the form J = P*S for some k > 1. Moreover, S = S[Fiz(P)] # S-.
Note that none of the rings S, = S/(P"S) is a Zassenhaus ring. By
Proposition 1 and Remark 1, S has no Zassenhaus modules. u]

Recall that a ring R is an E-ring if R- = Homg(R, R). Of course,
every E-ring is a Zassenhaus ring. The results in this section and in
[10] allow us to find many examples of Zassenhaus rings that are not
E-rings. We still use Notation 1. It is well known that S = O is not
an E-ring but a Zassenhaus ring. Let I be a (finite) set of prime ideals
of S such that ¢ € G and o(P) = P for all P € II implies that o = idp.
Then the localization R = Sy is a Zassenhaus ring. It can easily be
arranged that p(II) = II for some idp # p € G. In this case, R is not
an E-ring.
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The module N over an (E-ring) R is called an E-module, if
Homgz(R,N) = N.. Trivially, any E-module is a Zassenhaus mod-
ule. E-modules of finite rank were studied in [10]. It is easy to check
that the results in [10, Section 2] all hold if one replaces “E-module”
by “Zassenhaus module” and “Homz(R, N)” by “H(R, N)”. The same
can be said about the results in [10, Section 3]. We illustrate this with
the following:

Example 3. Let F be a quadratic number field and p a prime integer
such that pOr = PQ for two distinguished prime ideals of Op. Let
G = {idp, o} be the Galois group of F. Then ¢(P) = @ and it follows
that S = (OF)(p ) is a Zassenhaus ring but not an E-ring. The ring
S is a subring of the ring R = (Op)p and thus R is an S-module.
We will show that Rg is a Zassenhaus module. It is enough to show
that o ¢ H(S, R). By way of contradiction, assume otherwise and pick
0#x€P—0Y(PNQ). Then o(z) = [o(z)z ]z € Rz, which implies
that o(z)z ! € R and o(z) € Q — P is a unit in R. Thus z ! € R and
we get the contradiction 1 = z~ !z € P. Of course, this example can
be vastly generalized.

4. The case of S = Z[z]. In this section, S will always denote
the integer polynomial ring S = Z[z]. We define J = {(f(z)/g(z)) :
f(z),g9(z) € S, g(z) primitive }. Recall that S is a subring of the
integral domain J, and all ideals I of J have the form I = nJ for some
integer n.

Here is another Zassenhaus ring which admits a non-Zassenhaus
module:

Example 4. There exists a commutative ring R such that R is not
a Zassenhaus ring, but some epimorphic image of R is a Zassenhaus
ring.

Proof. Note that J is a ring and every element of J is of the form of an
integer times a unit of J. Define ¢ € Homz(S, J) by o(f(z)) = f(z?).
Let y = ng(z) € S with g(z) a primitive polynomial. Then g(z) is a
unit in J and we have p(y) = ng(z?)g(z) ~'g(z) = (9(x?)/g(z))y where
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(9(z%)/g(z)) € J and it follows that ¢ € H(S,J) — (J-). Now consider
R = S(+)J. By Proposition 4 (c), the ring R is not a Zassenhaus ring,
but S = R/J is a Zassenhaus ring. O

Let S C J be as above, and let ¢M; be an S-J-bimodule. We will
show that H(S, Ms) = Homz(S, M):

Assume that ¢ € Homg(S, M). Let y = ng € S be such that n € N

and g € S is primitive. Then ¢(y) = ¢(9)g ' ng = (¢(9)g~ ')y and

©(g9)g~! € M since g~! € J. This shows that ¢ € H(S, M).

If R is a ring with identity, then R is naturally a subring of R. This
allows us to use transfinite induction to define an ascending chain/_\of
rings {R(®) : o an ordinal} as follows: Let R(®) = R and R(TY) = R(®).
For limit ordinals \, we define R = U,y R(®). There is an example in
[3] for which this transfinite chain never terminates, i.e., R(®) ¢ R(@+1)
for all ordinals a. We will present another such example, where all the
rings in the transfinite chain are idealizations of S = Z[z]-modules.

