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IDEALIZATION OF A MODULE

D. D. ANDERSON AND MICHAEL WINDERS

ABSTRACT. Let R be a commutative ring and M an R-
module. Nagata introduced the idealization R (+) M of M .
Here R (+) M = R ⊕ M (direct sum) is a commutative ring
with product (r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1). The
name comes from the fact that if N is a submodule of M ,
then 0 ⊕ N is an ideal of R (+) M . The idealization can be
used to extend results about ideals to modules and to provide
interesting examples of commutative rings with zero divisors.
We survey known results concerning R (+) M and give some
new ones too. The theme throughout is how properties of
R (+) M are related to those of R and M .

1. Introduction. Let R be a commutative ring with 1, and let
M be a unitary R-module. Then R (+)M = R ⊕ M (direct sum)
with coordinate-wise addition and multiplication (r1,m1)(r2,m2) =
(r1r2, r1m2 + r2m1) is a commutative ring with 1 (even an R-algebra)
called the idealization of M or the trivial extension of R by M . Note
that R naturally embeds into R (+)M via r → (r, 0), if N is a
submodule of M , then 0 (+)N is an ideal of R (+)M , 0 (+)M is a
nilpotent ideal of R (+)M of index 2, and that (R (+)M)/(0 (+)M) ≈
R. Idealization is useful for (1) reducing results concerning submodules
to the ideal case, (2) generalizing results from rings to modules and
(3) constructing examples of commutative rings with zero divisors. The
purpose of this article is to survey known results on idealization and
to give some new ones and to give a history of the subject and its
usefulness.

While we do not know who first constructed an example using
idealization, the idea to use idealization to extend results concerning
ideals to modules is due to Nagata. The preface to his famous book
Local rings [49] states: “Among the new methods and new results given
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in the present book, the following four should be noted: (1) A principle,
which is called the principle of idealization, and by which modules
become ideals, is applied manywhere in the book.” For example, in
[49] primary decomposition and the Artin-Rees lemma are proved for
ideals and then extended to modules by the principle of idealization.

The purpose of idealization is to put M inside a commutative ring
A so that the structure of M as an R-module is essentially the same
as that of M as an A-module, that is, as an ideal of A. We call this
a ringification. There are two main ways to do this: the idealization
R (+)M and the symmetric algebra SR(M). Both idealization and the
symmetric algebra construction give functors from the category of R-
modules to the category of R-algebras. The symmetric algebra is the
freest way to do this, while the idealization has the most relations.
Here R (+)M is naturally isomorphic to SR(M)/⊕n≥2 S

n
R(M) (and so

R (+)M is a graded R-algebra). In fact, for any ringification A of M ,
there are epimorphisms θ:SR(M) → A and ψ:A → R (+)M with ψθ
the natural map, Theorem 2.1. This is covered in Section 2 along with
functorial properties of the idealization functor.

Let us mention that there is a third realization of the idealization.
Let T =

{[ r m

0 r

] | r ∈ R, m ∈M}
with the usual matrix addition and

multiplication. Then T is a commutative ring with identity, the map
r →

[
r 0

0 r

]
embeds R into T and M̂ =

{[
0 m

0 0

]
| m ∈M

}
is an ideal of

T . The map R (+)M → T given by (r,m) → [ r m

0 r

]
is easily seen to

be a ring isomorphism that takes 0 ⊕M to M̂ . Of course, if you are
nervous about where “T lives,” more properly T can be viewed as the
subring

{[
(r,0) (0,m)

(0,0) (r,0)

]}
of Mat2(R (+)M).

In this paper we confine ourselves to the case where R is a commu-
tative ring with identity. But for any ring R and (R,R)-bimodule M ,
R (+)M = R ⊕M with the product (r1,m1)(r2,m2) = (r1r2, r1m2 +
m1r2) is a ring that contains an isomorphic copy of M , namely 0⊕M ,
as a two-sided ideal. More generally, if R and S are rings and M is an
(R,S)-bimodule, then A =

(
R M

0 S

)
=

{[ r m

0 s

] | r ∈ R, s ∈ S, m ∈M}
is a ring under the usual matrix operations. This construction has been
used to produce some interesting examples such as a left Artinian ring
that is not right Artinian. For more on this construction, see [23, 51].
However, in [51] it is noted that A may be considered as the idealiza-
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tion (R×S) (+)M where M has the natural R×S-bimodule structure
(r, s)m = rm and m(r, s) = ms. There is an extensive literature in the
noncommutative case. Noncommutative ring theorists seem to prefer
the term “trivial extension” over “idealization” and to some extent in
the study of Noetherian commutative rings this is also true (but, of
course, Nagata’s book which introduced idealization focuses almost en-
tirely on Noetherian rings). While we will exclusively use the notation
R (+)M for the idealization, other commonly used notations are R�M
and RαM and the first author has sometimes used R(M). Finally, we
mention that the idealization construction can be generalized to what
is called a semi-trivial extension. Let R be a commutative ring, M an
R-module, and ϕ:M ⊗R M → R an R-module homomorphism satis-
fying ϕ(m ⊗ m′) = ϕ(m′ ⊗ m) and ϕ(m ⊗ m′)m′′ = mϕ(m′ ⊗ m′′).
Then RαϕM = R ⊕M with coordinate-wise addition and multiplica-
tion (r,m)(r′,m′) = (rr′ + ϕ(m ⊗ m′), rm′ + r′m) is a commutative
ring, called a semi-trivial extension of R by M . (For ϕ = 0, we have
idealization.) See [57] for details.

In Section 3 we study the ideals of R (+)M and certain distinguished
subsets of R (+)M . We determine the maximal, prime, homogeneous,
primary and radical ideals of R (+)M as well as the units, idempotents,
zero divisors, and nilpotents, and the saturated multiplicatively closed
subsets of R (+)M .

A special role is played by the ideals of R (+)M of the form I ⊕N .
Now R (+)M has a natural N-grading with (R (+)M)0 = R ⊕ 0,
(R (+)M)1 = 0⊕M , and (R (+)M)n = 0 for n ≥ 2. (This can also be
viewed as a Z2-grading since (0 ⊕M)2 = 0.) The homogeneous ideals
of R (+)M are the ideals of the form I ⊕ N where I is an ideal of R,
N is a submodule of M , and IM ⊆ N . Conditions are given for every
ideal of R (+)M to be homogeneous. In particular, for R an integral
domain, every ideal of R (+)M is homogeneous if and only if M is a
divisible R-module.

In Section 4 we study ring-theoretic constructions and properties of
R (+)M , especially how properties for R and M relate to properties for
R (+)M . For example, we determine when R (+)M is Noetherian, Ar-
tinian, or a principal ideal ring. We show that (R (+)M)[X ] is naturally
isomorphic to R[X ] (+)M [X ] with similar results for related ring exten-
sions. Let (R,M) be a local ring and M a finitely generated R-module.
So R (+)M is a local ring with maximal idealM (+)M . We show that
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theM (+)M -adic completion R̂ (+)M of R (+)M is naturally isomor-
phic to R̂ (+) M̂ where R̂, respectively, M̂ , is theM-adic completion of
R, respectively M . Also, G(R (+)M) = min{G(R), G(M)} where G( )
is the grade (or depth). We end this section with results on chained
rings, valuation rings and Prüfer rings.

In Section 5 we study divisibility and factorization in commutative
rings with zero divisors and in modules. Some of the topics covered
include the notion of associates and irreducible elements, atomic rings,
bounded factorization rings and finite factorization rings. We give a
number of examples using idealization and discuss using idealization to
reduce questions concerning factorization in modules to factorization
in commutative rings.

In Section 6 we cover a wide range of topics involving idealization
and give some examples (or counterexamples) using idealization. Some
of the topics are Buchsbaum, Cohen-Macaulay, and Gorenstein rings,
homological dimension, multiplication modules, and Boolean-like rings.

Our notation and terminology are standard and will be introduced
as needed. Two general references are Gilmer [28] and Kaplansky [40].
An excellent introduction to idealization and commutative rings with
zero divisors is Huckaba [37]. A number of results on idealization are
taken from [37], especially some of the material on Prüfer rings. The
interested reader may consult [37] for the original sources, usually [35,
36]. One should not take the lack of a reference to mean that a result
is new. In fact, many results are folklore. However, we believe that the
treatment of R (+)M as a graded ring is new.

2. Ringification. Let R be a commutative ring and M an
R-module. The idealization R (+)M is a commutative R-algebra
containing an isomorphic copy of M . In fact, idealization induces a
functor from the category RM of R-modules to the category RAlg
of R-algebras. In this section we discuss various ways of putting
M inside a commutative R-algebra, that is, a ringification of M .
Besides the idealization R (+)M we could also use the symmetric
algebra SR(M). In some sense any ringification lies between these
two with the symmetric algebra, respectively idealization, having the
least, respectively most, relations. We also discuss some functorial and
related properties of idealization.
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Given a commutative ring R and an R-module M , we would like to
put M inside a commutative R-algebra A with R ∩M = 0. So first
take (A,+) = R ⊕M . Since we know how to multiply elements of R
and elements of M by R, all that is left is to multiply elements of M .
There are a number of ways to do this. Two such ways are to take
M2 = 0 or to use tensor products. First, suppose we take M2 = 0.
Then for ri ∈ R and mi ∈M , (r1,m1)(r2,m2) = (r1 +m1)(r2 +m2) =
r1r2+r1m2+m1r2+m1m2 = r1r2+r1m2+r2m1 = (r1r2, r1m2+r2m1)
since M2 = 0 and multiplication is commutative. Here of course A is
just the idealization.

Let R be a fixed commutative ring. Then idealization induces
the functor IR: RM → RAlg with IR(M) = R (+)M . It is eas-
ily verified that if f :M → N is an R-module homomorphism, then
IR(f): IR(M) → IR(N) given by IR(f)((r,m)) = (r, f(m)) is an R-
algebra homomorphism and that IR is actually a functor. Another
ringification functor is given by the symmetric algebra SR(M) =
TR(M)/〈{m⊗n−n⊗m | m,n ∈M}〉 where TR(M) is the graded tensor
R-algebra with T n

R(M) = M⊗n and 〈{m⊗n−n⊗m | m,n ∈M}〉 is the
homogeneous ideal of TR(M) generated by {m⊗n−n⊗m | m,n ∈M}.
Hence SR(M) = ⊕∞

n=0S
n
R(M) is a graded R-algebra with S0

R(M) = R
and S1

R(M) = M . Again, if f :M → N is an R-module homomor-
phism we get a (graded) R-algebra homomorphism SR(f):SR(M) →
SR(N) and SR: RM → RAlg is a functor. Observe that IR(M) and
SR(M)/ ⊕n≥2 S

n
R(M) are isomorphic as R-algebras (even graded R-

algebras, see below). In fact, if we let πM :SR(M) → IR(M) be the
natural map, then π:SR → IR is a natural transformation. Also, note
that IR(M) = R (+)M has a natural grading with I0

R(M) = R ⊕ 0,
I1
R(M) = 0⊕M and In

R(M) = 0 for n ≥ 2 and with this grading all the
homomorphisms discussed are graded. Of course, we could also give
IR(M) a Z2-grading. For either grading, the homogeneous ideals have
the form J ⊕N where J is an ideal of R and N is a submodule of M
with JM ⊆ N .

The next result, whose simple proof is shorter than its statement
and hence is omitted, shows that the symmetric algebra, respectively
idealization, is the ringification having the least, respectively most,
relations.
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Theorem 2.1. Let R be a commutative ring and M an R-module.
Let i1:R → SR(M), j1:M → SR(M) and i2:R → IR(M), j2:M →
IR(M) be the natural maps. Let A be a commutative ring with a ring
monomorphism i:R → A, so that A is an R-algebra. Suppose there is
an R-module monomorphism j:M → A satisfying A = i(R) ⊕ 〈j(M)〉
where 〈j(M)〉 is the subset of A generated by sums and products of
elements of j(M) and with product i(r)j(m) = j(rm) (so that 〈j(M)〉
is actually the ideal of A generated by j(M)). Then there are unique R-
algebra epimorphisms θ:SR(M)→ A and ψ:A→ IR(M) with θi1 = i,
θj1 = j and ψi = i2, ψj = j2. Moreover, ψθ = πM , the natural map.

If F is a free R-module on {xα}α∈Λ, then it is well known that SR(F )
is naturally isomorphic to the polynomial ring R[{Xα}α∈Λ] where
{Xα}α∈Λ is a set of indeterminates overR in one-to-one correspondence
with {xα}α∈Λ. For the idealization we have the related result:

Proposition 2.2. Let R be a commutative ring and F a free R-
module with basis {xα}α∈Λ. Let {Xα}α∈Λ be a set of indeterminates
over R in one-to-one correspondence with {xα}α∈Λ. Then R (+)F is
naturally isomorphic to R[{Xα}α∈Λ]/({Xα}α∈Λ)2 via (r,

∑
rαxα) →

r +
∑
rαXα + ({Xα}α∈Λ)2. Hence, if M is an R-module with gen-

erating set of cardinality |Λ|, R (+)M is a homomorphic image of
R[{Xα}α∈Λ]/({Xα}α∈Λ)2. Thus, if R is Noetherian and M is a finitely
generated R-module, R (+)M is Noetherian.

Proof. It is easily checked that (r,
∑
rαxα) → r +

∑
rαXα +

({Xα}α∈Λ)2 is an isomorphism. For the second statement, if {gα}α∈Λ

generates M , then there is an R-module epimorphism f :F → M
induced by f(xα) = gα and hence an R-algebra epimorphism IR(f):
R (+)F → R (+)M . The third statement follows from the Hilbert
basis theorem.

Proposition 2.2 has several generalizations. Let A ⊆ B be an
extension of commutative rings and {Xα} a set of indeterminates over
B. Then A+({Xα})B[{Xα}] = {f ∈ B[{Xα}] | f(0) ∈ A } is a subring
of B[{Xα}]. It is easily checked that A (+)B ≈ (A+XB[X ])/X2B[X ].
This fact has been used by several authors to study A+XB[X ]. More
generally, let J be an ideal of B. Then A + XJB[X ] is a subring of
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A + XB[X ] and A (+)J ≈ (A + XJB[X ])/(XJB[X ])2. Let R be a
commutative ring and M an R-module. Taking A = R, B = R (+)M
and J = 0 (+)M gives R (+)M ≈ (A + XJB[X ])/(XJB[X ])2; so
every idealization has this form. Also, if we take M to be a free
B-module with basis {xα}, then A (+)M is naturally isomorphic to
(A+({Xα})B[{Xα}])/(({Xα})B[{Xα}])2 as in Proposition 2.2. In the
above constructions we can use power series instead of polynomials.

If M and N are R-modules, it is well known that SR(M⊕N) is natu-
rally isomorphic to SR(M)⊗RSR(N). So the functor SR: RM→ RAlg
converts sums to tensor products. This raises the question of whether
the functor IR: RM → RAlg also converts sums to tensor products.
Observe that (IR(Rn),+) ≈ RR

n+1. Hence (IR(Rn ⊕ Rm),+) =
(IR(Rn+m),+) ≈ RR

n+m+1 while (IR(Rn)⊗R IR(Rm),+) ≈ Rn+1⊗R

Rm+1 ≈ RR
(n+1)(m+1). Hence IR(Rn ⊕ Rm) is not isomorphic to

IR(Rn) ⊗ IR(Rm) unless n = 0 or m = 0. Likewise, IR(Rn ⊕
Rm) �≈ IR(Rn) × IR(Rm), IR(Rn ⊗R Rm) �≈ IR(Rn) ⊗R IR(Rm), and
IR(Rn ⊗R Rm) �≈ IR(Rn)× IR(Rm) (unless n = m = 0 for the second
case and m = 2, n = 3 or m = 3, n = 2 for the last case). We end this
section with the result that R (+)(M ⊕N) = IR(M ⊕N) is an iterated
idealization.

