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BOUNDING MULTIPLICITY BY
SHIFTS IN THE TAYLOR RESOLUTION

MICHAEL GOFF

ABSTRACT. A weaker form of the multiplicity conjecture
of Herzog, Huneke, and Srinivasan is proven for two classes of
monomial ideals: quadratic monomial ideals and squarefree
monomial ideals with sufficiently many variables relative to
the Krull dimension. It is also shown that tensor products,
as well as Stanley-Reisner ideals of certain unions, satisfy the
multiplicity conjecture if all the components do. Conditions
under which the bounds are achieved are also studied.

1. Introduction. In this paper we examine a relaxation of the
multiplicity conjecture by using non-minimal free resolutions.

Throughout the paper we work with the polynomial ring S =
k[x1, . . . , xn] over an arbitrary field k. If I ⊂ S is a homogeneous
ideal, then the (Z-graded) Betti numbers of S/I, βi,j = βi,j(S/I), are
the invariants that appear in the minimal free resolution of S/I as an
S-module:

0→
⊕

j

S(−j)βl,j →· · ·→
⊕

j

S(−j)β2,j →
⊕

j

S(−j)β1,j →S→S/I→0.

Here S(−j) denotes S with grading shifted by j and l denotes the
length of the resolution. In particular, l ≥ codim(I).

Our main objects of study are the maximal and minimal shifts in
the resolution of S/I defined by Mi = Mi(S/I) = max{j : βi,j �= 0}
and mi = mi(S/I) = min{j : βi,j �= 0} for i = 1, . . . , l, respectively.
The following conjecture due to Herzog, Huneke, and Srinivasan [6] is
known as the multiplicity conjecture.

Conjecture 1.1. Let I ⊂ S be a homogeneous ideal of codimension
c. Then the multiplicity of S/I, e(S/I), satisfies the following upper
bound:
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e(S/I) ≤
(

c∏
i=1

Mi

)
/c!.

Moreover, if S/I is Cohen-Macaulay, then also

e(S/I) ≥
(

c∏
i=1

mi

)
/c!.

The multiplicity conjecture was first motivated by a result of Huneke
and Miller [9] which states that if S/I is Cohen-Macaulay and has
a pure resolution (that is, mi = Mi for 1 ≤ i ≤ c), then e(S/I) =∏c

i=1 mi/c!. Since then there has been much additional evidence, in-
cluding many papers establishing the multiplicity conjecture for special
classes of ideals. Paper [4] provides an excellent overview of the major
results. Recently, the multiplicity conjecture has been established in
the Cohen-Macaulay case in [3].

We may instead use an arbitrary free resolution in the place of the
minimal free resolution. Let I be a homogeneous ideal of S. Let
F ′ be the minimal free resolution of S/I and let F be an arbitrary
free resolution. If βij(F) are the Z-graded Betti numbers of F , then
βij(F) ≥ βij(F ′) by the minimality of F ′. Let Mi(F) = max{j :
βi,j(F) �= 0} and mi(F) = min{j : βi,j(F) �= 0}. It follows that
Mi(F) ≥ Mi(F ′) and mi(F) ≤ mi(F ′). Hence we obtain a weaker
from of the multiplicity conjecture.

Conjecture 1.2. Let I ⊂ S be a homogeneous ideal of codimension
c. Let F be an arbitrary free resolution of S/I. Then e(S/I) satisfies
the following upper bound:

e(S/I) ≤
(

c∏
i=1

Mi(F)

)
/c!.

Moreover, if S/I is Cohen-Macaulay, then also

e(S/I) ≥
(

c∏
i=1

mi(F)

)
/c!.
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For an ideal I, Conjecture 1.2 holds whenever Conjecture 1.1 holds.
We will refer to Conjecture 1.2 as the F -multiplicity conjecture.

In particular, we study Conjecture 1.2 for the Taylor resolution of
a monomial ideal. We refer to this case of Conjecture 1.2 as the
Taylor conjecture. Partial cases of the Taylor conjecture were settled
in Corollary 4.3 and Theorem 5.3 of [7]. Suppose I is a codimension c
ideal minimally generated by monomials GEN (I) := {μ1, . . . , μr}. The
Taylor resolution is a cellular resolution, in the sense of [12], supported
on the labeled simplex with r vertices, labeled μj , 1 ≤ j ≤ r. For more
information on cellular resolutions, see Chapter 4 of [12]. In particular,
the Z-graded Betti numbers of the Taylor resolution T are

βij(T ) = |{T ⊂ GEN(I) : |T | = i, deg lcm μk∈T μk = j}|,(1)
1 ≤ i ≤ c.

We will denote the minimal and maximal shifts in the Taylor resolu-
tion by m̃i = m̃i(S/I) and M̃i = M̃i(S/I) respectively. From (1), we
calculate

(2) m̃i = min{|T | : T ⊂ GEN(I), |T | = i, deg lcm μk∈T μk = j}

and

(3) M̃i = max{|T | : T ⊂ GEN(I), |T | = i, deg lcm μk∈Sμk = j}.

The outline of the paper is as follows. In Section 2 we review
necessary background on the simplicial complexes and Stanley-Reisner
ideals. In Section 3, we prove that if S/I and S′/I ′ are two graded
rings that satisfy the F and F ′-multiplicity conjectures respectively,
then S/I ⊗k S′/I ′ satisfies the (F ⊗ F ′)-multiplicity conjecture. In
Section 4, we look at several results on when the F and F ′-multiplicity
conjectures on Stanley-Reisner rings S/IΓ and S′/IΓ′ imply the F̂ -
multiplicity conjecture on S̃/IΓ∪Γ′ . In Section 5, we establish the Taylor
conjecture for squarefree monomial ideals of given Krull dimension d
and sufficiently many variables relative to d. In Section 6, we prove the
Taylor conjecture for quadratic monomial ideals and its upper bound
part for monomial ideals for which all but one of the minimal generators
has degree two. We note that while this paper was in preparation, [11]
appeared with an an alternate proof of the result on quadratic ideals.
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2. Preliminaries on Simplicial Complexes. In considering
resolutions of monomial ideals, we often reduce to the case of squarefree
monomial ideals via the method of polarization. We briefly recall
this construction. Let S = k[x1, . . . , xn] as before, and let I be a
monomial ideal with GEN (I) = {μ1, . . . , μr} and μj = x

p1,j

1 · · ·xpn,j
n

for 1 ≤ j ≤ r. For 1 ≤ i ≤ n, let di be the maximum exponent of xi in
GEN (I). Let

S′ = k[x1,1, . . . , x1,d1 , . . . , xn,1, . . . , xn,dn ].

For 1 ≤ j ≤ r, define

μ′
j :=

n∏
i=1

xi,1xi,2 · · ·xi,pi,j ,

and let I ′ := (μ′
1, . . . , μ′

r) ⊂ S′. We say that I ′ is the polarization of I.

The polarization I ′ of a monomial ideal I is a squarefree ideal, and
S′/I ′ has the same codimension, Betti numbers, and Taylor Betti
numbers as S/I [12, pp. 44-45]. Since the multiplicity of S/I can
be calculated from these invariants, S/I and S′/I ′ also have the same
multiplicity. Hence the following result holds.