Recall that by Proposition 5, we have

S(HM = { [% 2] .peS,8eH(S, MS)} — S(+)(Homg(S, M)).

For s € S,¢ € Homgz(S, M), j € J, define (spj)(z) = sp(x)j for
all z € S. Then ¢ € Homgz(S,M) and Homgz(S, M) becomes an

—

S-J-bimodule. We may define R® = S(+)J and R = RO =
S(+)(Homgz(S,J)). Note that J naturally embeds into Homg(S, J)
via j(s) = sj for all s € S. This induces a natural embedding of R(®)
into R, More generally, given M there is a natural embedding of M
into Homg (S, M) by m(s) = ms for all m € M,s € S. This allows us
to define R“tV) = S(+)M(® = S(+)Homgz(S, M(¥)) = S(+)M(>+D)
with M(©) = J. Note that M(*) ; M1 via the natural embedding.
Note that the chain {R(®) : @ an ordinal} never terminates.

On the other hand we have the somewhat surprising:

Lemma 3. Let A be a torsion-free, Z-reduced abelian group. Then
Ms = A®z S is a Zassenhaus module.
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Proof. Let s = Y, i<y kiz® € S be such that kg # 0. Let
¢ € H(S,M). Then there are a, o € A such that

p(@) = Y ana®e® € M =Baso(A® ).
0<a<d,

Since ¢ € H(S,M), there is a ¢, € M such that ¢(s) = c,s for all
s€S. Let cs = ZOSBSNS lep ® P,

We compute

o(0) = X k(o) = 3 (P v 90°)

On the other hand,

-y ((Ss)or)

Thus, for all @ > 0, we have

(%) Zogiga ls,a—iki = Zizo kiaio = EogigN kitia.
Note that ¢(ko) = >, l1,ako ® % = >, koao,o ® x* and it follows
that ag,o = £1,o for all a.

Now let t(a,s) = — > iy KiG0,a—i + D g<icn Kiti,a € A. Since
A is Z-reduced, there is some natural number ||t(s,a)| such that
t(a, s) ¢ ||t(a, s)||A provided that t(a, s) # 0.

Let wy = lem {||t(a, s)|| : t(e, ) # 0,1 < a < N}
(%) Assume that w, divides the integer ko = s(0).
We will show that
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(% * x) ls.o = ag, for all a > 0.

We proceed by induction over . For a = 0 we have the equation
es,oko = k0a070 + Ei>1 k‘iai,o, and it follows that k61(2i>1 kiai70) cA
no matter how the k;’s are chosen. Since A is Z-reduced, we infer that
aio = 0 for all ¢ > 1, and we have that {59 = a0 for all s € S. This
shows that (* % x) holds for « = 0.

Now assume that (x % %) holds for all 0 < 8 < a. Now (x)
becomes {5 ko = koGo,a — Y1 <icq KiG0,a—i + Y g<icn Kilia, and thus
ko(ls,o — ao,a) = tla,s). If by o —aoo # 0, we get the contradiction
ky't(a,s) € A by (x+). This shows that {5, = ag o for all s € S that
satisfy (xx), i.e., s(0) is “big enough.”

For such an element s € S we have that ¢, = ). lso ® 2% =
Y0 ®z* = p(1) = p(zY). Now let v € S. Then there exists
some k € Z such that k + v satisfies (**). As we just have seen, this
implies p(1)k + o(v) = p(k +v) = p(1)(k +v) = ¢(1)k + ¢(1)v and
the desired equation ¢(v) = ¢(1)v follows for all v € S. Thus Mg is a
Zassenhaus module. O

We also need:

Lemma 4. Let S = Z[z] C R C V be rings with torsion-free additive
groups and pMg =V @z S. Let 0 #t € R and s € S be such that
t®1=ms for someme M. Thens € Z, n =u®1 for someu eV
and t = us.