Proposition 2.3. Let R be a commutative ring and M and N R-
modules. Then R (+)(M⊕N) is naturally isomorphic to (R (+)M) (+)N
(or more accurately IR(M ⊕ N) ≈ IIR(M)(N)) where N is considered
as an R (+)M = IR(M)-module via (r,m)n = rn.

Proof. Define θ:R (+)(M⊕N)→ (R (+)M) (+)N by θ((r, (m,n))) =
((r,m), n). Clearly θ is an R-module isomorphism. Also, (r1, (m1, n1))·
(r2, (m2, n2)) = (r1r2, r1(m2, n2) + r2(m1, n1)) = (r1r2, (r1m2 +
r2m1, r1n2+r2n1)) and ((r1,m1), n1)((r2,m2), n2) = ((r1,m1) (r2,m2),
(r1,m1)n2 + (r2,m2)n1) = ((r1r2, r1m2 + r2m1), r1n2 + r2n1). So θ is
an R-algebra isomorphism.

3. Ideals and distinguished elements of R (+)M . Throughout
this section R is a commutative ring with identity and M is an R-
module. We determine the maximal, prime, and radical ideals of
R (+)M , the homogeneous primary ideals of R (+)M , the saturated
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multiplicatively closed subsets of R (+)M , and the units, idempotents,
zero divisors, and nilpotents of R (+)M . We begin with the following
result.

Theorem 3.1. Let R be a commutative ring, I an ideal of R, M
an R-module and N a submodule of M . Then I (+)N is an ideal of
R (+)M if and only if IM ⊆ N . When I (+)N is an ideal, M/N is
an R/I-module and (R (+)M)/(I (+)N) ≈ (R/I) (+)(M/N). In par-
ticular, (R (+)M)/(0 (+)N) ≈ R (+)(M/N) and therefore (R (+)M)/
(0 (+)M) ≈ R. So the ideals of R (+)M containing 0 (+)M are of the
form J (+)M for some ideal J of R.

Proof. If I (+)N is an ideal, (R (+)M)(I (+)N) = I (+)(IM + N)
gives IM ⊆ N . Conversely, if IM ⊆ N , M/N is an R/I-module
and the map f :R (+)M → (R/I) (+)(M/N) given by f((r,m)) =
(r + I,m + N) is an epimorphism with ker f = I (+)N . So I (+)N
is an ideal of R (+)M and (R (+)M)/(I (+)N) ≈ (R/I) (+)(M/N).
The last statement follows from the Correspondence Theorem.

The next result while an immediate corollary of Theorem 3.1 is impor-
tant enough to be designated a theorem. Several parts of Theorem 3.2
come from [37, Theorem 25.1].

Theorem 3.2. Let R be a commutative ring and M an R-module.

(1) The maximal ideals of R (+)M have the formM (+)M whereM
is a maximal ideal of R. So R (+)M is quasilocal if and only if R is
quasilocal. Also, R (+)M and R have the same set of residue fields.
The Jacobson radical of R (+)M is J(R (+)M) = J(R) (+)M .

(2) The prime ideals of R (+)M have the form P (+)M where P is a
prime ideal of R. Hence if P is a prime ideal of R, ht (P (+)M) = htP
and so dimR (+)M = dimR.

(3) Radical ideals of R (+)M have the form I (+)M where I is a
radical ideal of R. If J is an ideal of R (+)M , then

√
J =

√
I (+)M

where I = {r ∈ R | (r, b) ∈ J for some b ∈ M} is an ideal of R.
In particular, if I is an ideal of R and N is a submodule of M , then√
I (+)N =

√
I (+)M ; hence nil (R (+)M) = nil (R) (+)M .
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Proof. Let A be a radical ideal of R (+)M . Then (0 (+)M)2 = 0 ⊆ A
and hence 0 (+)M ⊆ A. So by Theorem 3.1 A = J (+)M for some ideal
J of R. Also, (R (+)M)/(J (+)M) ≈ R/J gives that J is a radical
ideal (respectively prime ideal, maximal ideal) if and only if J (+)M
is. Note that J(R (+)M) = ∩{M (+)M | M is a maximal ideal of
R } = (∩{M | M is a maximal ideal of R}) (+)M = J(R) (+)M . The
remaining statements of (1) and (2) are obvious.

(3) Let J be an ideal of R (+)M . Then
√
J = K (+)M for some

radical ideal K of R. Let I = {r ∈ R | (r, b) ∈ J for some b ∈ M},
so I is easily seen to be an ideal of R. Let x ∈ √I, so some xn ∈ I;
say (xn, b) ∈ J . Then (xn, b) ∈ √J = K (+)M . Hence xn ∈ K, so
x ∈ K since K is a radical ideal. Thus,

√
I (+)M ⊆ K (+)M =

√
J .

For the reverse inclusion, let x ∈ K. Then (x, 0) ∈ √J ; so some
(xn, 0) ∈ J . Thus xn ∈ I and hence x ∈ √I. So K (+)M ⊆ √I (+)M .
The remaining statements of (3) are immediate.

Let M be an R-module, and let {mα} ⊆ M . It is obvious that
〈{mα}〉 = M if and only if 〈{(0,mα)}〉 = 0 (+)M . Thus, M is finitely
generated as an R-module if and only if 0 (+)M is finitely generated
as an ideal. If I is an ideal of R, I(R (+)M) = I (+) IM . Thus, if I
is finitely generated, so is I (+) IM . However, I (+) IM can be finitely
generated without IM being finitely generated.

Recall that a ring R is graded if R = R0 ⊕ R1 ⊕ R2 ⊕ · · · , a
direct sum of Abelian groups, with RiRj ⊆ Ri+j ; so each Ri is
an R0-module. An R-module M is graded if M = M0 ⊕ M1 ⊕ · · ·
and RiMj ⊆ Mi+j ; so each Mi is an R0-module. Elements of Mi

are said to be homogeneous of degree i. A submodule N of M is
homogeneous if one of the following equivalent conditions holds: (1) N
is generated by homogeneous elements, (2) if n0 + n1 + · · · + ni ∈ N
where nj is homogeneous of degree j, then each nj ∈ N and (3) N =
⊕∞

n=0(N∩Mn). In Section 2 we remarked that R (+)M is a graded ring
with (R (+)M)0 = R ⊕ 0, (R (+)M)1 = 0 ⊕M , and (R (+)M)n = 0
for n ≥ 2. So what are the homogeneous ideals of R (+)M? Let J be a
homogeneous ideal of R (+)M . Then J = (J∩R)⊕(J∩M) where J∩R
is an ideal of R and J ∩M is a submodule of M ; that is, J = I (+)N
where I is an ideal of R and N is a submodule of M . By Theorem 3.1,
IM ⊆ N . Conversely, it is easily checked that an ideal of R (+)M of
the form I (+)N is homogeneous.
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However, contrary to [37, Theorem 25.1 (1)] an ideal of R (+)M need
not have the form I (+)N , that is, need not be homogeneous. (Thus,
when reading [37, Section 25] care must be taken since several proofs
make this assumption. However, the results of Section 25 are true with
the obvious exception of Theorem 25.1 (1).) For example, it is easily
checked that 〈(2, 2)〉 is not a homogeneous ideal of Z (+) 2Z. We next
collect some facts about homogeneous ideals of R (+)M . Recall that a
ring R is présimplifiable if for x, y ∈ R, xy = x implies x = 0 or y is
a unit. It is easy to see that an integral domain or quasilocal ring is
présimplifiable.

Theorem 3.3. Let R be a commutative ring and M an R-module.

(1) The homogeneous ideals of R (+)M have the form I (+)N where
I is an ideal of R, N is a submodule of M , and IM ⊆ N . If J is a
homogeneous ideal, then J = I (+)N where I = {r ∈ R | (r, b) ∈ J for
some b ∈M} and N = {m ∈M | (s,m) ∈ J for some s ∈ R}.

(2) Let I (+)N and I ′ (+)N ′ be two homogeneous ideals of R (+)M .
Then (I (+)N)∩(I ′ (+)N ′)=(I∩I ′) (+)(N∩N ′) and (I (+)N)(I ′ (+)N ′)
= (II ′) (+)(IN ′ + I ′N).

(3) For a principal ideal 〈(a, b)〉 of R (+)M , the following conditions
are equivalent:

(a) 〈(a, b)〉 is homogeneous,

(b) 〈(a, b)〉 = Ra (+)(Rb+ aM),

(c) (a, 0) ∈ 〈(a, b)〉, and

(d) there exists x ∈ R such that xa = a and xb ∈ aM .

In particular, if R is présimplifiable (xy = x ⇒ x = 0 or y is a unit),
〈(a, b)〉 is homogeneous if and only if a = 0 or b ∈ aM .

(4) Every ideal of R (+)M is homogeneous if and only if every prin-
cipal ideal of R (+)M is homogeneous. Hence, if R is présimplifiable,
every ideal of R (+)M is homogeneous if and only if M = aM for
each nonzero a ∈ R. Hence, if R is an integral domain, every ideal
of R (+)M is homogeneous if and only if M is divisible. If R is
présimplifiable but not an integral domain, every ideal of R (+)M is
homogeneous if and only if M = 0.
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(5) Suppose that M is a finitely generated R-module. Then every
ideal of R (+)M is homogeneous if and only if for each nonzero a ∈ R,
there exists an xa ∈ R with xaa = a and xaM = aM .

Proof. (1) We have already shown that the homogeneous ideals have
the form I (+)N where IM ⊆ N . The second statement is obvious.

(2) This is easily checked. (This is [37, Theorem 25.1 (2)].) Of course,
this result holds more generally for arbitrary such intersections.

(3) The equivalence of (a) and (b) follows from (1).

If 〈(a, b)〉 is homogeneous, certainly (a, 0) ∈ 〈(a, b)〉 and if (a, 0) ∈
〈(a, b)〉, we have (0, b) ∈ 〈(a, b)〉 so 〈(a, b)〉 is generated by homogeneous
elements and hence is homogeneous. So (a) and (c) are equivalent.
(c) ⇔ (d) (a, 0) ∈ 〈(a, b)〉 ⇔ there exists (x, n) ∈ R (+)M with
(x, n)(a, b) = (a, 0)⇔ xa = a and xb = −an ∈ aM .

Suppose that R is présimplifiable. Now when a = 0, 〈(0, b)〉 is
homogeneous and we can take x = 0. So we can assume that a �= 0.
Suppose xa = a and xb = −an. Now xa = a gives x is a unit so
b = −ax−1n ∈ aM . For the converse, just take x = 1.

(4) The first statement is clear. Suppose that R is présimplifiable.
By (3) every ideal of R (+)M is homogeneous if and only if M = aM
for each nonzero a ∈ R. So if R is a domain, this is just M is divisible.
However, if R has proper zero divisors rs = 0 where r, s �= 0, then
0 = 0M = rsM = r(sM) = rM = M .

(5) (⇐). This follows from (3) and does not require M to be
finitely generated. (⇒). Suppose that M is finitely generated, say
M = Rm1 + · · · + Rmn. Let 0 �= a ∈ R. For each 1 ≤ i ≤ n, by (3)
there exists an xi with xia = a and ximi ∈ aM . Take xa = x1 · · ·xn;
so xaa = a and xami ∈ aM , for each i. Then xaM ⊆ aM = xaaM , so
xaM = aM .

Corollary 3.4. Let R be an integral domain and M an R-module.
Then the following conditions are equivalent:

(1) every ideal of R (+)M is comparable to 0 (+)M ,

(2) every ideal of R (+)M has the form I (+)M or 0 (+)N for some
ideal I of R or submodule N of M ,
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(3) every ideal of R (+)M is homogeneous,

(4) M is divisible.

Proof. (1) ⇒ (2) ⇒ (3) Clear.

(3) ⇒ (4) Theorem 3.3.

(4)⇒ (1) By Theorem 3.3 every ideal of R (+)M has the form I (+)N
where I is an ideal of R, N is a submodule of M and IM ⊆ N .
Suppose I �= 0. Then M divisible gives IM = M , or M = IM ⊆ N .
Alternatively, observe that if J is an ideal of R (+)M with J �⊂ 0 (+)M ,
then J ⊇ 0 (+)M . For let (a, b) ∈ J where a �= 0. Let m ∈ M , so
m = am′ for some m′ ∈M . Then (0,m) = (a, b)(0,m′) ∈ J .

We next wish to determine when a homogeneous ideal I (+)N is
primary, but to do so we need to find the zero divisors Z(R (+)M) of
R (+)M .

Theorem 3.5. [37, Theorem 25.3] Let R be a commutative ring and
M an R-module. Then Z(R (+)M) = {(r,m) | r ∈ Z(R) ∪ Z(M),
m ∈ M}. Hence S (+)M where S = R − (Z(R) ∪ Z(M)) is the set of
regular elements (nonzero divisors) of R (+)M .

Proof. Let r ∈ Z(R) ∪ Z(M). If r ∈ Z(R), there exists a nonzero
s ∈ R with rs = 0. So (r, 0)(s, 0) = (0, 0) and hence (r, 0) ∈
Z(R (+)M). If r ∈ Z(M), there exists a nonzero n ∈ M with
rn = 0. So (r, 0)(0, n) = (0, 0) and hence (r, 0) ∈ Z(R (+)M). Now
for any m ∈ M , (0,m) ∈ nil (R (+)M), so (r,m) = (r, 0) + (0,m) ∈
Z(R (+)M). (This follows since Z(R (+)M) is a union of prime ideals
and nil (R (+)M) is contained in each prime ideal.) Conversely, suppose
that (r,m) ∈ Z(R (+)M). So (0, 0) = (r,m)(s, n) = (rs, rn + sm) for
some (s, n) �= (0, 0). If s �= 0, then rs = 0 and so r ∈ Z(R), while
if s = 0, then n �= 0 and rn = 0, so r ∈ Z(M). In either case
r ∈ Z(R) ∪ Z(M).

Alternatively, Theorem 3.5 also follows from Lemma 4.12 since
ZR(R (+)M) = ZR(R⊕M) = Z(R) ∪ Z(M).
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While a prime ideal of R (+)M is homogeneous, a primary ideal
need not be homogeneous. For example, 〈(2̄, 1̄)〉 is a primary ideal
of Z4 (+)Z2 (as Z4 (+)Z2 is 0-dimensional local), but 〈(2̄, 1̄)〉 =
{(0̄, 0̄), (2̄, 1̄)} does not have the form I (+)N . Indeed, for R (+)M
Noetherian, since every proper ideal has a primary decomposition, ev-
ery primary ideal of R (+)M being homogeneous is equivalent to every
ideal of R (+)M being homogeneous. Nagata [49, page 24] remarked
that if N is a p-primary submodule of M , then for the p-primary ideal
q = (N : M), q (+)N is p (+)M -primary. We generalize this result
below.

Theorem 3.6. [37, Theorem 25.2] Let R be a commutative ring and
M an R-module. Let I be an ideal of R and N a submodule of M .
Then I (+)N is primary if and only if either

(a) N = M and I is a primary ideal of R or

(b) N � M , IM ⊆ N , and I and N are P -primary where P =
√
I.

In either case, I (+)N is
√
I (+)M -primary.