Proposition 2.1. Let I ′ be the polarization of a monomial ideal
I. Then S/I satisfies the multiplicity / Taylor conjecture if and only if
S′/I ′ satisfies the multiplicity / Taylor conjecture.

The advantage of polarization is that every squarefree monomial
ideal is the Stanley-Reisner ideal of a simplicial complex. One can
then use combinatorial and topological methods available for simplicial
complexes to study the multiplicity and Taylor conjectures.

A simplicial complex Γ is a collection of subsets, called faces, of
[n] = {1, 2, . . . , n}, such that Γ is closed under inclusion and for all
i ∈ [n], {i} ∈ Γ. We will also refer to [n] as V (Γ), or the vertex set of
Γ. The dimension of a face F ∈ Γ is |F | − 1, while the dimension of Γ
is the largest dimension of a face of Γ. If W ⊆ [n], let Γ[W ] denote the
induced subcomplex on W . The vertex set of Γ[W ] is W , and the faces
of Γ[W ] are the faces of Γ that are contained in W . As shorthand, we
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denote Γ[V (Γ) − v] by Γ − v. If F ∈ Γ, define the link of F , denoted
lk Γ(F ), as the simplicial complex {G − F : F ⊂ G ∈ Γ}.

If Γ is a simplicial complex on the vertex set [n] := {1, 2, . . . , n}, then
its Stanley-Reisner ideal (or the face ideal), IΓ, is the ideal generated
by the squarefree monomials corresponding to non-faces of Γ, that is,

IΓ = (xi1 · · ·xik
: {i1 < · · · < ik} /∈ Γ),

and the Stanley-Reisner ring (or the face ring) of Γ is S/IΓ. For more
information on Stanley-Reisner rings, see [2] and [15].

We say that Γ is Cohen-Macaulay if S/IΓ is Cohen-Macaulay. We also
say that Γ satisfies the F -multiplicity conjecture when S/IΓ satisfies it,
and denote mi(S/IΓ,F) and Mi(S/IΓ,F) by mi(Γ,F) and Mi(Γ,F)
respectively.

Various combinatorial and topological invariants of Γ are encoded
in the algebraic invariants of IΓ and vice versa [2, 15]. The Krull
dimension of S/IΓ, dim S/IΓ, and the topological dimension of Γ, dim Γ,
are related by dim S/IΓ = dim Γ + 1 and so

codim(IΓ) = n − dim Γ − 1.

If F is the minimal free resolution, then Hochster’s formula for the
Betti numbers [15, Theorem II.4.8] yields the following formulas for
the minimal and maximal shifts of Γ:

(4) Mi(Γ) = max{|W | : W ⊆ [n] and H̃|W |−i−1(Γ[W ];k) �= 0},
(5) mi(Γ) = min{|W | : W ⊆ [n] and H̃|W |−i−1(Γ[W ];k) �= 0}.

Here and in the rest of the paper, H̃i(Γ;k) denotes the ith reduced
simplicial homology of Γ with coefficients in k. We also use H̃i(Γ)
when k is implicit.

The Hilbert series of S/IΓ is determined by knowing the number of
faces in each dimension. Specifically, let fi = fi(Γ) be the number of
i-dimensional faces. By convention, f−1 = 1 with the empty set as the
unique face of dimension minus one. Then,

∞∑
i=0

dimk(S/IΓ)iλ
i =

h0 + h1λ + · · · + hdλ
d

(1 − λ)d
,



442 M. GOFF

where, (S/IΓ)i is the i-th graded component of S/IΓ, d = dim Γ + 1 =
dim S/IΓ, and

(6) hi =
i∑

j=0

(−1)i−j

(
d − j

d − i

)
fj−1.

The multiplicity e(S/IΓ) is fd−1(Γ) which in turn is h0 + · · · + hd.

We also need the following definitions related to simplicial complexes.
Suppose Γ and Γ′ are simplicial complexes. We define the simplicial
join of Γ and Γ′, Γ � Γ′, as follows. V (Γ � Γ′) = V (Γ)

∐
V (Γ′), and

Γ � Γ′ = {F ∪ G : F ∈ Γ, G ∈ Γ′}.

Hence the minimal non-faces of Γ � Γ′ are precisely the minimal non-
faces of Γ and Γ′. It follows that (S ⊗k S′)/IΓ�Γ′ = (S/IΓ)⊗k (S′/IΓ′).

We say that Γ is a flag simplicial complex if IΓ is a quadratic ideal.
Equivalently, the minimal non-faces of Γ have two vertices.

Let a = (a1, . . . , ak) be a positive integer vector such that
∑k

i=1 ai =
d. We say that a (d−1)-dimensional complex Γ is a-balanced if there is
a coloring of the vertices of Γ with colors {1, . . . , k} with the property
that every face of Γ consists of at most ai vertices of color i for all
1 ≤ i ≤ k. A balanced complex, sometimes called a completely balanced
complex, is a (1, . . . , 1)-balanced complex. Balanced and completely
balanced complexes were introduced by Stanley in [14].

3. Tensor product of two resolutions. In this section we prove
that the multiplicity conjecture applies to the tensor products of two
resolutions when it applies to the two resolutions individually. Also,
we characterize the circumstances under which the tensor product of
two resolutions can be pure. For the following theorem, let (S/I,F)
and (S′/I ′,F ′) be two (not necessarily Cohen-Macaulay) rings with
free resolutions. Let the codimensions of I and I ′ respectively be c and
c′.

Theorem 3.1. If S/I and S′/I ′ satisfy the lower bound (resp.
upper bound) inequalities of the F- and F ′-multiplicity conjectures,
then (S/I)⊗k (S′/I ′) also satisfies the lower bound (resp. upper bound)
inequality of the F ⊗k F ′-multiplicity conjecture.
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If F and F ′ are the minimal free resolutions of S/I and S′/I ′

respectively, F ⊗ F ′ is the minimal free resolution of S/I ⊗ S′/I ′.
Similarly, if I and I ′ are monomial ideals and F and F ′ are the Taylor
resolutions of S/I and S′/I ′, then F ⊗ F ′ is the Taylor resolution of
(S/I) ⊗ (S′/I ′). Hence we obtain the following corollary.

Corollary 3.2. If S/I and S′/I ′ are rings that satisfy the multi-
plicity conjecture, then S/I ⊗S′/I ′ satisfies the multiplicity conjecture.
If I and I ′ are monomial ideals such that S/I and S′/I ′ that satisfy the
Taylor conjecture, then S/I ⊗ S′/I ′ satisfies the Taylor conjecture.

We remark that [8, Theorem 1.1] is an immediate consequence of
Corollary 3.2.

Our proof of Theorem 3.1 uses elementary operations on the se-
quences of minimal and maximal shifts associated with a resolution.
We will need a few lemmas to reduce to those operations.