Proof. Let s = i icn k;x’. There exist finitely many v; € V such
that m =37, v; ®x’. Thent®1 = ms = (>, vj ®xj)(20§i§N kizt) =
Y0 (X o<ica Va—iki) ® . This implies that ¢t = voko and ko # 0 since
t # 0. We have

(¥) 0 = > gcicqVa—iki for all & > 1. An easy induction shows
that v; = vog; for some g; € Q with go = 1. Now ¢t = vy(goko) and
V(D p<ica da—iki) = 0. Let g(z) =3, gjz? € Q[z]. The equations (*)
imply that g(z)s = qoko = ko. We infer that g(z) = 1 and s = kg are
constant polynomials. It follows that m = vy ® 1, s = kg and t = vgkg
as claimed. n]
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We also need

Lemma 5. Let M = (R ®z S)e1 ® (R ®z S)ez and M = {p €
Homz (M, M) : o(m) € Rm for all m € M}. If ¢ € M, then there
exists some p € R such that o(m) = pm for allm € M.

Proof. Let ¢ € M. Then there exist psi € R such that ¢((1®
s)e;) = (ps; @ s)e; for i = 1,2 and ¢((1 ® s)er + (1 @ s)e2) =
ps((1 ® s)er + (1 ® s)ez), and it follows that ps1 = ps = pso for
all s € S. Now p((1® s)e1 + (1@ t)er) = ps((1® s)er + (1@ t)eg) =
ps(1 ® s)er + pi(1 ® t)es, and it follows that ps = p; for all s,t € R.
Thus there is an element p € R such that p(1®s) =p(1®s) =p® s
for all s € S. Let r € R, and compute ¢((1 ® s)e; + (r @ s)ez) =
Trs((1®8)er + (r@s)es = (pQ s)eq +tr s (1 ® s)ez where p((r ® s)ex =
trs(r @ s)es. It follows that p = 7., and pr = t,,r. Therefore,
o((r® s)es = (trsr ® s)ez = (pr @ s)ez = p((r ® s)ez). In a similar
fashion, one can show that ¢((r®s)e; = p((r®s)ey) forallr € R,s € S
and R®z S is additively generated by elements of this form. This shows
that ¢(m) = pm for all m € M. O

Now we are ready to prove:

Theorem 2. There exists a commutative ring R and R-module M
of rank at least 2, such that R is not a Zassenhaus ring, but R(+)M is
a Zassenhaus ring.

Proof. Let S = Z[z], and let J be as defined at the beginning of this
section. By Example 4, the ring R = S(+)J is not a Zassenhaus ring.

Let RMs = (R ®z S)er ® (R ®z S)ey, which is naturally a R-S-
bimodule, which turns into an R-R-bimodule p Mg by setting MJ =
{0}, i.e., My is not faithful but g M has rank at least 2.

Define T'= R(+)M.
Recalling the notations of Lemma 2, let ¢ = [;2] € T and

mo = (1®1)e; € M. Theny [ ] = [5:1: pfm} (] [Mym’j;;:’mm],
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and it follows that a(r) = p, mr and B(r) +y(Mm) = firmr + pr.mm for
alre R,me M.

For r = 0, we get y(m) = po,mm, which means that v € M and by
Lemma 5, there is some py € R such that y(m) = pgm = po,mm for all
m € M.

For m = 0, we get 8(r) = p,or for all » € R and thus § € H(R, M).
By Lemma 3 and Remark 1, My is a Zassenhaus module and thus there
is some pg € M such that 3(r) = por = pror for all r € R.

Now we have por + pom = prm? + prmm.

It follows (po — Pr.m)m = (Wpm — po)r for all r € R,m € M. We
choose m = mg and obtain (pg— pr,m, ) (1®1) = br for some b € RQzS.
Now apply Lemma 4 and infer that pg = pym, forallr € R — (Z® J).
This shows that py = prm, and a(r) = por for all r = s+ j € R such
that s € S is not constant. Let z € Z, j € J and o € S any polynomial
of positive degree.

Then a(z + j) = a((z —0c+j)+0) = a(z —0 + j) + a(o) =
po(z — o + j) + poo = po(z + j). This shows that a = py- € R-.

It follows that ¢ = {po_' 0

u po | € T, and we have that T is a Zassenhaus

ring. ]
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