Proof. Suppose that N = M . Then by the Correspondence Theorem,
I (+)M is primary if and only if I is primary. So assume that N � M .
For I (+)N to be an ideal of R (+)M , we must have IM ⊆ N . By
passing to (R (+)M)/(I (+)N) we can assume that I = 0 and N = 0.
So we need to show that 0 (+) 0 is a primary ideal of R (+)M if
and only if both 0 is a P -primary ideal of R and 0 is a P -primary
submodule of M where P =

√
0. Now 0 (+) 0 is primary if and

only if Z(R (+)M) = nil (R (+)M), or equivalently by Theorem 3.5,
(Z(R) ∪ Z(M)) ⊕M =

√
0 (+)M , or just Z(R) ∪ Z(M) =

√
0. Since√

0 is the intersection of all the prime ideals of R and Z(R) and Z(M)
are each a union of prime ideals of R, we have Z(R) ∪ Z(M) =

√
0 if

and only if Z(R) = Z(M) =
√

0 = P ; that is, 0 is a P -primary ideal of
R and 0 is a P -primary submodule of M . The last statement follows
since

√
I (+)N =

√
I (+)M .

Suppose that R is a graded ring. For an ideal I of R, let I∗ be the
ideal generated by the homogeneous elements of I. So I∗ ⊆ I and I∗ is
the largest homogeneous ideal of R contained in I. It is well known that
if Q is a P -primary ideal of R, then P ∗ is a prime ideal of R and Q∗
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is P ∗-primary. Now let R be a commutative ring and M an R-module.
Suppose that Q is a P -primary ideal of R (+)M . Now P = p (+)M
for some prime ideal p of R and P ∗ = P . Let Q∗ = I (+)N , so Q∗ is
P -primary. By the previous theorem, I is a p-primary ideal of R and
either N = M or N is a p-primary submodule of M . If N = M , then
Q = Q∗ = I (+)M . In either case, I = Q ∩R and N = Q ∩M .

The final distinguished elements we determine for R (+)M are the
units, cf. [37, Theorem 25.1 (6)] and idempotents.

Theorem 3.7. Let R be a commutative ring and M an R-module.
Then the units of R (+)M are U(R (+)M) = U(R) (+)M and the
idempotents of R (+)M are Id (R (+)M) = Id (R) (+) 0.

Proof. Suppose that (r,m) ∈ U(R (+)M). So there exists an (s, n)
with (r,m)(s, n) = (1, 0). Hence rs = 1, so r ∈ U(R). Conversely,
suppose that r ∈ R is a unit, say rs = 1. Then (r, 0)(s, 0) = (1, 0)
so (r, 0) is a unit. For any m ∈ M , (0,m) is nilpotent and hence
(r,m) = (r, 0) + (0,m) is a unit.

Certainly if e ∈ R is idempotent, (e, 0) is idempotent. Conversely,
suppose that (r,m) ∈ R (+)M is idempotent. Then (r,m) = (r,m)2 =
(r2, 2rm). So r = r2 is idempotent. Also, m = 2rm, so rm = 2r2m =
2rm and hence rm = 0 so m = 2rm = 0. (This is a special case
of the more general result that any idempotent in a graded ring is
homogeneous of degree 0.)

The saturated multiplicatively closed subsets of R (+)M are easy to
determine.

Theorem 3.8. Let R be a commutative ring and M an R-module.

(1) There is a one-to-one correspondence between the saturated mul-
tiplicatively closed subsets of R and those of R (+)M given by S ↔
S (+)M .

(2) If S is a multiplicatively closed subset of R and N is a submodule
of M , then S (+)N is a multiplicatively closed subset of R (+)M with
saturation S (+)N = S (+)M .
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Proof. (1) Since saturated multiplicatively closed subsets are just
complements of unions of prime ideals, the map R − ∪Pα ↔ (R −
∪Pα) (+)M = R (+)M − ∪(Pα (+)M) gives the desired one-to-one
correspondence.

(2) Let S be a multiplicatively closed subset of R, and let N be a
submodule of M . It is easily checked that S (+)N is a multiplicatively
closed subset of R (+)M . Now S (+)N = T (+)M for some saturated
multiplicatively closed subset T of R. Then S ⊆ T , so S ⊆ T . Hence
S (+)N ⊆ S (+)M ⊆ T (+)M = S (+)N and S (+)M is saturated
multiplicatively closed, so S (+)N = S (+)M .

We end this section with a “regular” version of part of Theorem 3.3.

Theorem 3.9. Let R be a commutative ring and M an R-module.
Let S = R − (Z(R) ∪ Z(M)). Then the following conditions are
equivalent.

(1) Every regular ideal of R (+)M has the form I (+)M where I is
an ideal of R with I ∩ S �= ∅.

(2) Every regular ideal of R (+)M is homogeneous.

(3) For each s ∈ S and m ∈M , 〈(s,m)〉 is homogeneous.

(4) sM = M for all s ∈ S, or equivalently, M = MS.

Hence if R (+)M is integrally closed, every regular ideal of R (+)M
has the form given in (1).

Proof. (1) ⇒ (2) ⇒ (3) Clear.

(3) ⇒ (4). Let s ∈ S. By Theorem 3.3, for m ∈ M , there exists
x ∈ R (depending on m) with xs = s and xm ∈ sM . Since s is a
regular element of R, x = 1. Hence, m ∈ sM . So, M = sM .

(4) ⇒ (1). Let J be a regular ideal of R (+)M . So (s,m) ∈ J for
some s ∈ S and m ∈ M . By Theorem 3.3 (3) (with a = s and x = 1),
〈(s,m)〉 = Rs (+)(Rm + sM) = Rs (+)M . So 0 (+)M ⊆ J and hence
J = I (+)M for some ideal I of R necessarily with I ∩ S �= ∅.

Suppose that R (+)M is integrally closed or more generally just
root closed. Let m ∈ M and s ∈ S. Then (0,m/s) = (0,m)/(s, 0)
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is contained in the total quotient ring of R (+)M , see Theorem 4.1.
Now (0,m/s)2 = (0, 0), so R (+)M root closed gives that (0,m/s) ∈
R (+)M . Hence M = MS .

4. Some ring constructions and properties of R (+)M . In this
section we study some common ring constructions such as localization,
adjunction of indeterminates, and completion as they apply to the
idealization. In several of these cases the construction commutes with
the idealization, for example, (R (+)M)[X ] is naturally isomorphic
to R[X ] (+)M [X ]. We also determine when R (+)M has certain
properties such as being Noetherian, Artinian or a principal ideal ring.
The general theme is how properties of R and M relate to those of
R (+)M . For example, R (+)M is Noetherian, respectively Artinian,
if and only if R is Noetherian, respectively Artinian, and M is finitely
generated. We first look at localization. The first three results are from
[37].

Theorem 4.1. Let R be a commutative ring and M an R-module.

(1) Let S be a multiplicatively closed subset of R and N a submodule
of M . Then (R (+)M)S (+) N is naturally isomorphic to RS (+)MS.
In the case where N = 0, the isomorphism is simply (r,m)/(s, 0) →
(r/s,m/s).

(2) Let P be a prime ideal of R. Then (R (+)M)P (+) M ≈ RP (+)MP .

(3) The total quotient ring T (R (+)M) of R (+)M is naturally iso-
morphic to RS (+)MS where S = R− (Z(R) ∪ Z(M)).

Proof. (1) The map f : (R (+)M)S (+) N → RS (+)MS given by
f((r,m)/(s, n)) = (r/s, (sm− rn)/s2) is the desired isomorphism. (To
see why the map is defined this way, observe that (r,m)/(s, n) =
(s,−n)(r,m)/(s,−n)(s, n) = (sr, sm− rn)/(s2, 0).)

(2) This follows immediately from (1) with S = R− P and N = M .

(3) Here if S = R − (Z(R) ∪ Z(M)), S (+)M is the set of regular
elements of R (+)M , Theorem 3.5. So the total quotient ring of
R (+)M is (R (+)M)S (+) M . The result follows from (1).
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Concerning Theorem 4.1 (1), note that for any submodule N of M ,
S (+)N and S (+) 0 have the same saturation, so (R (+)M)S (+) N and
(R (+)M)S (+) 0 are isomorphic, but the isomorphism depends on N .

We next determine the integral closure of R (+)M in T (R (+)M).

Theorem 4.2. Let R be a commutative ring and M an R-module.
Let S = R− (Z(R)∪Z(M)). If R′ is the integral closure of R in T (R),
then (R′∩RS) (+)MS is the integral closure of R (+)M in T (R (+)M).

Proof. We have R (+)M ⊆ (R′ ∩ RS) (+)MS ⊆ RS (+)MS =
T (R (+)M). If r ∈ R′ ∩ RS , then r is integral over R. It easily
follows that (r, 0) is integral over R (+)M . If b ∈ MS , (0, b)2 = (0, 0)
and so (0, b) is integral over R (+)M . Hence, (r, b) = (r, 0) + (0, b)
is integral over R (+)M , that is, (R′ ∩ RS) (+)MS ⊆ (R (+)M)′.
Conversely, suppose that (r, b) ∈ (R (+)M)′. Since (0, b)2 = (0, 0),
(r, 0) ∈ (R (+)M)′. It easily follows that r is integral over R, so
r ∈ R′ ∩RS .

Corollary 4.3. Let R be a commutative ring and M an R-module.
Let S = R− (Z(R) ∪ Z(M)).

(1) If R is integrally closed, then R (+)MS is the integral closure of
R (+)M in T (R (+)M).

(2) If Z(M) ⊆ Z(R), then R (+)MS is integrally closed if and only if
R is integrally closed.

Proof. (1) Here R = R′, so R′ ∩RS = R.

(2) (⇐). This follows from (1).

(⇒) Suppose that R (+)MS is integrally closed. Note that Z(M) ⊆
Z(R) gives that T (R (+)MS) = T (R) (+)MS. Let r ∈ T (R) be integral
over R. Then (r, 0) ∈ T (R (+)MS) is integral over R (+)MS . Since
R (+)MS is integrally closed, r ∈ R. So R is integrally closed.

However, in general R (+)MS integrally closed does not imply that R
is integrally closed. Indeed [37, page 166], if R is a nonintegrally-closed
ring and M = ⊕{R/P | P ∈ Spec (R)}, then R (+)M is its own total
quotient ring and hence is integrally closed.
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Suppose that R1 and R2 are commutative rings and Mi is an Ri-
module, i = 1, 2. Then M1 ×M2 is an R1 × R2-module with action
(r1, r2)(m1,m2) = (r1m2, r2m2). Conversely, let R = R1 × R2 and
suppose that M is an R-module. Put M1 = (R1 × 0)M and M2 =
(0 × R2)M . So Mi is an Ri-module and M is the internal direct sum
of M1 and M2, so M ≈M1 ×M2.

Theorem 4.4. Let R1 and R2 be commutative rings, and let
Mi be an Ri-module, i = 1, 2. Then (R1 × R2) (+)(M1 × M2) ≈
(R1 (+)M1)× (R2 (+)M2).

Proof. It is easily checked that the map ((r1, r2), (m1,m2)) →
((r1,m1), (r2,m2)) is an isomorphism.

We have already remarked that R (+)M is a graded ring. We next
show that if R is a graded ring and M is a graded R-module, then
R (+)M has a natural grading. This is given in [49, Exercise 1, page
24].

Theorem 4.5. Let R = R0⊕R1⊕ · · · be a graded commutative ring
and M = M0⊕M1⊕· · · a graded R-module. Then R (+)M is a graded
ring with (R (+)M)n = Rn ⊕Mn.

Proof. Additively R (+)M = (R0 ⊕ R1 ⊕ · · · ) ⊕ (M0 ⊕M1 ⊕ · · · ) =
(R0⊕M0)⊕ (R1⊕M1)⊕· · · = (R (+)M)0⊕ (R (+)M)1⊕· · · . Observe
that (R (+)M)i(R (+)M)j = (Ri ⊕Mi)(Rj ⊕Mj) = RiRj ⊕ (RiMj +
RjMi) ⊆ Ri+j ⊕Mi+j = (R (+)M)i+j .

As a special case we have the polynomial ring over R (+)M and the
related, but not graded, power series case.

Corollary 4.6. Let R be a commutative ring and M an R-module.

(1) (R (+)M)[{Xα}] ≈ R[{Xα}] (+)M [{Xα}] for any set of indeter-
minates {Xα} over R.

(2) (R (+)M)[[{Xα}]] ≈ R[[{Xα}]] (+)M [[{Xα}]] for any set of power
series indeterminates {Xα} over R.
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Proof. (1) and (2). The map f : (R (+)M)[[{Xα}]] → R[[{Xα}]] (+)
M [[{Xα}]] given by

∑
(ri,mi)fi → (

∑
rifi,

∑
mifi) where fi is a

form of degree i in {Xα} is the desired isomorphism. Note that
f((R (+)M)[{Xα}]) = R[{Xα}] (+)M [{Xα}].

Recall that for f = a0 + a1X + · · · + anX
n ∈ R[X ], the content

Af of f is the ideal (a0, . . . , an) of R. The set N = { f ∈ R[X ] |
Af = R } is a saturated multiplicatively closed subset of R[X ]; in
fact N = R[X ] − ∪M[X ] where the union runs over all maximal
ideals M of R. Then R(X) := R[X ]N and if M is an R-module,
M(X) := M [X ]N . So M(X) is an R(X)-module. Observe that for
f = (r0,m0) + · · ·+ (rn,mn)Xn ∈ (R (+)M)[X ], Af = R (+)M if and
only if (r0, r1, . . . , rn) = R. So {f ∈ (R (+)M)[X ] | Af = R (+)M} =
N (+)M [X ]. While the next result is true for any set of indeterminates,
we content ourselves with the one-variable case.

Corollary 4.7. Let R be a commutative ring and M an R-module.
Then (R (+)M)(X) is naturally isomorphic to R(X) (+)M(X).

Proof. Now (R (+)M)[X ] is naturally isomorphic to R[X ] (+)M [X ].
So

(R (+)M)(X) = ((R (+)M)[X ])N (+) M [X]

≈ (R[X ] (+)M [X ])N (+) M [X]

≈ R[X ]N (+)M [X ]N = R(X) (+)M(X).

We next determine when R (+)M is Noetherian or Artinian.

Theorem 4.8. Let R be a commutative ring and M an R-module.
Then R (+)M is Noetherian, respectively Artinian, if and only if R is
Noetherian, respectively Artinian, and M is finitely generated.

Proof. Suppose that R (+)M is Noetherian. Then R being a homo-
morphic image of R (+)M is Noetherian. Now 0 (+)M is a finitely
generated ideal of R (+)M since R (+)M is Noetherian. Observe
that (0,m1), . . . , (0,mn) generate 0 (+)M as an ideal if and only if
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m1, . . . ,mn generated M as an R-module. Hence M is a finitely gener-
ated R-module. If R (+)M is Artinian, then R being a homomorphic
image of R (+)M is Artinian and since an Artinian ring is Noetherian,
M is finitely generated.

Conversely, suppose that R is Noetherian and M is finitely generated.
By Proposition 2.2, R (+)M is Noetherian. Alternatively, let P (+)M
be a prime ideal of R (+)M . Since R is Noetherian, P is finitely
generated. Then since M is a finitely generated R-module, P (+)M is a
finitely generated ideal of R (+)M . Since every prime ideal of R (+)M
is finitely generated, Cohen’s theorem gives that R (+)M is Noetherian.
Suppose that R is Artinian. Then R is Noetherian with dimR = 0. So
M finitely generated gives that R (+)M is Noetherian and we also have
dimR (+)M = dimR = 0, Theorem 3.2; hence, R (+)M is Artinian.