Observe that if (S/I,F) and (S′/I ′,F ′) are graded rings with free
resolutions, then F ⊗F ′ is a free resolution of (S/I)⊗ (S′/I ′), and we
have

βrs(F ⊗ F ′) =
∑

i+j=r

∑
a+b=s

(βia(F) + βjb(F ′)) and

e(S/I ⊗ S′/I ′) = e(S/I)e(S′/I ′).

Hence we obtain the following result.

Lemma 3.3. Let mi, m′
i, and m̂i be the minimal shifts of F , F ′,

and F⊗F ′ respectively, and let Mi, M ′
i , and M̂i be the maximal shifts.

Also set m0 = M0 = 0. Then

m̂r = min{mi + m′
j : i + j = r, i, j ≥ 0} and

M̂r = max{Mi + M ′
j : i + j = r, i, j ≥ 0}

Since the multiplicity conjecture only uses the first c terms in a free
resolution of a ring S/I of codimension c, we also consider,
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Corollary 3.4. Let mi, m′
i, and m̂i be the first c, c′, and c + c′

minimal shifts of F , F ′, and F ⊗F ′ respectively, and let Mi, M ′
i , and

M̂i be the maximal shifts. Also set m0 = M0 = 0. Then

m̂r ≤ min{mi + m′
j : i + j = r, i, j ≥ 0} and

M̂r ≥ max{Mi + M ′
j : i + j = r, i, j ≥ 0}

We will now define a lower join operator � on sequences of positive
real numbers in the following way. Let m = {m1, . . . , mk} and
m′ = {m′

1, . . . , m′
k′}. Then m�m′ is a sequence of positive real numbers

of length k + k′ such that

(m � m′)r = min{mi + m′
j : i + j = r, i, j ≥ 0},

again with m0 = m′
0 = 0. Similarly, define an upper join operator ��

so that if M and M ′ are sequences of positive real numbers of lengths
k and k′ respectively, and M0 = M ′

0 = 0, then M �� M ′ is a sequence
of positive real numbers of length k + k′ with

(M �� M ′)r = max{Mi + M ′
j : i + j = r, i, j ≥ 0}.

Finally, define a function F on sequences of positive real numbers by

F (m1, . . . , mk) :=
m1 . . . mk

k!
.

Let m and m′ be the first c and c′ minimal shifts of F and F ′. Since
m � m′ is the minimal shift sequence of F⊗F ′, and S/I and S′/I ′ satisfy
the F - and F ′-multiplicity lower bound conjectures, we can prove the
(F ⊗ F ′)-multiplicity lower bound conjecture on (S/I) ⊗ (S′/I ′) by
proving that F (m � m′) ≤ F (m)F (m′). Similarly, we will prove the
(F ⊗ F ′)-multiplicity upper bound conjecture on (S/I) ⊗ (S′/I ′) by
showing that if M and M ′ are the first c and c′ maximal shifts of F
and F ′, then F (M �� M ′) ≥ F (M)F (M ′).

Lemma 3.5. For sequences of positive real numbers m and m′

of lengths c and c′, F (m � m′) ≤ F (m)F (m′). Also, for sequences of
positive real numbers M and M ′, F (M �� M ′) ≥ F (M)F (M ′).
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Proof. We will prove the first statement. The proof of the second
statement is analogous and will be omitted.

Choose a to be the minimum of all mi/i and m′
i/i, and let

W ={mi : mi = ai}∪{m′
i : m′

i = ai} = {ms1 , . . . , msj , m
′
s′
1
, . . . , m′

s′
j′
}.

Let b be the second minimum value of mi/i and m′i/i if such a b exists.

Suppose b exists. Then (m�m′)i = ai for the following j + j′ distinct
indices i: s1, . . . , sj , sj + s′1, . . . , sj + s′j′ , and perhaps some others.
Hence, if we replace each ai = mi ∈ W by bi and each ai = m′

i ∈ W

by bi, F (m � m′) will increase by a factor of at least (b/a)j+j′ and
F (m)F (m′) will increase by a factor of exactly (b/a)j+j′ . Hence we
may make this substitution without loss of generality.

Repeat the above process until mi/i = m′
j/j for all 1 ≤ i ≤ c and

1 ≤ j ≤ c′. Then m is of the form (a, 2a, . . . , ca) and m′ is of the form
(a, 2a, . . . , c′a). It follows that m � m′ = (a, 2a, . . . , (c + c′)a) and the
desired inequality holds.

The proof of the above lemma not only implies Theorem 3.1, but also
gives very restrictive conditions under which equality can be attained.

Theorem 3.6. Let S/I and S′/I ′ be Cohen-Macaulay rings
that satisfy the F- and F ′-multiplicity lower bound conjectures. Then
(S/I)⊗(S′/I ′) satisfies the (F⊗F ′)-multiplicity lower bound conjecture
with equality if and only if the following conditions hold:

(1) both S/I and S′/I ′ attain F- and F ′-multiplicity lower bounds,
and

(2) there exists a positive integer a such that mi = ai for all 1 ≤ i ≤ c
and m′

i = ai for 1 ≤ i ≤ c′.

Proof. Since S/I, S′/I ′, and (S/I)⊗(S′/I ′) are all Cohen-Macaulay,
m, m′, and m � m′ are the full minimal shift sequences of S/I, S′/I ′,
and (S/I) ⊗ (S′/I ′).

Assume without loss of generality c ≤ c′. The necessity of the
first condition is clear from the inequality F (m � m′) ≤ F (m)F (m′).
We will show that if the second condition fails, then equality fails in
Theorem 3.5. Suppose that not all values of mi/i and m′

i/i are the
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same. Also suppose that we have increased the lowest values of mi/i
and m′

i/i, as in the proof of Lemma 3.5, to the point where mi/i and
m′

i/i only take on two values: namely a and b with a < b.

Let W be constructed as in the proof of Theorem 3.5. If (S/I) ⊗
(S′/I ′) attains the F ⊗ F ′-multiplicity lower bound, then when we
replace ai = mi ∈ W and ai = m′

i ∈ W each by bi, F (m � m′)
must increase by a factor of exactly (b/a)j+j′ . Hence, of the entries
in (m�m′)i, exactly j + j′ must be of the form ai and the rest must be
of the form bi. We want to show that either all the mi/i and m′

i/i are
a or they are all b, which is equivalent to j + j′ = 0 or j + j′ = c + c′.
Suppose then, by way of contradiction, that 0 < j + j′ < c + c′.

Assume (m�m′)r = bi for some 1 ≤ r ≤ c+ c′. Then for all 0 ≤ i ≤ c
and 0 ≤ i′ ≤ c′ with i + i′ = r, we have mi = bi and m′

i′ = bi′. Hence
one of the following conditions hold:

(1) If r ≤ c, then for some 1 ≤ t ≤ c, all mi = bi for i ≤ t, and for
some 1 ≤ t′ ≤ c′, m′

i = bi for i ≤ t′.

(2) If r ≥ c′, then for some 1 ≤ t ≤ c and 1 ≤ t′ ≤ c′, mi = bi for
i ≥ t, and m′

i = bi for i ≥ t′.

(3) If c < r < c′, then mi = bi for all 1 ≤ i ≤ c.