Recall that a ring R is a generalized ZPI-ring, respectively π -ring, if
every proper ideal, respectively proper principal ideal, of R is a product
of prime ideals. An integral domain which is a π-ring is called a π-
domain. Of course an integral domain is a generalized ZPI-ring if and
only if it is a Dedekind domain. It is well known (for example, see [28,
Sections 39 and 46]) that R is a π-ring (respectively generalized ZPI-
ring, principal ideal ring (PIR)) if and only if R is a finite direct product
of the following types of rings: (1) π-domains (respectively Dedekind
domains, PIDs) which are not fields, (2) special principal ideal rings
(SPIRs), that is, a local principal ideal ring, not a field, whose maximal
ideal is nilpotent, and (3) fields. We next characterize when R (+)M
is a π-ring, a generalized ZPI-ring, or a PIR.

Lemma 4.9. Let R be a commutative ring and M an R-module.
Suppose that R (+)M is a π-ring (respectively generalized ZPI-ring,
PIR). Then R is a π-ring (respectively generalized ZPI-ring, PIR).
Hence R = R1×· · ·×Rn where Ri is either (1) a π-domain (respectively
Dedekind domain, PID) but not a field, (2) an SPIR, or (3) a field. Let
Mi = (0 × · · · × 0 × Ri × 0 × · · · × 0)M , so Mi is an Ri-module and
M = M1 × · · · ×Mn. If Ri is a domain or SPIR, but not a field, then
Mi = 0 while if Ri is a field, Mi = 0 or Mi ≈ Ri (that is, Mi is cyclic).

Conversely, if R = R1 × · · · × Rn and M = M1 × · · · ×Mn are as
above and R is a π-ring (respectively generalized ZPI-ring, PIR), then
R (+)M is a π-ring (respectively generalized ZPI-ring, PIR).
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Proof. Suppose that R (+)M is a π-ring (respectively generalized
ZPI-ring, PIR), then its homomorphic image is R. Write R = R1 ×
· · ·×Rn and M1×· · ·×Mn as above. Then by Theorem 4.4, R (+)M ≈
(R1 (+)M1)×· · ·×(Rn (+)Mn), so Ri (+)Mi is a homomorphic image of
R (+)M . Thus, we may assume that R (+)M is a π-ring (respectively
generalized ZPI-ring, PIR) where either (1) R is a domain, and hence
a π-domain, (respectively Dedekind domain or PID) but not a field,
(2) R is an SPIR, or (3) R is a field. First, suppose that R is a domain,
not a field. Then R (+)M is an indecomposable π-ring (respectively
generalized ZPI-ring, PIR) with dimR (+)M = dimR ≥ 1. Thus,
R (+)M must be an integral domain. Hence, M = 0. Next, suppose
that R is an SPIR. Let (π) be the maximal ideal of R and suppose
πn �= 0 but πn+1 = 0, n ≥ 1. Now R (+)M is an indecomposable π-
ring (or generalized ZPI-ring or PIR) with dimR (+)M = dimR = 0.
Hence, R (+)M is also an SPIR. Thus M is finitely generated, even
cyclic. Now (π) (+)M is the maximal ideal of R (+)M . So 0 (+)M is
a power of (π) (+)M , say 0 (+)M = ((π) (+)M)s = (π)s (+) πs−1M .
Then πs = 0 and M = πs−1M . Since πs = 0, s ≥ 2, and hence
s − 1 ≥ 1. So Nakayama’s lemma gives M = 0. Finally, suppose that
R is a field. Then as in the SPIR case, R (+)M is an SPIR and hence
M is cyclic. So M = 0 or M ≈ R.

Conversely, let R = R1 × · · · × Rn and M = M1 × · · · ×Mn. Then
R (+)M ≈ (R1 (+)M1) × · · · × (Rn (+)Mn). Since a direct product of
π-rings (respectively generalized ZPI-rings, PIR’s) is again of the same
type, we can assume that Ri is either a domain with dimRi > 0, an
SPIR or a field. In the first case Mi = 0 and so Ri (+)Mi = Ri is a
π-domain (respectively Dedekind domain, PID). Next suppose that Ri

is an SPIR. Then again Mi = 0, so Ri (+)Mi = Ri is an SPIR. Finally,
suppose that Ri is a field. If Mi = 0, Ri (+)Mi = Ri is a field, while if
Mi ≈ Ri, Ri (+)Ri ≈ Ri[X ]/(X2) (by Proposition 2.2) is an SPIR.

Theorem 4.10. Let R be a commutative ring and M an R-module.
Then R (+)M is a π-ring (respectively generalized ZPI-ring, PIR) if
and only if R is a π-ring (respectively generalized ZPI-ring, PIR)
and M is cyclic with annihilator P1 · · ·Ps where P1, . . . , Ps are some
idempotent maximal ideals of R (if s = 0, ann (M) = R, that is,
M = 0).
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Proof. The proof amounts to translating Lemma 4.9 to a “coordinate-
free” version. For R (+)M to be a π-ring (respectively generalized ZPI-
ring, PIR), R must also be a π-ring (respectively generalized ZPI-ring,
PIR). So write R = R1×· · ·×Rn and M = M1×· · ·×Mn where Mi is
an Ri-module and Ri is either an integral domain with dimRi > 0, an
SPIR, or a field. Note that an idempotent maximal ideal ofR1×· · ·×Rn

has the form R1 × · · · ×Ri−1× 0×Ri+1 × · · · ×Rn where Ri is a field.
Now Mi = 0 unless Ri is a field and in this case Mi = 0 or Mi = Ri:
But this translates to M is cyclic and ann (M) = I1 × · · · × In where
Ii = Ri unless Ri is a field and Mi = Ri in which case Ii = 0. But
I1 × · · · × In has this form if and only if it is a product of idempotent
maximal ideals.

An alternative approach to Lemma 4.9 and Theorem 4.10 is to treat
R (+)M as a graded ring and use results from [11]. We next give two
results on local rings. While the first result is given for the local case,
it is clearly true in more generality.

Theorem 4.11. Let (R,M) be a local ring and M a finitely gener-
ated R-module. So R (+)M is a local ring with maximal idealM (+)M .
Let ̂ denote the M-adic, respectively M (+)M -adic, completion of R
and M , respectively R (+)M . Then R̂(+)M ≈ R̂ (+) M̂ .

Proof. Note that (M (+)M)n = Mn (+)Mn−1M . So R̂(+)M =
lim←−(R (+)M)/(M (+)M)n = lim←−(R (+)M)/(Mn (+)Mn−1M) ≈
lim←−(R/Mn) (+)(M/Mn−1M) ≈ (lim←−R/M

n) (+)(lim←−M/Mn−1M) =

R̂ (+) M̂ .

Let R be a commutative ring and M an R-module. The two ring
homomorphisms R → R (+)M (r → (r, 0)) and R (+)M → R ((r,m)
→ r) induce functors R (+) MM → RM and RM → R (+) MM where
the respective “scalar products” are ra := (r, 0)a and (r,m)a := ra.
Observe that the map RM → R (+) MM → RM is the identity map.
For if A is an R-module, the R (+)M -action is (r,m)a := ra and
hence the induced R-action on A is ra := (r, 0)a = ra, the original
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action. If A is an R-module or R (+)M -module, we need to know how
ZR(A) and ZR (+) M (A) relate.

Lemma 4.12. Let R be a commutative ring and M an R-module.
Let A be either an R-module or an R (+)M -module, then with the ring-
actions defined in the previous paragraph,

ZR (+) M (A) = ZR(A) (+)M.

Proof. First, let A be an R (+)M -module. So A is an R-module
with ra := (r, 0)a. Let (r,m) ∈ ZR (+) M (A). Now since ZR (+) M (A)
is a union of prime ideals of R (+)M and since 0 (+)M is in each of
these prime ideals, (r, 0) ∈ ZR (+) M (A). So there is a nonzero a ∈ A
with (r, 0)a = 0. But then as an R-module, ra := (r, 0)a = 0, so
r ∈ ZR(A). Hence, (r,m) ∈ ZR(A) (+)M . For the reverse inclusion,
let r ∈ ZR(A). So there is a nonzero a ∈ A with 0 = ra := (r, 0)a.
So (r, 0) ∈ ZR (+) M (A). Hence, as before, (r,m) ∈ ZR (+) M (A) for any
m ∈M ; so ZR(A) (+)M ⊆ ZR (+) M (A). So if A is an R (+)M -module,
ZR (+) M (A) = ZR(A) (+)M .

Next, let A be an R-module. Then A is an R (+)M -module. But
then considering A an R-module returns the original ring-action. So
from the first paragraph ZR (+) M (A) = ZR(A) (+)M .

Suppose that R is a Noetherian ring, I is an ideal of R and M is
a finitely generated R-module with IM �= M . Then x1, . . . , xn ∈
I is an R-sequence of I on M if xi /∈ Z(M/(x1, . . . , xi−1)M) for
i = 1, . . . , n. And x1, . . . , xn is a maximal R-sequence of I on M if
I ⊆ Z(M/(x1, . . . , xn)M). Now maximal R-sequences of I on M exist
and any two have the same length (for example, see [40, Section 3.1]).
This length is called the grade of I on M and denoted G(I,M). If
(R,M) is local, then G(R) = G(M, R) and G(M) = G(M,M). A
Noetherian ring R is Cohen-Macaulay if htM = G(M, R) for each
maximal idealM of R.

Theorem 4.13. Let (R,M) be a local ring and M a finitely
generated nonzero R-module. Then GR (+) M (R (+)M) = GR(R⊕M) =
min{G(R), G(M)}.
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Proof. Let a1, . . . , an ∈ M. We show that (a1, 0), . . . , (an, 0)
is a maximal R-sequence of M (+)M on R (+)M if and only if
a1, . . . , an is a maximal R-sequence ofM on R⊕M . By Lemma 4.12,
ZR (+) M ((R (+)M)/〈(a1, 0), . . . , (ai, 0)〉) = ZR((R (+)M)/〈(a1, 0), . . . ,
(ai, 0)〉) (+)M . But ZR((R (+)M)/〈(a1, 0), . . . , (ai, 0)〉) = ZR((R (+)
M)/((a1, . . . , ai) (+)(a1, . . . , ai)M)) = ZR(R/(a1, . . . , ai) (+)M/(a1,

. . . , ai)M) = ZR(R/(a1, . . . , ai) ⊕ M/(a1, . . . , ai)M) = ZR(R/(a1,

. . . , ai))∪ZR(M/(a1, . . . , ai)M) and also = ZR((R⊕M)/((a1, . . . , ai) ·
(R ⊕M))). Hence (ai+1, 0) /∈ ZR (+) M ((R (+)M)/〈(a1, 0), . . . , (ai0)〉)
⇔ ai+1 /∈ ZR(R/(a1, . . . , ai)) ∪ ZR(M/(a1, . . . , aiM)) = ZR((R ⊕
M)/(a1, . . . , ai)(R ⊕ M)). Also, M (+)M ⊆ ZR (+) M ((R (+)M)/
〈(a1, 0), . . . , (an, 0)〉) ⇔ M ⊆ ZR((R ⊕ M)/(a1, . . . , an)(R ⊕ M)) ⇔
M ⊆ ZR(R/(a1, . . . , an)) ∪ ZR(M/(a1, . . . , an)M) ⇔ M ⊆ ZR(R/
(a1, . . . , an)) or M ⊆ ZR(M/(a1, . . . , an)). Thus, (a1, 0), . . . , (an, 0) is
a maximal R-sequence ofM (+)M on R(+)M if and only if a1, . . . , an

is a maximal R-sequence ofM on R⊕M if and only if a1, . . . , an is an
R-sequence of M on both R and M and is a maximal R-sequence on
either R or M . The result follows.

Corollary 4.14. Let R be a local ring and M a finitely generated
nonzero R-module. Then R (+)M is Cohen-Macaulay if and only if R
is Cohen-Macaulay and G(M) ≥ G(R).

Proof. We need dimR (+)M = G(R (+)M). Since dimR =
dimR (+)M ≥ G(R (+)M) = min{G(R), G(M)} and dimR ≥ G(R),
we have the desired equality if and only if dimR = G(R) and G(M) ≥
G(R).

Example 4.15. Let (R,M) be an n-dimensional regular local ring
with x1, . . . , xn a minimal basis for M. Let Mi = R/(x1, . . . , xi),
0 ≤ i ≤ n (for i = 0, Mi = R). Then dimR (+)Mi = n and
G(R (+)Mi) = n− i.

Arguably some of the most important work concerning non-Noetherian
commutative rings with zero divisors has been the extension of valu-
ation theory and the theory of Prüfer domains to commutative rings
with zero divisors. For a detailed treatment of these topics, see [37,
42]. We first recall the following pertinent definitions and facts.
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Let R be a subring of a ring T , and let P be a prime ideal of R.
Then (R,P ) is called a valuation pair on T (or just R is a valuation
ring on T ) if there is a surjective valuation v:T → G ∪ {∞} (v(xy) =
v(x) + v(y), v(x + y) ≥ min{v(x), v(y)}, v(1) = 0, and v(0) = ∞),
G a totally ordered Abelian group, with R = {x ∈ T | v(x) ≥ 0}
and P = {x ∈ T | v(x) > 0}. This is equivalent to if x ∈ T − R,
then there exists x′ ∈ P with xx′ ∈ R − P . A valuation ring R is
called a (Manis) valuation ring if T = T (R). Unlike the domain case,
P need not be a maximal ideal of R and we may have 0 � v−1(∞).
If the map v is not assumed to be onto, R is called a paravaluation
ring. Also, R is called a Prüfer ring if every finitely generated regular
ideal of R is invertible. This is equivalent to every overring of R being
integrally closed or to (R[M], [M]R[M]) being a valuation pair for each
maximal ideal M of R where R[M] = {z ∈ T (R) | sz ∈ R for some
s ∈ R −M} is the large quotient ring of R with respect to M and
[M]R[M] = {z ∈ T (R) | sz ∈ M for some s ∈ R−M}.

Now, in the domain case, V is a valuation domain if and only if the
set of (principal) ideals of V is totally ordered by inclusion. A ring with
this property is called a chained ring. Now a chained ring is a Manis
valuation ring but not conversely. One of the many characterizations
of a Prüfer domain is that its lattice of ideals is distributive. A ring
with this property is called an arithmetical ring. So R is arithmetical
if and only if RM is a chained ring for each maximal ideal M of R.
Now an arithmetical ring is Prüfer but not conversely. We next give
the following theorem which characterizes when R (+)M is a valuation
ring, Prüfer ring, chained ring, or arithmetical ring. The first two parts
of the theorem are from [37], but the statement of (2) and its proof
[43, 45] are somewhat different. For a result related to (3), see [55].

Theorem 4.16. Let R be a commutative ring and M an R-module.
Let S = R− (Z(R) ∪ Z(M)).

(1) [37, Theorem 25.13] R (+)M is a Manis valuation ring if and
only if R is a valuation ring on RS and M = MS (that is, sM = M
for each s ∈ S).

(2) [37, Theorem 25.11] R (+)M is a Prüfer ring if and only if for
each finitely generated ideal I of R with I ∩ S �= ∅, I is invertible, and
M = MS.
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(3) R (+)M is a chained ring if and only if either (a) R is a chained
ring and M = 0 or (b) R is a valuation domain and M is a nonzero
divisible R-module whose (cyclic) submodules are totally ordered by
inclusion.

(4) R (+)M is arithmetical if and only if R is an arithmetical ring,
M is an arithmetical R-module (the lattice of submodules of M is
distributive), and for each maximal ideal M of R with MM �= 0M,
RM is a (valuation) domain and MM is a divisible RM-module.

Proof. (1) Assume that (R (+)M,P (+)M) is a valuation ring on
T (R (+)M) = RS (+)MS. Since R (+)M is integrally closed, M = MS .
If (x,m) ∈ RS (+)MS − R (+)M , then there exists (r, c) ∈ P (+)MS

such that (x,m)(r, c) ∈ R (+)MS − P (+)MS . Hence if x ∈ RS − R,
there is some r ∈ P with sr ∈ R − P . So (R,P ) is a valuation pair of
RS . The argument is reversible.

(2) (⇒). Suppose that R (+)M is Prüfer. Since R (+)M is integrally
closed,M = MS . Let I be a finitely generated ideal ofR with I∩S �= ∅.
Then I (+)M is a finitely generated regular ideal of R (+)M . (Let
I = (i1, . . . , in) where i1 ∈ S. Then (i1, 0) ∈ I (+)M is regular
and i1 ∈ S gives i1M = M , so 〈(i1, 0)〉 = Ri1 (+)M and hence
〈(i1, 0), . . . , (in, 0)〉 = I (+)M .) So I (+)M is invertible. So there is
an ideal J ′ of R (+)M with J ′(I (+)M) = 〈(i1, 0)〉. Since M = MS ,
by Theorem 3.9, J ′ = J (+)M for some ideal J of R. So JI = Ri1.
Hence, I is invertible.

(⇐). Since M = MS, by Theorem 3.9 every finitely generated regular
ideal of R (+)M is homogeneous and hence has the form I (+)M where
I is a finitely generated ideal of R with I ∩ S �= ∅. So by hypothesis I
is invertible. Let s ∈ I ∩ S, so Rs = IJ for some ideal J of R. Then
(I (+)M)(J (+)M) = IJ (+)M = Rs (+)M is a regular principal ideal,
so I (+)M is invertible. Hence, R (+)M is a Prüfer ring.

(3) (⇒). Suppose that R (+)M is a chained ring and M �= 0. Then
R ≈ (R (+)M)/(0 (+)M) is a chained ring and since the ideals of
R (+)M are totally ordered, the submodules of M are totally ordered.
Suppose that 0 �= a ∈ R. Then for any m ∈ M , 〈(a,m)〉 ⊇ 0 (+)M .
So every ideal of R (+)M is homogeneous. Since R is quasilocal and
M �= 0, Theorem 3.3 (4) gives that R is an integral domain and M is
divisible.
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(⇐). Clearly R (+)M is a chained ring if (a) holds. So suppose that
R is a valuation domain and M is a nonzero divisible R-module whose
(cyclic) submodules are totally ordered. By Corollary 3.4 the ideals of
R (+)M are totally ordered.

(4) (⇒). Suppose that R (+)M is arithmetical. As in (3) R and M
are arithmetical. Let M be a maximal ideal of R with MM �= 0M.
Then RM (+)MM ≈ (R (+)M)M (+)M is a chained ring. By (3) RM
is a valuation domain and MM is a divisible RM-module.

(⇐). It suffices to show that R (+)M is locally a chained ring. Let
M (+)M be a maximal ideal of R (+)M whereM is a maximal ideal of
R. Now (R (+)M)M (+)M ≈ RM (+)MM. Now R arithmetical gives
that RM is a chained ring and M arithmetical gives that the RM-
submodules of MM are totally ordered. If MM = 0M, RM (+)MM
is a chained ring, while if MM �= 0M, then by hypothesis RM is a
valuation domain and MM is RM-divisible. So by (3) RM (+)MM is
a chained ring.

Let T be a commutative ring, M a T -module, G a totally ordered
Abelian group, and v:T → G ∪ {∞} a paravaluation. Let Rv = {x ∈
T | v(x) ≥ 0} and Pv = {x ∈ T | v(x) > 0}. Then vM :T (+)M →
G ∪ {∞} given by vM ((t,m)) = v(t) is a paravaluation on T (+)M

with im v = im vM (so vM is a valuation ⇔ v is a valuation), RvM =
{x ∈ T (+)M | vM (x) ≥ 0} = Rv (+)M , PvM = {x ∈ T (+)M |
vM (x) > 0} = Pv (+)M , and v−1

M (∞) = v−1(∞) (+)M . Conversely,
suppose that w:T (+)M → G ∪ {∞} is a paravaluation. Since (0,m)
is nilpotent, w((0,m)) = ∞. Hence, w((t,m)) = w((t, 0)). Thus,
wT :T → G ∪ {∞} given by wT (t) = w((t, 0)) is a paravaluation on T
with (wT )M = w. These observations can be used to give an alternative
proof of Theorem 4.16 (1).

We next give several examples concerning valuation rings and Prüfer
rings involving idealization. Recall that a commutative ring R is a
Marot ring if every regular ideal of R is generated by regular elements.

Example 4.17. [12, Example 3.5], [37, Examples 9, 10, pages
183 184] A Prüfer valuation ring that is not a Marot ring. Let v be the
rank-one discrete valuation on Q(X) given by v(f/g) = deg g − deg f ;
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so Q[X−1](X−1) is the valuation ring associated with v. Let p ∈
Q[X ] be an irreducible polynomial of degree n > 1. Restricting v
to Q[X ][1/p] gives a rank-one discrete valuation with valuation ring
D = Q[X ][1/p] ∩ Q[X−1](X−1). Let A = ⊕{Q[X ]/M | M is a
maximal ideal of Q[X ] withM �= (p)}. Let vA be the valuation defined
by vA((t,m)) = v(t). Then vA is a rank-one discrete valuation on
Q[X ][1/p] (+)A with valuation ring D (+)A. The image of the regular
elements under vA is nZ, so PvA is a regular prime ideal of D (+)A
(since it contains (1/p, 0)) that is not generated by regular elements.
(The ideal generated by the regular elements of PvA is (1/p) (+)A, but
(Xn−1/p, 0) ∈ PvA .) Hence, D (+)A is not a Marot ring. Now D is
Dedekind, so PvA = P (+)A where P = D ∩ (X−1)(X−1) is invertible.
Hence D (+)A is a rank-one discrete Prüfer valuation ring. Note that
PvA is a nonprincipal invertible ideal. This example (and the next)
answer in the negative the question of Griffin as to whether an invertible
ideal in a Prüfer valuation ring must be principal.

Example 4.18. [12, Example 3.6], [37, Example 11, page 187] Let
D be a Dedekind domain with maximal idealM that is not principal,
but some power of M is principal. Say m > 1 is the least positive
integer with Mm = (t) principal. Let A = ⊕{D/Q | Q is a maximal
ideal of D, Q �= M} and R = D (+)A. Then {tnR}∞n=0 is the set of
ideals of R generated by regular elements. Let P =M (+)A. Now P is
the unique regular prime ideal of R and Pm = tR, so P is invertible but
not principal. Now (R,P ) is a Prüfer valuation ring that is not Marot.
Also, while P is divisorial (P = (P−1)−1), P is not the intersection of
the regular principal fractional ideals containing P . (See [10] for the
import of a divisorial ideal not to be the intersection of the regular
principal ideals containing it.)

Example 4.19. [27], [12, Example 4.2] A ring R0 in which every
regularly generated ideal is invertible, but R0 is not a Prüfer ring and
a ring R1 in which the intersection of two regular principal ideals is
not generated by regular elements. Let D = K[X,Y ] where K is a
field and let A = ⊕{D/M | M is a maximal ideal with Y /∈ M}. Let
R0 = D (+)A. The regular elements of R0 are {(αY m, a) | α ∈ K−{0},
m ≥ 0, a ∈ A}. Here R0 is a rank-one discrete Manis valuation ring
that is not a Prüfer ring [27] but every ideal of R0 generated by regular
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elements is invertible. Let D1 = K[X2, XY, Y 2, X3, X2Y,XY 2, Y 3],
the subring of D of polynomials with no linear term. Now in D1

we have Y 2D1∩Y 3D1 = {Y 5, Y 6, XY 4, XY 5, X2Y 3, X2Y 4, X3Y 3}D1.
Let R1 = D1 (+)A, so R1 is a subring of R0. Note that the regular
elements of R1 are {(αY m, a) | α ∈ K − {0}, m = 0 or m ≥ 2, a ∈ A}.
Now Y 2R1 = Y 2D1 (+)A and Y 3R1 = Y 3D1 (+)A are two regular
principal ideals of R1. However, Y 2R1 ∩Y 3R1 = (Y 2D1 ∩Y 3D1) (+)A
cannot be generated by regular elements [12].

Example 4.20. [26], [37, Example 20, pages 193 194] A valuation
ring V whose total quotient ring T (V ) is chained, but V is not chained.
Let T = Z(2) (+)Z2∞ , so by Theorem 4.16 T is a chained ring. Since
Z(T ) = (2) (+)Z2∞ , T is a total quotient ring. Let ω be the 3-adic
valuation on Q. Define a valuation v on T by v((z, n)) = ω(z). Then
V = (Z(2) ∩Z3) (+)Z2∞ is the valuation ring for v on T (V ) = T . Since
V has two maximal ideals, V is not chained.

Let R be a commutative ring. Then R is strongly Prüfer if each
finitely generated ideal I with ann (I) = 0 is locally principal. Also,
R is additively regular if for each z ∈ T (R), there exists u ∈ R with
z+u ∈ T (R) regular, R satisfies Property A if for each finitely generated
ideal I of R consisting of zero divisors, ann (I) �= 0, and R satisfies the
annihilator condition (a.c.) if for a, b ∈ R there exists c ∈ R with
ann (a, b) = ann (c). For more on these last three properties and their
role in the study of commutative rings with zero divisors, see [37].

Example 4.21. [37, Examples 5, 19], [36, 44] A nonreduced Prüfer
ring (even a total quotient ring) that is not strongly Prüfer. Let K be
an algebraically closed field, and letD = K[X,Y ]. Let B = ⊕{D/P | P
is a nonzero principal prime of D}. So R = D (+)B is a total quotient
ring and hence is Prüfer. However, R is not strongly Prüfer since R(Z)
is not Prüfer. See [37, Example 19] for details. Here R satisfies (a.c.)
and has minimum spectrum compact but does not satisfy Property A.

We remark that [12, Example 2.1] uses idealization to give an example
of a total quotient ring with few zero divisors not satisfying Property A
and that [37, Example 4], from [44], uses idealization to give an exam-
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ple of a nonreduced ring with Property A whose minimum spectrum
is compact, but in which (a.c.) does not hold. Also [37, Example 12],
from [48], uses idealization to give an example of an additively regular
ring which is not Marot. Idealization is used to give some examples
[12, Examples 3.4, 3.16, 4.4] of sublattices of the lattice of ideals of a
commutative ring that exhibit bad behavior (such as the sublattice of
faithful ideals not being compactly generated).

Example 4.22. [59, Example 3] A quasilocal Manis valuation
ring Rv with Pv not maximal and Rv is not v-closed (Rv is v-closed
if Rv/v

−1(∞) is a valuation domain). Let K be a field and S =
K[X,Y ](X,Y ). Let SY = S[1/Y ] and M = ⊕s∈NS

Y /sSY where N is
the set of nonunits of SY . Let T = SY (+)M , so T is a total quotient
ring. Let v:T → Z ∪ {∞} be given by v((r,m)) = ω(r) where ω is the
Y -adic valuation on K(X,Y ) restricted to SY ; so v is a valuation on T .
Then Rv = S (+)M is quasilocal, but Pv = Y S (+)M is not maximal.
Also, Rv is not v-closed since v−1(∞) = 0 (+)M .

We end this section with some results from [60]. Consider the
following classes of rings: VR (Manis valuation rings), P (Manis
valuation Prüfer rings), C� (v-closed Manis valuation rings), Z (Manis
valuation rings with Z(Rv) = v−1(∞)), Ch (chained rings), RC (rings
whose regular principal ideals are totally ordered), M (Marot Manis
valuation rings), and S (surjective Manis valuation rings, i.e., for each
r ∈ Rv there exists a regular element s ∈ Rv with v(r) = v(s)). We
always have M ∪ C� ⊆ P , P ∩ S = M, Ch ⊆ Z ⊆ C� ∩ M, and
P ∪ S ⊆ VR. The next theorem shows that Ch � Z � C� ∪ M,
C� � M, M � C�, C� ∪M � P , S � P , P � S, and P ∪ S � VR;
moreover, the inequalities are realized by Manis valuation rings with
arbitrary value groups.

Theorem 4.23. (1) [60, Theorem 5] For each ordered abelian group
G, there exists a Manis valuation ring Rv with value group G which
satisfies exactly one of the following conditions:

(a) Rv is chained and it is not a domain;

(b) Z(Rv) = v−1(∞) and Rv is not chained;

(c) Rv is a v-closed Marot ring and Z(Rv) �= v−1(∞);
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(d) Rv is surjective and Rv is not a Prüfer ring;

(e) Rv is neither surjective nor Prüfer;

(f) Rv is a Marot ring and Rv is not v-closed;

(g) Rv is v-closed and Rv is not Marot; and

(h) Rv is a Prüfer ring, neither Marot nor v-closed.

(2) [60, Theorem 6]. The class RC of rings whose regular principal
ideals are comparable properly contains the class VR of Manis valuation
rings.

Proof. (1) Parts (d) (h) are done using idealization.

(d) We sketch the proof of (d). Let K be a field, F = K(Y ),
G a totally ordered Abelian group, and F (XG) the quotient field
of the semigroup ring F [X ;G]. Let δ:F [X ;G] → G be given by
δ(aXg) = g and δ(f) is the minimal degree of the monomials of f .
So δ extends to a valuation on F (XG) with value group G. Let
D = K[X ;G][Y ] ⊆ F (XG); let D′ be the localization of D at the
maximal ideal (Y, {Xg | g > 0}). Put D1 = {f/Xg | f ∈ D′, g ≥ 0},
B = ⊕{D1/dD1 | d /∈ U(D1)} and T = D1 (+)B. Then T is a
total quotient ring and v:T → G ∪ {∞} given by v((d, k)) = δ(d)
is a valuation. Then Rv = D′ (+)B. For each g ∈ G with g ≥ 0,
(Xg, 0) is a regular element of Rv, so Rv is surjective with value group
G. But Rv is not a Prüfer ring since Pv is not maximal ((Y, 0) /∈ Pv

since v((Y, 0)) = 0, but (Y, 0)Rv +Pv �= Rv). The proofs of (e) (h) are
similar.

(2) Let (V, P ) be a valuation domain with rank V ≥ 2, and let P1 be
a nonzero nonmaximal prime ideal of V . Let D = V + Y P1[Y ]. Let K
be the quotient field of V , and let B = ⊕{K[Y ]/M | M is a maximal
ideal of K[Y ]}. Then R = D (+)B is the desired example. Note that
(d, b) is a regular element of R⇔ d ∈ V −{0}. It is easily checked that
V a valuation domain gives that R ∈ RC. The proof that R is not a
Manis valuation ring is more involved, see [60] for details.

We remark that [12, Example 4.3] also gives an example using
idealization of a ring where regular principal ideals are comparable
but that is not integrally closed and hence not a Manis valuation ring.
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5. Factorization in commutative rings and modules. In this
section we first review some of the basic definitions and results con-
cerning factorization in integral domains and then show how they can
be extended to commutative rings with zero divisors and to modules.
We give a number of examples using idealization and discuss using
idealization to reduce questions concerning factorization in modules to
factorization in commutative rings.

Let D be an integral domain with quotient field K. Two elements
a, b ∈ D are associates, written a ∼ b, if a | b and b | a, or equivalently,
Da = Db or b = ua for some unit u ∈ D. A nonzero nonunit a ∈ D
is irreducible or an atom if a = bc (b, c ∈ D) implies b or c is a unit of
D, and D is atomic if every nonzero nonunit of D is a finite product
of atoms. If D satisfies the ascending chain condition on principal
ideals (ACCP), then D is atomic, but not conversely. A domain D is a
half-factorial domain (HFD), (respectively finite factorization domain
(FFD), bounded factorization domain (BFD)) if D is atomic and any
two factorizations of a nonzero nonunit into atoms have the same
length (respectively each nonzero nonunit has only a finite number
of nonassociate divisors, for each nonzero nonunit x ∈ D there is a
positive integer N(x) so that if x = x1 · · ·xn, a product of atoms (or
of just nonunits), then n ≤ N(x)). We have UFD ⇒ FFD ⇒ BFD ⇒
ACCP ⇒ atomic and UFD ⇒ HFD ⇒ BFD, but there are no other
implications. For an introduction to factorization in integral domains,
the reader is referred to [7].