In Case 1, assume that t and t′ are chosen maximally. Then a(t +
t′ + 1) < m̂t+t′+1 < b(t + t′ + 1), a contradiction. In Case 2,
assume t and t′ are chosen minimally, and t > 1 and t′ > 1. Then
a(t + t′ − 1) < m̂t+t′−1 < b(t + t′ − 1), a contradiction. If t = 1
or t′ = 1, without loss of generality suppose t = 1, and then Case 3
applies. In Case 3, let i be the largest index so m′

i = ai; such an i
exists by hypothesis. Then m̂i+c = ai + bc, a contradiction. Hence we
conclude that F (m�m′) = F (m)F (m′) only if m = (a, 2a, . . . , ca) and
m′ = (a, 2a, . . . , c′a).

Conversely, if both conditions are satisfied, then the minimal shift
sequence for F ⊗ F ′ is (a, 2a, . . . , (c + c′)a), and the result follows.

Theorem 3.7. Let S/I and S′/I ′ be Cohen-Macaulay rings
that satisfy the F- and F ′-multiplicity upper bound conjectures. Then
(S/I)⊗(S′/I ′) satisfies the (F⊗F ′)-multiplicity upper bound conjecture
with equality if and only if the following conditions hold:
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(1) both S/I and S′/I ′ attain the F- and F ′-multiplicity upper bound,
and

(2) there exists a positive integer a such that Mi = ai for 1 ≤ i ≤ c
and M ′

i = ai for all 1 ≤ i ≤ c′.

Proof. The proof is similar to that of Theorem 3.6 and is omitted.

In the case that I and I ′ are monomial ideals, our next theorem
provides even stronger conditions under which equality is attained.

Corollary 3.8. Let I and I ′ be nonzero monomial ideals of S and
S′ respectively, and suppose (S/I)⊗(S′/I ′) has a pure resolution. Then
I, I ′, and (I ⊗1′)⊕ (1⊗I ′) are all generated by monomials in the same
degree, say a. Moreover, for every two minimal generators μ1 and μ2

of I ⊗ 1′ ⊕ 1 ⊗ I ′, gcd (μ1, μ2) = 1.

Proof. If (S/I) ⊗ (S′/I ′) has a pure resolution, then the minimal
free resolution F of (S/I) ⊗ (S′/I ′) is pure. By Theorem 3.6, if F has
length k, then m(F) = M(F) = (a, 2a, . . . , ka). Since neither I nor I ′

have codimension 0, k ≥ 2. In particular, m1(F) = M1(F) = a, which
implies that all generators of (I ⊗ 1′)⊕ (1⊗ I ′) have degree a. Observe
that GEN ((I ⊗1′)⊕ (1⊗ I ′)) = GEN(I)

∐
GEN(I ′), so the generators

of I and I ′ are also all of degree a.

Since the minimal free resolution of (S/I)⊗(S′/I ′) is pure, β2,r((S/I)⊗
(S/I ′)) = 0 whenever r �= 2a. Consider minimal generators μ1 and μ2

of (I ⊗ 1′)⊕ (1⊗ I ′) so that the LCM of μ1 and μ2 has degree r. Then
from the first syzygy of μ1 and μ2, β2,r((S/I) ⊗ (S′/I ′)) > 0, hence
r = 2a and gcd (μ1, μ2) = 1.

Suppose Γ and Γ′ are simplicial complexes. Then all of the above
results apply to Γ � Γ′. By applying Corollary 3.8 to Stanley-Reisner
ideals, we obtain the following result.

Corollary 3.9. If Γ � Γ′ has a pure resolution, then one of the
following conditions holds:
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(1) Γ is a simplex and Γ′ has a pure resolution, or vice versa, or

(2) each of Γ, Γ′, and Γ�Γ′ is the join of a simplex and several copies
of the boundary of the simplex on a vertices.

We close this section with an interesting application of Theorem 3.1
to balanced simplicial complexes.

Theorem 3.10. Let Γ be an (a1, . . . , ak)-balanced complex, where
ai ≤ 4 for all 1 ≤ i ≤ k. Then Γ satisfies the Taylor upper bound
conjecture.

Proof. For 1 ≤ i ≤ k, let Vi be the set of vertices of Γ colored i, and
let Γi = Γ[Vi]. Let d − 1 be the dimension of Γ.

Γi is a simplicial complex of dimension at most 3. It is shown in
[5] that Γi satisfies the multiplicity upper bound conjecture, and hence
Γi also satisfies the Taylor upper bound conjecture. By Theorem 3.1,
Γ′ := �b

i=1Γi satisfies the Taylor upper bound conjecture.

Since Γ is a (non-induced) subcomplex of Γ′, fd−1(Γ) ≤ fd−1(Γ′).
Also, since Γi is an induced subcomplex of Γ, GEN (IΓi) ⊂ GEN(IΓ)
and hence GEN(IΓ′ ) ⊂ GEN(IΓ). This implies M̃(Γ) ≥ M̃(Γ′). Hence
Γ satisfies the Taylor upper bound conjecture.

Equality in Theorem 3.10 is attained only when Γ = Γ1 � . . . �Γk and
the conditions of Corollary 3.9 apply.

4. Unions of Simplicial Complexes. In this section we
consider some ways to express the multiplicity upper bound conjecture
for a simplicial complex Γ in terms of the multiplicity upper bound
conjecture for subcomplexes of Γ. This also provides our main inductive
tool for the proof of Theorem 6.3 below.

Throughout this section, we will use U(Γ,F) or U(F) to refer to
the upper bound on e(S/IΓ) = fd−1(Γ) asserted by the F -multiplicity
conjecture. If IΓ has codimension c, then M(F) is the sequence of the
first c maximal shifts of S/IΓ.

The general principle used throughout this section is as follows.
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Let Γ ∪ Γ′ be a simplicial complex of dimension d − 1. If F , F ′,
and F̂ are free resolutions of Γ, Γ′, and Γ ∪ Γ′ respectively, such
that U(F) + U(F ′) ≤ U(F̂ ), and if Γ and Γ′ satisfy the F - and
F ′-multiplicity upper bound conjectures, then Γ ∪ Γ′ satisfies the
F̂ -multiplicity upper bound conjecture as well. The reason is that
fd−1(Γ) + fd−1(Γ′) ≥ fd−1(Γ ∪ Γ′).

More specifically, suppose Γ and Γ′ are induced subcomplexes of
Γ∪Γ′. Also suppose F , F ′, and F̂ are free resolutions of Γ, Γ′, and Γ∪Γ′

respectively, so that when Mi(F) is defined, Mi(F) ≤ Mi(F̂) and when
Mi(F ′) is defined, Mi(F ′) ≤ Mi(F̂ ). This condition is satisfied when
F , F ′, and F̂ are all minimal free resolutions or all Taylor resolutions.
If Γ ∪ Γ′ has n̂ vertices and dimension d − 1, choose t ≥ 0 so that
Mn̂−d(F̂) = n̂ − d + t + 1.