When studying factorization in commutative rings with zero divisors
or modules one must decide what an irreducible element should be and
there are several choices; each, while equivalent in the domain case, is
different once zero divisors are allowed. The approach taken in [1, 14,
15] is via different “associate” relations. We outline that approach.

Let R be a commutative ring and M an R-module. Two elements
m,n ∈ M are associates (m ∼ n) (respectively strong associates
(m ≈ n), very strong associates (m ∼= n)) if Rm = Rn (respectively
m = un for some u ∈ U(R), m ∼ n and either m = n = 0 or
m = rn implies r ∈ U(R)). Taking M = R gives the notions of
“associates” in R. We say that M is strongly associate if for m,n ∈M ,
m ∼ n ⇒ m ≈ n and R is strongly associate if R is strongly associate
as an R-module. M is R-présimplifiable if for r ∈ R and m ∈ M ,
rm = m ⇒ r ∈ U(R) or m = 0. This generalizes the previous
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definition ofR being présimplifiable. It is not hard to show thatM is R-
présimplifiable⇔ m ∼ n (orm ≈ n)⇒ m ∼= n. So M R-présimplifiable
⇒ M is strongly associate. Strongly associate rings and modules are
investigated in [8].

Theorem 5.1. Let R be a commutative ring and M an R-module.

(1) R (+)M is présimplifiable ⇔ R and M are présimplifiable.

(2) R (+)M strongly associate ⇒ R and M are strongly associate.

(3) Suppose that R is présimplifiable. Then R (+)M is strongly
associate ⇔M is strongly associate. (R being présimplifiable is already
strongly associate.)

(4) Let G be an Abelian group. Then G is présimplifiable (respectively
strongly associate) ⇔ G is torsion-free (G = F ⊕T where F is torsion-
free and T is torsion with 4T = 0 or 6T = 0). Hence, Z (+)G is
présimplifiable, respectively strongly associate, ⇔ G is présimplifiable,
respectively strongly associate.

(5) Let p be a prime number. Every ideal of Z (+)Zp can be generated
by two elements.

Proof. (1) [15, Proposition 3.1]. (2), (3) [8, Theorem 14]. (4) The
first equivalence is [8, Theorem 15]. The second equivalence follows
from (1) and (2), respectively. (5) [8, Lemma 17].

Now a PIR is strongly associate since it is a finite direct product of
integral domains, even PIDs, and quasilocal rings, SPIRs, each of which
is strongly associate. However, we have the following examples.

Example 5.2. [8, Example 18] Let p ≥ 5 be prime. Then every ideal
of Z (+)Zp is two-generated, but Z (+)Zp is not strongly associate.
This follows from (4) and (5) of Theorem 5.1.

Example 5.3. [14, Example 6.1], [8, Example 19] A ring R
that is strongly associate but R[X ] is not strongly associate. Let
R = Z(2) (+)Z4. So R is a one-dimensional local ring and hence
is présimplifiable and thus strongly associate. Let a = (0, 1) and
f = (1, 0) + (2, 0)X . Then a ∼ af , but a �≈ af .
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A nonunit a ∈ R is irreducible (respectively strongly irreducible, very
strongly irreducible) if a = bc implies a ∼ b or a ∼ c (respectively a ≈ b
or a ≈ c, a ∼= b or a ∼= c) and a is m-irreducible if Ra is a maximal
element of the set of proper principal ideals of R. For a nonzero nonunit
a ∈ R, a very strongly irreducible ⇒ a is m-irreducible⇒ a is strongly
irreducible ⇒ a is irreducible, but none of these implications can be
reversed. Also a is prime, respectively weakly prime, if a | bc ⇒ a | b
or a | c (a | bc �= 0 ⇒ a | b or a | c). So a prime ⇒ a is weakly prime
⇒ a is irreducible.

In the case of an R-module M , we say that m ∈ M is R-primitive
(respectively strongly R-primitive, very strongly R-primitive) if for
a ∈ R and n ∈ M , m = an ⇒ m ∼ n (respectively m ≈ n, m ∼= n).
And m is R-superprimitive if bm = an for a, b ∈ R implies a | b. Note
that (1) m is R-primitive ⇔ Rm is a maximal cyclic R-submodule
of M , (2) m R-superprimitive ⇒ m is very strongly R-primitive ⇒ m
is strongly R-primitive ⇒ m is R-primitive, (3) if ann (m) = 0, m R-
primitive⇒ m is very stronglyR-primitive, and (4)mR-superprimitive
⇒ ann (m) = 0.

A commutative ring R is atomic if every (nonzero) nonunit of R is a
product of irreducibles; there are similar definitions of strongly atomic,
very strongly atomic, and m-atomic. As in the domain case, ACCP
implies atomic. A ring R is a half-factorial ring (HFR) (respectively
bounded factorial ring (BFR)) if R is atomic and any two factorizations
of a nonzero nonunit into atoms have the same length (respectively for
each nonzero nonunit x ∈ R, there is a natural number N(x) so that
for any factorization x = x1 · · ·xn, where each xi is a nonunit, we
have n ≤ N(x)). And R is called a finite factorization ring (FFR)
(respectively weak finite factorization ring (WFFR), atomic idf-ring) if
each nonzero nonunit of R has only a finite number of factorizations
up to order and associates (respectively every nonzero nonunit of R
has only a finite number of nonassociate divisors, R is atomic and
each nonzero element of R has at most a finite number of nonassociate
irreducible divisors). Here FFR ⇒ WFFR ⇒ atomic idf-ring and all
three are the same in the domain case. But Z(2) × Z(2) is an atomic
idf-ring that is not a WFFR and Z2 × Z2 is a WFFR that is not an
FFR.

Now if a ring has a nontrivial idempotent e, then e = e2 shows that
R is not an HFR, a BFR or an FFR; let alone a “unique factorization
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ring.” To get around this trivial case of nonunique factorization,
Fletcher [24, 25] introduced the notion of a U -decomposition. Let
a ∈ R be a nonunit, possibly 0. By a factorization of a we mean
a = a1 · · ·an where each ai is a nonunit. By an α-factorization,
α ∈ {irreducible, strongly irreducible, m-irreducible, very strongly
irreducible, weakly prime, prime}, of a we mean a factorization a =
a1 · · · an where each ai is α. Recall from [24] that for a ∈ R,
U(a) = {r ∈ R | ∃s ∈ R with rsa = a} = {r ∈ R | r(a) = (a)}.
A U -factorization of a is a factorization a = a1 · · ·anb1 · · · bm where
ai ∈ U(b1 · · · bm) for 1 ≤ i ≤ n and bi /∈ U(b1 · · · b̂i · · · bm), for
1 ≤ i ≤ m. We denote this U -factorization by a = a1 · · · an�b1 · · · bm�
and call a1, . . . , an, respectively b1, . . . , bm, the irrelevant, respectively
relevant, factors. A U -factorization is called an α-U -factorization
if each ai, bj is α. An irreducible U -factorization is called a U -
decomposition.

Using the U -factorization concept, we can give another generalization
of atomic, HFD, et al. to commutative rings with zero divisors. The idea
is to take these definitions for domains and apply them to the relevant
factors of U -factorizations of nonzero nonunits. For example, R is U -
atomic if for each nonzero nonunit a ∈ R, a = a1 · · · an�b1 · · · bm� where
each bi is irreducible, andR is a U -HFR ifR is U -atomic and for any two
U -factorizations with irreducible relevant factors a1 · · · an�b1 · · · bm� =
a = a′1 · · ·a′n′�b′1 · · · b′m′� of a nonzero nonunit a, m = m′.

As previously mentioned, see [7] for a survey of factorization in
integral domains. Reference [14] began the study of factorization
in commutative rings and defined the various associate relations and
types of irreducible elements. Factorization in modules is given in [15]
while U -factorizations and the rings such as U -BFRs defined via U -
factorizations are introduced in [1]. The study of U -factorizations is
carried forward in [17, 18].

As expected, there is a close relationship between the factorization
properties of an element m in an R-module M and the ring element
(0,m) of R (+)M . We summarize several of these in the following
theorem.
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Theorem 5.4. Let R be a commutative ring and M an R-module.
(1) Let m,n ∈ N . Then m ∼ n (respectively m ≈ n, m ∼= n) in

M ⇔ (0,m) ∼ (0, n) (respectively (0,m) ≈ (0, n), (0,m) ∼= (0, n)) in
R (+)M .

(2) Let R be an integral domain and 0 �= m ∈M . Then m is primitive
(respectively strongly primitive, very strongly primitive) in M ⇔ (0,m)
is irreducible (respectively strongly irreducible, very strongly irreducible)
in R (+)M .

(3) Suppose that R has a nontrivial idempotent and M �= 0. Then no
element (0,m) of 0 (+)M is irreducible in R (+)M .

(4) Suppose that R is indecomposable and 0 �= m ∈M is superprimi-
tive. Then (0,m) is very strongly irreducible in R (+)M .

Proof. (1) is [15, Proposition 3.1] whose proof there is left to the
reader. (2) is [14, Proposition 5.1] (in different terminology) or [15,
Theorem 3.3]. The proofs are straightforward. (3) and (4) are given
in [15, Theorem 3.4]. For (3), note that if e �= 0, 1 is idempotent,
then for m ∈ M , (0,m) = (e,m)(1 − e,m), but (0,m) � (e,m) and
(0,m) � (1− e,m). So (0,m) is not irreducible.

Thus, (2) above shows that in the case where R is an integral domain,
our definitions of primitive, strongly primitive, and very strongly prim-
itive seem to be appropriate. But (3) shows that in general there does
not appear to be a reasonable definition of primitive so that m is prim-
itive in M if and only if (0,m) is irreducible in R (+)M . As for global
properties of R (+)M , we have the following. For simplicity we take
R to be an integral domain. Some generalizations are mentioned after
the theorem.

Theorem 5.5. Let R be an integral domain and M an R-module.

(1) If R satisfies ACCP, then every ascending chain of principal
ideals of R (+)M containing a principal ideal of the form 〈(a,m)〉 where
0 �= a ∈ R stops.

(2) R (+)M satisfies ACCP ⇔ R satisfies ACCP and M satisfies
ACC on cyclic submodules.

(3) R (+)M is a BFR ⇔ R is a BFD and M is a BF-module, i.e.,
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for each nonzero n ∈ M , there exists a natural number N(n) so that
n = a1 · · · as−1ns (each ai a nonunit) ⇒ s ≤ N(n).

(4) R (+)M is atomic if R satisfies ACCP and M satisfies MCC, i.e.,
every cyclic submodule of M is contained in a maximal (not necessarily
proper) cyclic submodule.

(5) R (+)M is a U -FFR or equivalently, a U -WFFR ⇔ (i) R is
an FFD, (ii) M is a U -FF module, i.e., for every 0 �= m ∈ M ,
there are only finitely many reduced submodule factorizations such that
Rm = Rd1 · · · dnmj, up to order and associates on the di and mjs
and (iii) for every nonzero nonunit d ∈ R, there are only finitely many
distinct principal ideals 〈(d,m)〉 in R (+)M .

(6) R (+)M is a U -BFR if and only if R is a BFD and M is a U -
BF module, i.e., for every 0 �= m ∈ M , there exists a natural number
N(m) so that if Rm = Rd1 · · ·dtm where dj /∈ U(R), t > N(m), and
m ∈ M ; then after cancellation and reordering of some of the djs we
have Rm = Rd1 · · · dsm where s ≤ N(m).

(7) Let R be an integral domain with ACCP. Then R (+)M is atomic
⇔ R (+)M is U -atomic.

Proof. (1) (4) are part of [14, Theorem 5.2]. (1) Suppose a �= 0
and 〈(a, n)〉 � 〈(b,m)〉. Then (a, n) = (b,m)(c, l) for some (c, l). Now
a = bc and c cannot be a unit for this gives that (c, l) ∈ U(R (+)M).
So Ra � Rb. Thus, if R has ACCP, every ascending chain of principal
ideals of R (+)M containing a principal ideal of the form 〈(a, n)〉 where
a �= 0 stops.

(2) (⇒). If R (+)M satisfies ACCP, then R (+)M satisfies ACCP
on ideals of the form 〈(a1, 0)〉 ⊆ 〈(a2, 0)〉 ⊆ · · · and 〈(0, n1)〉 ⊆
〈(0, n2)〉 ⊆ · · · . Thus, R satisfies ACCP and M satisfies ACC on cyclic
submodules.

(⇐). Let 〈(a1, n1)〉 ⊆ 〈(a2, n2)〉 ⊆ · · · be an ascending chain. If every
ai = 0, the chain gives rise to the chain Rn1 ⊆ Rn2 ⊆ · · · which stops
by ACC on cyclic submodules and hence the original chain in R (+)M
stops. If some ai �= 0, then (1) gives that the chain stops.

(3) (⇒). Clear.

(⇐). Let (0, 0) �= (a, n) ∈ R (+)M be a nonunit and suppose
we have a factorization into nonunits (a, n) = (a1, n1) · · · (as, ns). If
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a = 0, (0, n) = (a1, n1) · · · (as, ns) forces say as = 0 and hence
n = a1 · · · as−1ns so s ≤ N(n). If a �= 0, a = a1 . . . as so s ≤ N(a) since
R is a BFD.

(4) Let (0, 0) �= (a, n) ∈ R (+)M be a nonunit. Suppose a �= 0.
By (1), (a, n) is a product of irreducibles. Suppose a = 0. Then
Rn ⊆ Rm where Rm is a maximal cyclic submodule (and so m is
primitive) and n = cm for some nonzero c ∈ R. By Theorem 5.4 (2),
(0,m) is irreducible. Since (0, n) = (c, 0)(0,m) and (c, 0) is either a
unit or a product of irreducibles, (0, n) is a product of irreducibles.

(5) See [17, Theorem 4.2].

(6) See [17, Theorem 4.4].

(7) See [17, Theorem 4.6].

Some of the parts of Theorem 5.5 admit generalizations to the case
where R is not an integral domain. For example, (1) and (7) can be
generalized to the case where R is présimplifiable [18, Lemma 3.14,
Theorem 3.15], (5) (⇒) holds for R an FFR [18, Theorem 3.6], (3)
(⇒) holds if R is présimplifiable [18, Theorem 3.7] and (6) (⇒) holds
where R is a U -BFR and M is a U -BFM (with the obvious definition)
[18, Lemma 3.8].

We previously defined a nonzero nonunit p ∈ R to be weakly prime
if p | ab �= 0 ⇒ p | a or p | b. More generally, call a proper ideal I
weakly prime if 0 �= ab ∈ I ⇒ a ∈ I or b ∈ I. So a prime ideal is
weakly prime, but if (R,M) is quasilocal with M2 = 0, every ideal of
R is weakly prime. For a detailed study of weakly prime ideals and
their application to factorization see [13] from where the next result is
taken.

Theorem 5.6. Let R be a commutative ring and M an R-module.
Let I be a proper ideal of R. Then I ′ = I (+)M is weakly prime if and
only if I is weakly prime and for a, b ∈ R with ab = 0 but a /∈ I and
b /∈ I, a, b ∈ ann (M).

Proof. See [13, Theorem 17].
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We next use idealization to give some examples. While it is nontrivial
to give examples of atomic integral domains that don’t satisfy ACCP,
the first example gives a one-dimensional quasilocal atomic ring R that
doesn’t satisfy ACCP. This ring is also an LCM ring, i.e., each two
elements have an LCM. Now an atomic LCM-domain is a UFD, but
R does not have unique factorization (see [14] for various notions of
unique factorization rings).

Example 5.7. [14, Example 5.3] A one-dimensional quasilocal ring
R that is atomic but does not satisfy ACCP. Also, R is an LCM ring,
but not a unique factorization ring. Take R = Z(2) (+)(Z2 ⊕ Z2∞).
Here Z2 ⊕ Z2∞ does not satisfy ACC on cyclic submodules, so R does
not satisfy ACCP. But Z2⊕Z2∞ satisfies MCC so by Theorem 5.5 (4),
R is atomic. For the second part see [14].

Example 5.8. [14, Example 5.5] A ring R which is not atomic but
0 and every regular element of R is a product of irreducible elements.
Take R = Z (+)(Z2 ⊕Q). Now R is not atomic since no subgroup of
Z2 ⊕Q other than 〈(1, 0)〉 is contained in a maximal cyclic subgroup.
Now (0, (1, 0)) is irreducible and hence (0, (0, 0)) = (0, (1, 0))2 is a
product of irreducibles. By Theorem 5.5 (1) every element of the form
(a, (b, c)) where a �= 0, 1, is a product of irreducibles.

Example 5.9. [14, Example 5.7] An irreducible element that is
neither prime nor m-irreducible. Let R = Z (+)(Z2 ⊕ Z2). Then
(0, (0, 1)) is irreducible since 〈(0, 1)〉 is a maximal cyclic subgroup of
Z2 ⊕ Z2, but R(0, (0, 1)) is certainly not prime. Also, (0, (0, 1)) is not
m-irreducible since R(0, (0, 1)) � R(3, (0, 0)).

Let R be a commutative ring. An element a ∈ R is U -bounded if there
exists an N(a) so that for each U -factorization a = a1 · · · an�b1 · · · bm�,
m ≤ N(a). So R is a U -BFR if each nonzero (nonunit) of R is U -
bounded. If R is Noetherian, then R is a U -BFR and 0 is U -bounded
[1, Theorem 4.17] and a decomposable U -BFR has 0 U -bounded [1,
Corollary 4.10].
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Example 5.10. [1, Example 4.12] A quasilocal BFR (and hence
an indecomposable U -BFR) in which 0 is not U -bounded. Let R =
k[[X,Y ]] (+)M where k is a field and M = ⊕{k[[X,Y ]]/P | P a ht-one
prime of k[[X,Y ]]}. Now ∩∞n=1((X,Y ) (+)M)n = 0, so R is a quasilocal
BFR. But 0 is not U -bounded since (0, 0) = �(p1, 0) · · · (pn, 0)(0, ep1 +
· · ·+ epn)� for each n ≥ 1 where {pi} is a countable set of nonassociate
nonzero principal primes of k[[X,Y ]] and epi = 1k[[X,Y ]] + (pi) in M .

For more results on factorization in modules including unique factor-
ization and factorization in torsion-free modules, the reader is referred
to [15] which also discusses the role of SR(M) in factorization. We
next consider another extension of factorization in integral domains,
the factorization of regular elements.

Let R be a commutative ring and reg (R) the monoid of regular
elements (nonzero-divisors) of R. One simplification in dealing with
only the regular elements is that the three associate relations ∼, ≈ and
∼= all agree for regular elements. Hence for a regular nonunit a ∈ R, the
notions of irreducible, strongly irreducible, very strongly irreducible,
and m-irreducible all coincide, so we simply use the term irreducible.
We say that R is r-atomic if every regular nonunit of R is a product
of irreducibles and that R satisfies r-ACCP if every ascending chain of
regular principal ideals stabilizes. In a similar manner we can define
r-UFR (r-unique factorization ring), r-HFR, r-FFR, and r-BFR.

The following theorem shows how idealization can be used to give
examples of rings satisfying the various factorization properties for the
regular elements.

Theorem 5.11. Let R be an integral domain and M an R-module.

(1) If R satisfies ACCP, R (+)M satisfies r-ACCP.

(2) If R is a BFD, R (+)M is an r-BFR.

Suppose further that M = MS where S = R − (Z(R) ∪ Z(M)) =
R− Z(M).

(3) If R is atomic, R (+)M is r-atomic.

(4) If R is an HFD, R (+)M is an r-HFR.

(5) If R is an FFD, R (+)M is an r-FFR.
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Proof. (1) This follows immediately from Theorem 5.5 (1).

(2) Suppose thatR is a BFD. So for each nonzero nonunit a ∈ R, there
exists a nonnegative integerN(a) with the property that if a = a1 · · · an

where ai is a nonunit, then n ≤ N(a). Suppose that (a,m) is a
regular nonunit of R (+)M and (a,m) = (a1,m1) · · · (an,mn) where
each (ai,mi) is a nonunit of R (+)M . Then a is a nonzero nonunit of
R and a = a1 · · ·an where each ai is a nonunit of R; so n ≤ N(a).
Thus, R (+)M is an r-BFR.

Now suppose that M = MS where S = R−Z(M). Let b ∈ R−Z(M)
and m ∈M . Then m = bm′ for some m′ ∈M , so (b,m) = (b, 0)(1,m′).
Hence (b, 0) ∼ (b,m) for each m ∈M . So (b,m) is an atom ⇔ (b, 0) is
an atom ⇔ b is an atom.

(3) Let (r,m) be a regular nonunit of R (+)M , so r ∈ R−Z(M) and
r is a nonunit of R. Then r = r1 · · · rn where each ri is an atom of
R. Now each (ri, 0) is a regular atom of R (+)M and since M = MS ,
(r,m) = u(r1, 0) · · · (rn, 0) where u is a unit of R (+)M . So R (+)M is
r-atomic.

(4) By (3), R (+)M is r-atomic. Suppose that (r1,m1) · · · (rn,mn) =
(r′1,m

′
1) · · · (r′n′ ,m′

n′) where each (ri,mi), (r′i,m
′
i) is a regular atom of

R (+)M . Then r1 · · · rn = r′1 · · · r′n′ where each ri, r′i is an atom of R.
So n = n′ since R is an HFD. Hence, R (+)M is an r-HFR.

(5) Suppose that R is an FFD. Let (d,m) be a regular nonunit of
R (+)M . So d is a nonzero nonunit of R. Let d1, . . . , dn be a set of all
nonassociate divisors of d. Suppose that (d′,m′) is a divisor of (d,m).
Then d′ is a divisor of d. So d′ ∼ di for some i. Then M = MS

gives (d′,m) ∼ (di, 0). So (d1, 0), . . . , (dn, 0) is a set of all nonassociate
divisors of (d,m). Hence R (+)M is an r-FFR.

Much of the theory of factorization in integral domains has been
generalized to cancelative monoids and hence can be applied to reg (R).
We end this section with examples concerning Krull rings and Krull
monoids which use idealization. A commutative ring R is a Krull ring
if R = ∩α(Vα, Pα) where each (Vα, Pα) is a rank-one discrete Manis
valuation ring on T (R), each Pα is a regular prime ideal, and each
regular element of R is a unit in almost all Vα. Equivalently, R is
a Krull ring if R is completely integrally closed and R has ACC on
integral divisorial ideals. A cancelative monoid S is a Krull monoid
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if there exists a family (vi)i∈I of discrete valuations on the quotient
monoid 〈S〉 of S (that is, each vi: 〈S〉 → Z is a group homomorphism)
such that S = ∩Vi where Vi = {x ∈ 〈S〉 | vi(x) ≥ 0} and for every
x ∈ S, the set {i ∈ I | vi(x) > 0} is finite. Here S is a Krull monoid if
and only if S is completely integrally closed and S has ACC on integral
divisorial ideals.

Now an integral domain R is a Krull domain if and only if (R−{0}, ·)
is a Krull monoid. Unfortunately, the theorem we would like, namely
R is a Krull ring if and only if reg (R) is a Krull monoid, is not true. It
is easily seen that if R is a Krull ring, then reg (R) is a Krull monoid,
and if R is a Marot ring and reg (R) is a Krull monoid, then R is a
Krull ring [15, Theorem 5.1].

Example 5.12. [15, Example 5.2] A ring R with reg (R) a Krull
monoid, even factorial, but R is not a Krull ring. Let D = K[X,Y ], K
a field, and A = ⊕{D/M | M is a maximal ideal of D, Y /∈ M}. Put
D2 = K[Y,X2, XY,X3] and R2 = D2 (+)A. Since (X2, 0) ∈ R2 but
(X, 0) /∈ R2, R2 is not (completely) integrally closed and hence R2 is
not a Krull ring. However, reg (R2) = {(αY m, a) | α ∈ K−{0}, m ≥ 0,
a ∈ A}. Since (αY m, a) ∼ (Y m, 0), reg (R2) ≈ U(R2) ×N0 is a Krull
monoid, even factorial.

In a manner analogous to Krull domains, we can define the divisor
class group Cl (R) of a Krull ring R and the divisor class group Cl (S) of
a Krull monoid S. There is a natural monomorphism ψ:Cl (reg (R))→
Cl (R) given by ψ([A]) = [(RA)v] where [A] represents the class of a
divisorial ideal A of reg (R) and (RA)v = ((RA)−1)−1. If R is a Marot
ring, the map ψ is surjective [15, Theorem 5.3].

Example 5.13. [15, Example 5.4] A Krull ringR with Cl (reg (R)) �
Cl (R). We take R to be the ring of Example 4.18. LetD be a Dedekind
domain with maximal ideal M that is not principal, but Mm = (t)
is principal, m minimal, A = ⊕{D/Q | Q is a maximal ideal of D,
Q �=M}, and R = D (+)A. Then (R,P ), P =M (+)A, is a rank-one
discrete Manis valuation ring and hence a Krull ring. Here {tnR}∞n=0

is the set of regular principal ideals of R, so reg (R) ≈ U(R)× (N0,+)
and Cl (reg (R)) = 0 since reg (R) is factorial. Now P is invertible but
not principal, so Cl (R) �= 0, in fact Cl (R) = 〈[P ]〉 ≈ Zm.
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6. Miscellaneous topics. In this section we cover a number of
different topics involving idealization. The first topic involves gener-
alizations of cyclic modules including finitely generated locally cyclic
modules, multiplication modules and cancellation modules. In most
cases idealization allows us to reduce to the case of ideals. We begin
with the relevant definitions.

Let R be a commutative ring and M an R-module. Then M is a
multiplication module if for each submodule N of M , N = IM for some
ideal I of R. In this case we can take I = (M : N). A multiplication
module is locally cyclic and if M is finitely generated the converse is
true. Multiplication modules and ideals have been extensively studied;
see [5] for some references and a number of characterizations.

An R-module M is a (weak) cancellation module if for ideals I and
J of R, IM = JM implies I = J (I + (0 : M) = J + (0 : M)) and
M is a restricted cancellation module if IM = JM �= 0 implies I = J .
Clearly a cancellation module M is a restricted cancellation module, a
restricted cancellation module M is a weak cancellation module, and
the notions coincide when M is faithful. Moreover, M is a restricted
cancellation module if and only if M is a weak cancellation module and
(0 : M) is comparable to each ideal of R. An ideal I is a cancellation
ideal if and only if for each maximal ideal M of R, IM is a regular
principal ideal of RM. A finitely generated locally cyclic module is
a weak cancellation module. For results on cancellation modules and
their generations along with additional references, the reader is referred
to [6].

The following theorem shows that when studying these various gen-
eralizations of locally cyclic modules we can usually reduce to the ideal
case via idealization.

Theorem 6.1. [6, Theorem 3.1] Let R be a commutative ring, M
an R-module and N a submodule of M .

(1) N is a cyclic R-module ⇔ 0 (+)N is a principal ideal of R (+)M .

(2) N is a (finitely generated) locally cyclic R-module ⇔ 0 (+)N is a
(finitely generated) locally principal ideal of R (+)M .

(3) N is a multiplication module ⇔ 0 (+)N is a multiplication ideal
of R (+)M .
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(4) N is a weak cancellation module ⇔ 0 (+)N is a weak cancellation
ideal of R (+)M .

(5) N is a cancellation module ⇔ 0 (+)N is a weak cancellation ideal
of R (+)M and (0 : (0 (+)N)) = 0 (+)M .

(6) 0 (+)N is a restricted cancellation ideal of R (+)M if and only if
N is a restricted cancellation module and for r ∈ R, rN �= 0 implies
rM = M .

Proof. (1), (2). Just observe that 0 (+)N is finitely generated,
respectively cyclic, if and only if N is, and that for a maximal idealM
of R, (0 (+)N)M (+) M ≈ 0M(+)NM.

(3) (⇒). Let N be a multiplication submodule of M , and let N ′

be a submodule of N . Then N ′ = JN for some ideal J of R and
hence 0 (+)N ′ = (J (+)M)(0 (+)N). Since every ideal contained in
0 (+)N has the form 0 (+)N ′ for some submodule N ′ of N , 0 (+)N is
a multiplication ideal.

(⇐). Suppose that 0 (+)N is a multiplication ideal of R (+)M , and
let N ′ be a submodule of N . So 0 (+)N ′ = J ′(0 (+)N) for some ideal
J ′ of R (+)M . Since (0 (+)M)(0 (+)N ′) = 0 (+) 0 ⊆ 0 (+)N ′, we can
assume that J ′ ⊇ 0 (+)M . So J ′ = J (+)M for some ideal J of R.
Then 0 (+)N ′ = (J (+)M)(0 (+)N) = 0 (+)JN . Hence, N ′ = JN .
Thus N is a multiplication module.

(4) The proof of (4) involves techniques similar to the proof of (3),
see [6] for details. Note that (5) follows from (4) since N is faithful if
and only if (0 : (0 (+)N)) = 0 (+)M . The proof of (6) is more involved,
see [6].

We end this topic with an application and an example. For a finitely
generated R-module M , let μ(M) be the minimal number of elements
necessary to generate M . The following result [4, Corollary 2] uses the
fact that a module M is finitely generated locally cyclic if and only if
0 (+)M is. Let I1, . . . , Ik−1 be finitely generated ideals of R and M a
finitely generated R-module with at least k−1 of I1, . . . , Ik−1,M being
locally cyclic. Then μ(I1 · · · Ik−1M) ≤ μ(I1) + · · ·+ μ(Ik−1) + μ(M)−
k + 1.

We next give an example of a weak cancellation ideal in a local ring
that has a homomorphic image that is not a weak cancellation ideal.
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Example 6.2. [6, Example 3.2] Let (R,M) be a local domain
that is not a DVR or field, and let M = R ⊕ M. Hence M is
a cancellation R-module. Then R (+)M is a local ring with unique
minimal prime ideal P = 0 (+)M and P 2 = 0. SinceM is a cancellation
R-module, P is a weak cancellation ideal of R (+)M . Since M is
not a cancellation ideal of R (it is not principal), 0 ⊕ M is not a
weak cancellation submodule of M = R ⊕M. So P/(0 (+)(R ⊕ 0)) =
(0 (+)(R⊕M))/(0 (+)(R⊕0)) ≈ 0 (+)(0⊕M) is not a weak cancellation
ideal of (R (+)M)/(0 (+)(R ⊕ 0)) ≈ R (+)(0⊕M).