One particularly important case is that of the minimal free resolution.
Say that a simplicial complex Γ is r-Leray if for all p ≥ r and W ⊆ V (Γ),
H̃p(Γ[W ]) = 0. Then t is the maximum integer such that Γ ∪ Γ′ is not
t-Leray. Equivalently, the Castelnuovo-Mumford regularity of S/IΓ is
t + 1.

Theorem 4.1. With the assumptions as above, if f0(Γ ∩ Γ′) ≤
t+d−1, then Γ∪Γ′ satisfies the F̂-multiplicity upper bound conjecture.

In fact, we will prove the following stronger result.

Proposition 4.2. Assume Γ �⊂ Γ′ and Γ′ �⊂ Γ. Assume also
that Γ has n vertices and dimension d − 1, and Γ′ has n′ vertices and
dimension d′ − 1. If d = d′ and f0(Γ ∩ Γ′) ≤ d + t − 1, then

fd−1(Γ ∪ Γ′) ≤ U(Γ ∪ Γ′) + f0(Γ ∩ Γ′) − (d + t − 1),

while if d′ < d, then

fd−1(Γ ∪ Γ′) ≤ U(Γ ∪ Γ′) − n′ + f0(Γ ∩ Γ′),

In particular, in Theorem 4.1, fd−1(Γ ∪ Γ′) = U(Γ ∪ Γ′) only if Γ and
Γ′ have the same dimension d − 1, f0(Γ ∩ Γ′) = d + t − 1, and Γ ∩ Γ′

contains no faces of dimension d − 1.
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We make a few comments before the proof. If F̂ is the minimal
free resolution and Mn̂−d(F̂) = n̂ − d + 1, then Γ ∪ Γ′ satisfies the
multiplicity upper bound conjecture. The reason is the well-known
result that Γ ∪ Γ′ is 1-Leray and hence satisfies fd−1(Γ) ≤ n̂− d + 1 =
M1(F̂) · · ·Mn̂−d(F̂)/(n̂ − d)!. (See [10] for a much stronger result.)
Thus, for an arbitrary free resolution F̂ , if Mn̂−d(Γ∪Γ′, F̂) = n̂−d+1,
i.e. t = 0, then Γ ∪ Γ′ satisfies the F̂ -multiplicity upper bound
conjecture. Thus we may assume without loss of generality that t ≥ 1.
Then Theorem 4.1 implies that if f0(Γ ∩ Γ′) ≤ d, and Γ and Γ′ satisfy
the F - and F ′-multiplicity upper bound conjectures, then Γ∪Γ′ satisfies
the F̂ -multiplicity upper bound conjecture.

In the case of a disjoint union, Proposition 4.2 implies that Γ ∪ Γ′

satisfies the F̂ -multiplicity upper bound conjecture with equality only
if both Γ and Γ′ are of dimension 0.

For simplicity, we will refer to the quantity (t + d− 1)− f0(Γ∩Γ′) as
z. By hypothesis, z ≥ 0.

Proof of Proposition 4.2. Denote the length of a sequence of positive
integers M by len M , and define F (M) =

∏lenM
i=1 Mi/(lenM)!. In

general, if N is a sequence of length r − 1,we can construct N ′ from N
by appending a value a ≥ r + 1. Then F (N ′) ≥ a

r F (N). If F (N) ≥ r,
then F (N ′) ≥ F (N) + 1.

First we treat the case that Γ and Γ′ have different dimensions, given
respectively by d−1 and d′−1. Without loss of generality, assume that
d′ < d, and that Γ and Γ′ have respectively n and n′ vertices. Then
Γ ∪ Γ′ has dimension d.

Applying the above observation to M(F̂), and using the fact that
len (M(F̂)) = len (M(F)) + n′ − f0(Γ ∩ Γ′), we have F (M(F̂) ≥
F (M(F)) + n′ − f0(Γ ∩ Γ′). Also, fd−1(Γ) = fd−1(Γ ∪ Γ′), which
proves Theorem 4.1 and Proposition 4.2 in the case that Γ and Γ′ have
different dimensions.

Now consider the case that Γ and Γ′ both have dimension d − 1.
Then Γ ∪ Γ′ has n + n′ − f0(Γ ∩ Γ′) vertices, and M(F̂) has length
n + n′ − d− f0(Γ∩Γ′). Suppose without loss of generality that n′ ≤ n.

Observe that fd−1(Γ∪Γ′) ≤ fd−1(Γ)+fd−1(Γ′), with equality exactly
when Γ ∩ Γ′ does not contain a face of dimension d − 1. Hence the
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theorem and proposition will follow if

F (M(F)) + F (M(F ′)) ≤ F (M(F̂)) − z.

By hypothesis, M(F̂) ≥ M(F) and M(F̂) ≥ M(F ′) componentwise;
hence we may replace M(F̂) by the componentwise minimal sequence
N such that N ≥ M(F) and N ≥ M(F ′) and prove

(7) F (N) − F (M(F)) − F (M(F ′)) ≥ z.

M(F), M(F ′) ≤ N , so we may replace Mi(F) with Ni and Mi(F ′)
with Ni whenever both are defined since this operation decreases the
left side of Equation (7). Next, since z ≥ 0, we may replace Mi(F),
Mi(F ′), and Ni by i + 1 whenever all three are defined since this
operation multiplies the left side of Equation (7) by a real number
less than 1. By adding F (M(F ′)) to each side of Equation (7), we may
similarly replace Mi(F) and Ni with i + 1 when the two are defined.
Finally, by adding F (M(F))+ F (M(F ′)) to each side of Equation (7),
we may similarly replace Ni with i+1 when i < n+n′−d− f0(Γ∩Γ′).

By hypothesis,

Nn+n′−d−f0(Γ∩Γ′) = n + n′ − d − f0(Γ ∩ Γ′) + t + 1.

Then, F (M(F)) = n− d +1, F (M(F ′)) = n′ − d + 1, and F (N) = n+
n′−d−f0(Γ∩Γ′)+t+1. This yields F (M(F))+F (M(F ′)) ≤ F (N)−z
as desired.

Next we prove another union related result that we will use in the
proofs of Theorems 5.4 and 6.1. Its proof is a generalization of a
calculation in [13] that is used to prove the multiplicity conjecture
for matroid complexes.

Lemma 4.3. Let Γ be a simplicial complex with dimension d − 1,
n > d vertices, and free resolution F such that Mn−d(F) = n. For each
v ∈ V (Γ), suppose Γ − v has free resolution Fv and Mi(Fv) ≤ Mi(F)
for 1 ≤ i ≤ n − d − 1. If Γ − v satisfies the Fv-upper bound conjecture
for all v ∈ V (Γ), then Γ satisfies the F-upper bound conjecture.
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Proof. Since every top-dimensional face of Γ contains d vertices,

fd−1(Γ) =
1

n − d

∑
v∈V (Γ)

fd−1(Γv)

≤ 1
n − d

∑
v∈V (Γ)

∏n−d−1
i=1 Mi(Fv)
(n − d − 1)!

≤
∏n−d

i=1 M(F)
(n − d)!

.

The condition that Mi(Fv) ≤ Mi(F) for 1 ≤ i ≤ n− d− 1 is satisfied
if all resolutions are Taylor resolutions or if all resolutions are minimal
free resolutions.

The method of reducing to unions of subcomplexes can be extended
beyond induced subcomplexes, and to unions of more than two sub-
complexes. The proof of Theorem 6.6 illustrates this principle.

5. Large simplicial complexes. The main theorem of this section
is that if a simplicial complex Γ has sufficiently many vertices relative
to its dimension, then Γ satisfies both bounds of the Taylor conjecture.
Furthermore, in this case Γ achieves neither of the Taylor bounds. We
will prove the upper bound and lower bound statements separately.

Suppose μ = xi1xi2 · · ·xir is a minimal generator of IΓ, while W ⊆
V (Γ). Say that μ is supported on W if {ij}r

j=1 ⊆ W . If Y =
{μ1, . . . , μt} is a subset of minimal generators of IΓ, we say Y is
supported on W if for each 1 ≤ i ≤ t, μi is supported on W . Let
L̃(Γ) and Ũ(Γ) be the conjectured lower and upper Taylor bounds on
fd−1(Γ).

Theorem 5.1. Let Γ be a simplicial complex of dimension d − 1
and n > 24d + 3 vertices. Then Γ satisfies the Taylor lower bound
conjecture without equality.

Proof. Suppose there are n−d distinct minimal generators of IΓ that
are supported on n′ < n vertices of Γ. Then m̃(Γ) ≤ (n′, n′, . . . , n′)
componentwise. In that case,

L̃(Γ) ≤ (n′)n−d

(n − d)!
=

(n − d)n−d
(

n′
n−d

)n−d

(n − d)!
<

(
en′

n − d

)n−d

.



SHIFTS IN THE TAYLOR RESOLUTION 453

The last inequality follows from Stirling’s approximation. We then have
( en′

n−d )n−d < 1 if n′ < (n− d)/e, which occurs if n′ ≤ n/3 and n > 11d.
In this case, since Γ has at least one face of dimension d− 1, Γ satisfies
the Taylor lower bound conjecture without equality.

It thus suffices to prove the claim that if n > 24d+3, then there exists
a set of n/3� vertices that support n − d monomials. First, we will
show that if Δ is an arbitrary simplicial complex of dimension at most
d − 1 and n′ > 4d vertices, then IΔ has at least 3(n′)2/(8d) minimal
generators. If

∏t
k=1 xik

is a minimal generator of IΔ of degree at least
3, we may without loss of generality replace

∏t
k=1 xik

with xi1xi2 and
delete all minimal generators of IΔ that are multiples of xi1xi2 . Hence
we may assume for the claim, without loss of generality, that IΔ is
quadratic, or that Δ is a flag complex.

Turán’s theorem states that if G is a graph that avoids cliques of size
d + 1, then G has at most (d− 1)n2/(2d) edges [1]. Since the graph of
Δ avoids cliques of size d+1, Turán’s theorem applies and Δ misses at
least

n′(n′ − 1)
2

− (d − 1)(n′)2

2d
=

n′(n′ − d)
2d

>
3(n′)2

8d

edges. Hence IΔ has at least 3(n′)2/(8d) generators.

If W ⊂ V (Γ) and |W | = n′, then IΓ[W ] has at least 3(n′)2/(8d)
minimal generators, each of which is a minimal generator of IΓ. If
n > 24d + 3 and n′ = n/3�, then 3(n′)2/(8d) ≥ n − d, which proves
the theorem.

Observe that we did not assume that Γ is Cohen-Macaulay. However,
the Cohen-Macaulay assumption is necessary for complexes with few
vertices.

With the hypothesis that Γ is completely balanced, we can tighten
our bound on n.

Theorem 5.2. Let Γ be a Cohen-Macaulay completely balanced
complex of dimension d − 1 and n ≥ 3d vertices. Then Γ satisfies the
Taylor lower bound conjecture.
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Proof. For 1 ≤ i ≤ d, let ni be the number of vertices of color i,
and suppose the colors are arranged so that n1 ≥ n2 ≥ · · · ≥ nd. Since
n ≥ 3d,

∑k
i=1 ni ≥ 3k for 1 ≤ k ≤ d.

Let Vi be the set of vertices of color i. Then Vi supports
(
ni

2

)
minimal

generators of IΓ: namely all monomials of the form xsxt for s, t ∈ Vi.
Since n1 ≥ 3, we conclude from the minimal generators supported on
V1 that m̃(n1

2 ) ≤ n1 and hence m̃n1 ≤ n1. Similarly

(8) m̃∑k

i=1 (ni
2 ) ≤

k∑
i=1

ni and m̃∑k

i=1
ni

≤
k∑

i=1

ni.

For
∑k

i=1 ni < r <
∑k+1

i=1 ni, we will construct a set of r minimal
generators supported on at most r +1 vertices. First, by (8), construct
a set of

∑k
i=1 ni minimal generators supported on the

∑k
i=1 ni vertices

of V1 ∪ · · · ∪ Vk. With q =
∑k

i=1 ni, label these minimal generators
μ1, . . . , μq. Then add the first r − q minimal generators, ordered
lexicographically, in Vk+1, which we will label μq+1, . . . , μr. The
support of {μq+1, . . . , μr} consists of at most r − q + 1 vertices. Hence
m̃r ≤ r + 1. Using this and Equation (8), we conclude that m̃r ≤ r + 1
for all 1 ≤ r ≤ n − d. Hence L̃(Γ) ≤ n − d + 1 and the Taylor lower
bound conjecture holds since a (d − 1)-dimensional Cohen-Macaulay
complex has at least n − d + 1 top-dimensional faces.

We need the following lemma for the proof of the Taylor upper bound
inequality.

Lemma 5.3. Let I be a monomial ideal of S with Taylor maximal
shifts M1, . . . , Mc. Suppose S has n indeterminants, of which r appear
in GEN(I). If for i < c, Mi < r, then Mi+1 > Mi. If Mi = r, then
Mi+1 = r.

Proof. This follows immediately from Equation (3).

Theorem 5.4. Let Γ be a simplicial complex of dimension d−1 and
n ≥ 9d+1 vertices. Then Γ satisfies the Taylor upper bound conjecture
without equality.
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Proof. If Γ is a cone with apex v, then Γ− v satisfies the conditions
of the theorem. Hence by induction on d we may assume without loss
of generality that Γ is not a cone. Suppose k is an integer so that k ≥ d
and n ≥ 2k+d+1. Then M̃(Γ) ≥ (2, 4, . . . , 2k, k+d, k+d+1, . . . ). We
can see that M̃i ≥ 2i for 1 ≤ i ≤ k inductively on i: if M̃i−1 ≥ 2k, then
M̃i ≥ 2k, while if 2(i − 1) ≤ M̃i−1 < 2k, then consider M ⊂ GEN(IΓ)
with |M| = i − 1 such that M is supported on M̃i−1 vertices. There
exist at least d + 1 vertices not in the support of M, which therefore
support an additional minimal generator μ of IΓ. Hence M̃i ≥ 2i by
considering M ∪ {μ}. The condition M̃i(Γ) ≥ i + d for i > k follows
from Lemma 5.3 and the fact that Γ is not a cone.