We next discuss Boolean rings, von Neumann regular rings and their
generalizations. This material is taken from [3] which the reader may
consult for more details, references and a history of the topic. It is
well known that Boolean rings, Boolean algebras, and complemented
distributive lattices are essentially the same things. Thus, the duality
for Boolean algebras can also be stated for Boolean rings. Less well
known is that such a general duality theory, due to Foster, can be
given for arbitrary commutative rings with the Boolean ring duality
as a special case. From this duality one is naturally led to Boolean-
like rings. Boolean-like rings are characterized as the commutative
rings R with identity satisfying 2x = 0 and xy(1 + x)(1 + y) = 0
for all x, y ∈ R. More generally a commutative ring R is an n-
Boolean ring if charR = 2 and x1 · · ·xn(1 + x1) · · · (1 + xn) = 0 for
all x1, . . . , xn ∈ R. Thus, Boolean rings are just the 1-Boolean rings
and Boolean-like rings are the 2-Boolean rings. Also, a commutative
ring R is n-von Neumann regular if, given x1, . . . , xn ∈ R, there exist
a1, . . . , an ∈ R with (x1a1x1−x1) · · · (xnanxn−xn) = 0. So R is 1-von
Neumann regular if and only if R is von Neumann regular. It can be
shown that R is n-Boolean, respectively n-von Neumann regular, if and
only if R/nil (R) is Boolean, respectively von Neumann regular, and
nil (R)n = 0. There is also a T -nilpotent version of both concepts. We
have the following result which gives a structure theory for Boolean-like
rings using idealization.

Theorem 6.3. (1) [3, Theorem 9] Let R be a commutative ring with
identity and N an R-module. If R is n-Boolean, respectively n-von
Neumann regular, then R (+)N is (n+1)-Boolean, respectively (n+1)-
von Neumann regular. Moreover, R is n-Boolean, respectively n-von
Neumann regular, if and only if nil (R)n−1N = 0.
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(2) Structure theory for Boolean-like rings [3, Theorem 10]. If B is a
Boolean ring and N is a B-module, then B (+)N is a Boolean-like ring.
Conversely, suppose that R is a Boolean-like ring. Then R = R/nil (R)
is a Boolean ring and R ≈ R (+) nil (R) where nil (R) is considered as an
R-module (since nil (R)2 = 0). Equivalently, if B = {b ∈ R | b = b2},
then B is a Boolean subring of R (with B ≈ R) and R = B (+) nil (R)
where nil (R) is considered as a B-module.

Proof. (1) Suppose that R is n-Boolean. Put R∗ = R (+)N .
Since charR = 2, 2x = 0 for all x ∈ N , so charR∗ = 2. Now
R∗/nil (R∗) ≈ R/nil (R) is a Boolean ring. Since nil (R∗)m =
nil (R)m (+) nil (R)m−1N for each natural number m, R n-Boolean
⇒ nil (R)n = 0⇒ nil (R∗)n+1 = 0. So R n-Boolean implies that R∗ is
(n+1)-Boolean and R∗ is n-Boolean⇔ nil (R∗)n = 0⇔ nil (R)n−1N =
0. The proof of the n-von Neumann regular result is similar.

(2) The first part of (2) follows from (1) since a Boolean-like ring is
just a 2-Boolean ring. Conversely, suppose that R is a Boolean-like
ring. Since charR = 2, it is easily checked that B is a Boolean subring
of R. Also, R = B + nil (R) [3, Theorem 6] (in fact, R = B ⊕ nil (R)
[3, Theorem 8]). So the map B → R → R/nil (R) is an isomorphism.
Since every element r ∈ R has a unique representation in the form
r = b + n where b ∈ B and n ∈ nil (R), it is easily checked that the
map R→ B (+) nil(R) given by r = b+n→ (b, n) is an isomorphism.

Unfortunately, Theorem 6.3 cannot be extended to n-Boolean rings
for n > 2 nor to n-von Neumann regular rings. For if R∗ = Z/4Z,
then R∗ is 2-von Neumann regular, but R∗ does not have the form
R∗ = R (+)N where R is von Neumann regular and N is an R-
module. For since R∗ is not von Neumann regular, we must have
R = Z2 and hence if R∗ = R (+)N , then R∗ = Z/4Z would have
characteristic 2. The same example shows that a ring satisfying
the identity x1x2(1 + x1)(1 + x2) = 0 need not be the idealization
of a ring satisfying the identity x1(1 + x1) = 0. Next, let R∗ =
(Z2[X ]/(X3)) × Z2, so R∗ is 3-Boolean, but not 2-Boolean. It can
be shown that R∗ is not the idealization of a 2-Boolean ring, see [3,
pages 74 75] for details.
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We next consider commutative clean rings and some generalizations.
Nicholson [50] defined a (not necessarily commutative) ring R to be
clean if each element of R can be written as the sum of a unit and an
idempotent. McGovern defined a commutative ring to be almost clean
if every element is the sum of a regular element and an idempotent
and in [2] a commutative ring R is said to be ({0, 1}-)weakly clean
if for each x ∈ R, either x = u + e or x = u − e for some unit u
and some idempotent e (e ∈ {0, 1}). The reader is referred to [2] for
relevant references. A quasilocal ring and any zero-dimensional ring
is clean and a direct product or ultraproduct of clean rings is clean.
Any integral domain is almost clean but is clean if and only if it is
quasilocal. McGovern determined when certain rings of continuous
functions are (almost) clean. An indecomposable weakly clean ring is
either quasilocal or has exactly two maximal ideals and has 2 as a unit.
Thus Z(3) ∩ Z(5) is weakly clean but not clean.

Theorem 6.4. Let R be a commutative ring and M an R-module.

(1) [2, Theorem 1.10]. Then R (+)M is clean (respectively weakly
clean, {0, 1}-weakly clean) if and only if R is clean (respectively weakly
clean, {0, 1}-weakly clean).

(2) [2, Theorem 2.11]. Then R (+)M is almost clean if and only
if each x ∈ R can be written in the form x = r + e where x ∈
R− (Z(R) ∪ Z(M)) and e ∈ Id (R).

Proof. Recall that U(R (+)M) = {(r,m) | r ∈ U(R), m ∈ M},
Id (R (+)M) = {(e, 0) | e ∈ Id (R)}, and reg (R (+)M) = {(r,m) | r ∈
R− (Z(R) ∪ Z(M)), m ∈M}. If R is clean, then for r ∈ R, r = u+ e
where u is a unit and e is an idempotent. Then (r,m) = (u,m)+ (e, 0)
where (u,m) is a unit and (e, 0) is idempotent. So R (+)M is clean.
A similar argument shows that if R is weakly clean (respectively
{0, 1}-weakly clean, has each element the sum of an element from
R− (Z(R)∪Z(M)) and an idempotent), then R (+)M is weakly clean
(respectively {0, 1}-weakly clean, almost clean). The converse of each
statement is also similar.

Recently a number of papers concerning Armendariz rings have ap-
peared. Rege and Chhawchharia [52] defined a ring R (not necessarily
commutative) to be Armendariz if for f, g ∈ R[X ] with fg = 0, aibj = 0
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for each coefficient ai of f and bj of g. In a similar manner one can
define an Armendariz module (take f ∈ R[X ] and g ∈ M [X ]). A re-
duced ring or a commutative arithmetical ring is Armendariz, R[X ] is
Armendariz if and only if R is, and R[X ]/(Xn), n ≥ 2, is Armendariz
if and only if R is reduced. For these results and the following theorem,
see [9].

Theorem 6.5. [9, Theorem 12] Let R be a commutative ring and M
an R-module.

(1) If R (+)M is Armendariz, then R is an Armendariz ring and M
is an Armendariz R-module.

(2) Suppose that R is an integral domain. Then R (+)M is Armen-
dariz if and only if M is an Armendariz R-module. In particular, if M
is torsion-free, R (+)M is Armendariz.

Proof. We identify (R (+)M)[X ] with R[X ] (+)M [X ].

(1) Suppose that R (+)M is Armendariz. Let f ∈ R[X ] and g ∈
M [X ] with fg = 0. Then in (R (+)M)[X ], (f, 0)(0, g) = (0, 0). Let ai

be a coefficient of f and bj a coefficient of g; so (ai, 0) is a coefficient
of (f, 0) and (0, bj) is a coefficient of (0, g). So (0, 0) = (ai, 0)(0, bj) =
(0, aibj). Thus, aibj = 0 and hence M is an Armendariz R-module. A
similar proof shows that R is an Armendariz ring.

(2) Suppose that R is an integral domain. Now (⇒) follows from (1).

(⇐). Let f, g ∈ (R (+)M)[X ] with fg = 0. Write f =
∑

(ri,mi)X i =
(f1, f2) and g =

∑
(si, ni)X i = (g1, g2) in (R (+)M)[X ] = R[X ] (+)

M [X ]. Now 0 = f1g1 in R[X ], so R a domain gives, say, f1 = 0. So
0 = f1g2 + g1f2 = g1f2. So M Armendariz gives each simj = 0. So
(rj ,mj)(si, ni) = (0,mj)(si, ni) = (0, simj) = (0, 0).

We note that the converse of (1) above, namely R Armendariz and
M an Armendariz R-module ⇒ R (+)M is Armendariz, is not true.
For take R = Z/4Z. Then R being a PIR is Armendariz and so R

is an Armendariz R-module. However, R (+)R ≈ R[X ]/(X2) is not
Armendariz since R is not reduced.

We next briefly mention four papers concerning the idealization of
rings that are related to Bezout domains.
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Mahdou [47] considered the transfer of Steinitz, Hermite, semi-
Steinitz and weakly semi-Steinitz properties to idealization.

Faith raised the question of whether a commutative ring R with the
property that the endomorphism ring of each ideal is commutative
forces R to be self-injective. This is the case if R is Noetherian or
reduced. Clark [20] showed that the idealization R = A (+)(K/A)
where A is a discrete rank-one noncomplete valuation domain with
quotient field K gives a negative answer.

Call a commutative ring R stable if HomR(M,E) = 0 implies
HomR(E(M), E) = 0 for all R-modules M and injective R-modules
E where E(M) is the injective envelope of M . Damiano and Shapiro
[22] showed that if R is a stable ring with Gabriel dimension and M
is an R-module such that HomR(M,E) is isomorphic to a submodule
of ⊕E for each injective R-module E, then the idealization R (+)M
is stable. This result is used to give examples of stable rings that are
neither Noetherian nor perfect.

A commutative ring R is an FGC ring if every finitely generated R-
module is a direct sum of cyclic modules. A commutative ring R is an
FGC ring if and only if R is a finite direct product of maximal chained
rings, almost maximal Bezout domains, and torch rings. Here R is a
torch ring if R is not quasilocal, R has a unique minimal prime ideal
P , P is a nonzero uniserial R-module, and R/P is an h-local locally
almost maximal Bezout domain. Shores and Wiegand [56] showed that
if S is an FGC domain with quotient field K that is not quasilocal and
which is not a maximal domain, then for M a maximal ideal of S,
R = S (+)(K/SM) is a torch ring.

We have yet to consider modules over the idealization. An R (+)M -
module can be identified with a pair (U, f) where U is an R-module
and f :M ⊗R U → U is an R-module map satisfying f ◦ (1M ⊗ f) =
0. Here U is given an R (+)M -module structure via f , namely,
(r,m)u = ru + f(m ⊗ u). For a through study of modules over
R (+)M (where R is not assumed to be commutative), see [51]. In
particular, that cited paper is concerned with finding the global ho-
mological dimension of R (+)M . A number of very technical re-
sults are given. For example, if TorR

i (M,M) = 0 for all i ≥ 0,
then max(lD(R),max(whd (MR), hd (RM) + 1)) ≤ lD(R (+)M) ≤
lD(R) + min(whd (MR), hd(RM) + 1) where lD( ) is the left global
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homological dimension, hd ( ) is the homological (projective) dimen-
sion and whd ( ) is the weak homological (flat) dimension. Of course,
in the case where R is a commutative Noetherian ring and M is a
finitely generated R-module, lD(R (+)M) =∞ unless M = 0 and R is
a finite-dimensional regular ring since lD(R (+)M) < ∞ implies that
R (+)M is locally a regular local ring and hence locally an integral do-

main and lD(R (+)M) = sup{lD((R (+)M)M (+)M) | M is a maximal
ideal of R}.

Suppose that R is a commutative ring. A finite n-presentation for
an R-module M is an exact sequence Fn → Fn−1 → · · · → F1 →
F0 → M → 0 where each Fi is a finitely generated free R-module.
The λ-dimension of R, denoted λ-dimR, is the least positive integer
n, or ∞ if none exists, with the property that whenever an R-module
M has a finite n-presentation, then M has a finite m-presentation for
all m ≥ n. So λ-dimR = 0, respectively λ-dimR ≤ 1, if and only
if R is Noetherian, respectively coherent. The notion of λ-dimension
was introduced by Vasconcelos, and he raised the problem of giving a
commutative ring Rn for each positive integer n with λ-dimRn = n.
This problem was solved by Roos [54] using idealization. He showed
that (1) if R is Noetherian and M is a free R-module of infinite rank,
then λ-dim(R (+)M) = 2 and (2) if (R,M) is a local n-dimensional
Gorenstein ring, then λ-dim(R (+)E(R/M)) = n. Conditions are given
for R (+)M to be coherent. Also, see [29].

Let n and d be nonnegative integers. Costa [21] defined a commu-
tative ring R to be an (n, d)-ring if every n-presented R-module has
projective dimension at most d. He raised a number of open problems
including whether there are examples of (n, d)-rings which are neither
(n, d − 1)-rings nor (n − 1, d)-rings for all nonnegative integers n and
d. Using trivial extensions of fields, Mahdou [46] constructed a (2, 0)-
ring which is not a (1, 0)-ring. Soon after Kabbaj and Mahdou [38]
used idealization to construct a class of (3, d)-rings which are neither
(3, d− 1)-rings nor (2, d)-rings for arbitrary d. These ideas are pushed
forward in [39] which investigates coherent-like conditions in an ideal-
ization.

The majority of this survey has dealt with non-Noetherian rings. As
seen by Example 4.15, idealization can be used to produce examples of
local rings with dimR = r and G(R) = s where r ≥ s ≥ 0. Thus, it
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is not surprising that idealization can be used to provide examples of
Cohen-Macaulay rings and related rings. We briefly mention some of
the work. Reiten [53] showed that if R is a local ring with a Gorenstein
module M of rank 1, then R (+)M is Gorenstein and thus R is a
quotient of a local Gorenstein ring. Goto [30] showed that if R is a
Cohen-Macaulay ring of dimension d andM a Cohen-Macaulay module
of dimension d−1, then R (+)M is an approximately Cohen-Macaulay
ring. Goto [31] and Yamagishi [58] gave conditions for the idealization
to be a Buchsbaum or quasi-Buchsbaum ring. Aoyama [16] showed
that R (+)M is quasi-Gorenstein if and only if R̂ is (S2) and M is a
canonical module. Gulliksen [34] showed that the idealization of a local
complete intersection and a finitely generated module has a Poincaré
series that is a rational function, but Bφgvad [19] using Gulliksen’s
result that (R,M) local Artinian implies R (+)E(R/M) is Gorenstein
gave an example of a local Gorenstein ring with transcendental Poincaré
series. Goto et al. [32, 33] used idealization to study “good ideals” (see
papers for definition) in local Gorenstein rings.

We end this survey with a brief discussion of an interesting paper
by Lambert and Lucas [41]. Among other things, they showed that if
R ⊆ S are commutative rings and φ, φ′:S → R are R-module maps
with φ(1) = 1 = φ′(1), then R (+) kerφ and R (+) kerφ′ are isomorphic
as rings. Techniques from idealization are used to prove the following
theorem: Let W be an Abelian von Neumann algebra of operators
acting on a separable Hilbert space H . Then there is an algebra N of
nilpotent operators of index 2 such that W +N is a maximal Abelian
algebra of operators on H .
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