If
∏k

i=1 2i ≥ k!
(
k+d

d

)
, then Ũ(Γ) ≥

(
n
d

)
, in which case the Taylor

upper bound conjecture for Γ follows. In turn, this inequality follows
if 2k ≥

(
k+d

d

)
. By Stirling’s formula, the previous inequality follows if

2k >
(k + d)k+deked

ek+dkkdd
.

Taking the natural logarithm of both sides, the above follows if

k ln 2 + d ln d + k ln k ≥ (k + d) ln(k + d).

Let k = ad. Then, after simplification, the above equation is equivalent
to

a ln 2 ≥ (a + 1) ln
a + 1

a
+ ln a.

This is true if a ≥ 4. So k ≥ 4d and the Taylor upper bound
conjecture holds when n ≥ 9d + 1.

Our next result allows us to restrict to even smaller values of n
under suitable conditions when considering the Taylor upper bound
conjecture.

Lemma 5.5. Let C be a class of simplicial complexes that is
closed under induced subcomplexes. Suppose every complex in C of
dimension d − 1 and fewer than 3d vertices satisfies the Taylor upper
bound conjecture. Then every complex in C of dimension d−1 satisfies
the Taylor upper bound conjecture.
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C can be the class of all simplicial complexes. In Section 6, we use
Lemma 5.5 with C as the class of flag complexes.

Proof. Let Γ ∈ C, and suppose Γ has dimension d − 1 and n ≥ 3d
vertices. If Γ is a cone, then without loss of generality we may remove
the apex v to obtain Γ′ with n − 1 vertices, dimension d − 2, and
fd−2(Γ′) = fd−1(Γ). Since n − 1 ≥ 3(d − 1), the lemma applies to Γ′.
Therefore, we will assume that Γ is not a cone.

We claim that M̃n−d(Γ) = n. Assuming this claim, it follows by
Lemma 4.3 and induction on n that Γ satisfies the Taylor upper bound
conjecture. Since every set of d + 1 vertices of Γ supports a minimal
generator in IΓ, for some integer r ≥ 2d there exists t disjoint minimal
generators whose LCM has degree r. Necessarily, t ≤ r − d, and hence
M̃t ≥ r ≥ t + d. Since Γ is not a cone, it follows from Lemma 5.3 that
M̃n−d(Γ) = n. This proves the theorem.

6. Quadratic ideals. Our main result of this section is the
following.

Theorem 6.1. All quadratic monomial ideals satisfy the Taylor
upper bound conjecture, and all Cohen-Macaulay quadratic monomial
ideals satisfy the Taylor lower bound conjecture.

We will prove the lower bound and upper bound parts of Theorem
6.1 separately. Using polarization, we will assume I = IΓ for some flag
complex Γ, and we will use fd−1(Γ) as e(S/I). Then we will examine
when equality on each bound is attained.

As before, we will use L̃(Γ) to denote the conjectured Taylor lower
bound on fd−1(Γ) and Ũ(Γ) to denote the conjectured Taylor upper
bound on fd−1(Γ).

Theorem 6.2. Let Γ be a Cohen-Macaulay flag complex. Then Γ
satisfies the Taylor lower bound conjecture.

Proof. If Γ = Γ1 � Γ2, then Γ1 and Γ2 are both Cohen-Macaulay
flag complexes. Thus by Theorem 3.1, we may assume without loss of
generality that Γ is not the join of two complexes.
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Let G be the graph whose edge ideal is IΓ, that is, the vertex set of
G is [n], and {u, v} is an edge in G if and only if xuxv ∈ IΓ, or {u, v}
is not an edge in Γ. Since Γ is not the join of two simplicial complexes,
G is connected. Therefore, there is an enumeration of the vertices of
G, (i1, i2, . . . , in), with the following properties: for each 2 ≤ t ≤ n,
there exists st ∈ [t − 1] such that istit is an edge in G. Then for all
1 ≤ t ≤ n − 1, there exists t minimal generators of IΓ supported on at
most t + 1 vertices, namely

{xis2
xi2 , xis3

xi3 , . . . , xist+1
xit+1}.

Hence mt ≤ t + 1 for 1 ≤ t ≤ n − d and so L̃(Γ) ≤ n − d + 1.

Since Γ is Cohen-Macaulay, hi(Γ) ≥ 0 for 0 ≤ i ≤ d. Also, h0(Γ) = 1
and h1(Γ) = n − d. It follows that fd−1(Γ) ≥ n − d + 1, proving the
result.

Theorem 6.3. Let Γ be a flag complex. Then Γ satisfies the Taylor
upper bound conjecture.

Proof. Let Γ have dimension d− 1 and n vertices. Since all induced
subcomplexes of Γ are also flag, then by Lemma 5.5 we may assume
without loss of generality that n < 3d. Also, as in the proof of Theorem
6.2, we may assume without loss of generality that Γ is not the join of
two nonempty simplicial complexes.

Let G be the edge ideal of IΓ, as in the proof of Theorem 6.2. Again,
since Γ is not a join of two complexes, G is connected. We will consider
two cases: first the case that G has a vertex v of degree 3 or greater,
and second the case that G has no such vertex.

Assume G has a vertex v of degree at least 3, with neighbors u1, u2, u3.
Since dim Γ = d − 1, all subsets of d + 1 vertices of Γ support a
minimal generator, and hence M̃i(Γ) = 2i for i ≤ n−d+1

2 �. We see this
by identifying μ1 ∈ GEN(IΓ), removing the two vertices x1, y1 that
support μ1, identifying μ2 ∈ GEN(IΓ−{x1,y1}), and so on. Γ cannot be
written as the join of two complexes, so in particular Γ is not a cone.
Hence by Lemma 5.3, Mi ≥ i +

⌊
n−d+1

2

⌋
for i ≥ n−d+1

2 �, which yields

Mn−d ≥ n − d +
⌊

n − d + 1
2

⌋
≥ 3

2
(n − d).

Similarly, Mt ≥ 3
2 t for all 1 ≤ t ≤ n − d.



458 M. GOFF

Since vu1, vu2, vu3 are not edges in Γ, Γ is a union of induced
subcomplexes (Γ− v) and (Γ−{u1, u2, u3}). Then, as in Section 4, we
can inductively reduce the Taylor upper bound conjecture on Γ to the
Taylor upper bound conjecture on Γ1 = Γ−v and Γ2 = Γ−{u1, u2, u3}
if we can show that Ũ(Γ) ≥ Ũ(Γ1) + Ũ(Γ2).

The Taylor maximal shift sequence is nonincreasing under induced
subcomplexes. Hence

Ũ(Γ1) ≤
n − d

M̃n−d

Ũ(Γ) ≤ 2
3
Ũ(Γ).

By a similar calculation Ũ(Γ2) ≤ 8
27 Ũ(Γ). It follows that Ũ(Γ) ≥

Ũ(Γ1)+ Ũ(Γ2) as desired. This completes the case that G has a vertex
of degree 3 or greater.

Now we consider the case that G does not have a vertex of degree
three or greater. Since G is connected, G is either a path or a
cycle. Without loss of generality, suppose 12, 23, . . . , (n − 1)n are
edges in G. Then x1x2, x3x4, . . . , x2�n

2 �−1x2�n
2 � ∈ IΓ, so M̃i = 2i

for i ≤ n
2 �. Again by Lemma 4.3, we may assume without loss of

generality M̃n−d < n. Then by Lemma 5.3, M̃ = (2, 4, . . . , 2(n − d))
or M̃ = (2, 4, . . . , 2(n− d− 1), 2(n− d) − 1). If n = 2, then Γ is a pair
of isolated vertices and satisfies the Taylor upper bound conjecture.
Assume n ≥ 3, so that G contains a vertex v with two neighbors: u1

and u2. Let Γ1 = Γ − v and Γ2 = Γ − {u1, u2}. Then Γ = Γ1 ∪ Γ2. It
is easy to verify that U(Γ) ≥ U(Γ1) + U(Γ2) by calculations similar to
those above, so that we may inductively reduce the Taylor upper bound
conjecture on Γ to the Taylor upper bound conjecture on Γ1 and Γ2.

We have shown that we may inductively reduce all flag complexes to
simplices either by M̃n−d = n and applying Lemma 4.3, by expressing
Γ as the join of two flag complexes, or by expressing Γ as the union of
two flag complexes. Hence all flag complexes satisfy the Taylor upper
bound conjecture.

We now turn our attention to the question of when these bounds are
attained, starting with the lower bound. We will focus on the case
I = IΓ for a Cohen-Macaulay flag complex Γ. By Corollary 3.8, if
Γ = Γ1 � Γ2 and neither Γ1 nor Γ2 are simplices, then Γ attains the
lower bound only if Γ is the join of the boundary of a cross polytope and
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a simplex, and otherwise we have L̃(Γ) ≤ n−d+1. If L̃(Γ) ≤ n−d+1,
then since Γ is Cohen-Macaulay, Γ attains the lower bound if and only
if fd−1(Γ) = n − d + 1 and L̃(Γ) = n − d + 1, which is equivalent to
m̃i = i + 1 for all 1 ≤ i ≤ n − d.

If Γ is Cohen-Macaulay and fd−1(Γ) = n − d + 1, we say that Γ is a
generalized tree. Equivalently, there is an enumeration of the facets of Γ,
F1, F2, . . . , Fn−d+1, such that for 2 ≤ i ≤ n−d+1, Fi∩(F1∪. . .∪Fi−1)
is a face of dimension d − 2. In the case d = 2, a generalized tree is a
tree in the usual graph theoretic sense.

Proposition 6.4. Suppose Γ is a Cohen-Macaulay flag simplicial
complex and Γ attains the Taylor lower bound. Then, up to isomor-
phism, Γ is the join of a simplex and one of the following:

(1) two isolated vertices,

(2) a path of length four,

(3) the two-dimensional complex on six vertices with facets
{123, 234, 345, 456},

(4) the boundary of a cross polytope.

Proof. If Γ is a cone, we can without loss of generality remove the
apex vertex from Γ. Hence we will assume Γ is not a cone. If Γ = Γ1�Γ2

and neither Γ1 nor Γ2 are simplices, then by Theorem 3.8, condition 4
applies. Henceforth we will assume this is not the case. Then Γ must
be a generalized tree and m̃i(Γ) = i + 1 for 1 ≤ i ≤ n − d.

If Γ has three mutually disconnected vertices, then m̃3(Γ) = 3 and Γ
misses the Taylor lower bound. Thus if Γ has dimension at most one,
it is easy to see Γ must satisfy one of the conditions above.

Suppose d ≥ 3. If Γ attains the Taylor lower bound, then Γ does not
have three mutually disconnected vertices and thus has exactly two
vertices of degree d − 1: u and v. Since Γ is not a cone, Γ contains at
least 2d vertices. Γ−{u, v} contains at least 2d− 2 vertices and is also
a generalized tree. There exists u′ ∈ V (Γ) − {u, v} such that uu′ is an
edge in Γ and u′ has degree d − 1 in Γ − {u, v}. Similarly, there exists
v′ ∈ V (Γ)−{u, v} such that vv′ is an edge in Γ and v′ has degree d− 1
in Γ−{u, v}. It follows that uv, uv′, u′v, u′v′ are not edges in Γ, and if
n − d ≥ 4, m̃4(Γ) = 4. Hence Γ cannot attain the Taylor lower bound
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if n− d ≥ 4. It follows that n− d = 3 and d = 3 by n ≥ 2d. Condition
3 applies in this case.

If Γ attains the Taylor upper bound with equality and cannot be
written as a join of two complexes, then G in the proof of Theorem 6.3
cannot have a vertex of degree 3. Hence G is either a path of a cycle. It
is easy to see from the proof that the inequality Ũ(Γ) ≥ Ũ(Γ1)+ Ũ(Γ2)
is an equality only if n = 2 or n = 3.

Proposition 6.5. Let Γ be a flag complex. Then Γ attains the
Taylor upper bound if and only if Γ is the join of a simplex with one of
the following:

(1) the boundary of a cross-polytope,

(2) two isolated vertices,

(3) three isolated vertices.

We conclude with an extension of the Taylor upper bound conjecture
to ideals that are “almost” quadratic.

Theorem 6.6. Let I be a monomial ideal minimally generated by
monomials μ1, μ2, . . . , μr. Suppose for 2 ≤ i ≤ r, μi has degree 2.
Then S/I satisfies the Taylor upper bound conjecture.

Proof. We will prove the result by induction on the degree of μ1.
If μ1 has degree 2, then I is a quadratic ideal, and S/I satisfies the
Taylor upper bound conjecture by Theorem 6.1.

By polarization, we may assume without loss of generality that
I is a squarefree monomial ideal. Also without loss of generality,
μ1 = x1x2 · · ·xt. Let I = IΓ for a simplicial complex Γ, and suppose Γ
has dimension d − 1 and n vertices.

Suppose t ≥ 3. Since μ1 is a minimal generator of IΓ, [t] − {i} is a
face in Γ for 1 ≤ i ≤ t. Let Γi = Γ − {F ∈ Γ : [t] − {i} ⊆ F}. Every
face in Γ contains at most one face of the form [t] − {i}, so



SHIFTS IN THE TAYLOR RESOLUTION 461

t∑
i=1

fd−1(Γi) ≥ (t − 1)fd−1(Γ).

The minimal generators of IΓi are the same as the minimal generators
of IΓ, except μ1 is replaced by μ1/xi. Hence M̃j(Γi) ≤ M̃j(Γ) for
1 ≤ j ≤ n − d. Also, M1(Γ) = t, whereas M1(Γi) = t − 1. It follows
that Ũ(Γi) ≤ t−1

t Ũ(Γ). For 1 ≤ i ≤ t, Γi satisfies the Taylor upper
bound conjecture by the inductive hypothesis. Hence Γ satisfies the
Taylor upper bound conjecture as well.
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