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OPEN PROBLEMS ON
SYZYGIES AND HILBERT FUNCTIONS

IRENA PEEVA AND MIKE STILLMAN

1. Introduction.

In this paper we list a number of open problems and conjectures on
Hilbert functions and syzygies. Some of the problems are closely related
to Algebraic Geometry, Combinatorics, and Hyperplane Arrangements
Theory.

Our aim is to stimulate interest, rather than to give a complete survey.
When describing a problem, we sometimes state one or two related
results, and give pointers to a few references, rather than giving an
exhaustive list of references and what is known. A detailed survey
of the covered topics would make the paper far longer than we (and
perhaps, the readers) could handle.

Our list of problems is certainly not complete. We have focused on
problems that we see as most exciting, or important, or popular. We
present three types of problems: Conjectures, Problems, and Open-
Ended Problems. Some of the problems and especially the Open-Ended
problems are general problems which point to interesting directions for
exploration.

The books [35] and [95] contain expository papers on some of the
problems and related topics. Section 17 is a (probably non-complete)
list of helpful books. [3, 38, 63, 71, 72, 80, 116, 117] provide lecture
notes. A good way to get a feel of the recent research is to browse the
web pages of the mathematicians working in this area.

2. Notation.

Throughout k stands for a field. For simplicity, we assume that k is
algebraically closed and has characteristic 0. However, many of the
open problems and conjectures make sense without these assumptions.
In the paper, the polynomial ring S = k[x1, . . . , xn] is graded by
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160 I. PEEVA AND M. STILLMAN

deg(xi) = 1 for all i. A polynomial f is homogeneous if f ∈ Si for
some i, that is, if all monomial terms of f have the same degree. An
ideal I is graded (or homogeneous) if it has a system of homogeneous
generators. Throughout the paper, I stands for a graded ideal in S
and R stands for S/I. The quotient ring R inherits the grading by
(S/I)i = Si/Ii for all i.

Let T be a graded finitely generated R-module.

A very interesting and important numerical invariant of T is its
Hilbert function HilbT (i) =dim(Ti) for i ∈ N.

The idea to associate a free resolution to T was introduced in Hilbert’s
famous 1890, 1893 papers [76, 77]. Let U be a graded minimal free
resolution of T . The submodule Ker(di−1) = Im(di) of Ui−1 is called
the i’th syzygy module of T , and its elements are called i’th syzygies.
The rank of Ui is called the i’th Betti number of T and is denoted
bR
i (T ). The Betti numbers are among the most studied invariants of

T .

The modules in the resolution U are graded and the differential has
degree 0. For p ∈ Z denote by R(−p) the free graded R-module such
that R(−p)i = Ri−p; the module R(−p) is generated by one element in
degree p. Since each module Ui is a free finitely generated R-module,
we can write it as Ui = ⊕p∈ZR(−p)bi,p . Therefore,

U : . . . → Ui = ⊕p∈Z R(−p)bi,p
di−−→ Ui−1 = ⊕p∈ZR(−p)bi−1,p → . . .

The numbers bR
i,p(T ) are called the graded Betti numbers of T . We

say that bR
i,p(T ) is the Betti number in homological degree i and (inner)

degree p.

Recent computational methods have made it possible to compute
graded free resolutions and Hilbert functions by computer. Algorithms
for computation of syzygies and Hilbert functions are implemented
in computer algebra systems as COCOA [104], MACAULAY [15],
MACAULAY2 [62], and SINGULAR [64].
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3. Regularity.

The Castelnuovo-Mumford regularity (or simply regularity) of S/I is

reg(S/I) = max{j | bS
i,i+j(S/I) �= 0 for some i }

and reg(I) = reg(S/I)+1. [25] is an expository paper on the properties
and open problems on regularity. The following conjecture has been
open for about 25 years and is the most exciting (currently) open
conjecture on syzygies.

The Regularity Conjecture 3.1. (Eisenbud-Goto) [14, 44] If
P ⊂ (x1, . . . , xn)2 is a prime graded ideal, then

reg(P ) ≤ deg(S/P ) − codim(S/P ) + 1 .

It is known to hold for irreducible curves by [65], and for irreducible
smooth surfaces and 3-folds by [85, 101]. The following particular case
is very interesting; it is open for toric ideals.

Conjecture 3.2. If P ⊂ (x1, . . . , xn)2 is a prime graded ideal, then
the maximal degree of an element in a minimal system of homogeneous
generators is ≤ deg(S/P ) .

A number of examples show that Conjecture 3.1 is sharp. For
example, the equality holds for the defining ideal of the twisted cubic
curve. It also holds for a rational curve in P3 with a (q − 1)-secant
line; this provides an example for every degree deg(S/P ). It will be
interesting to explore when the equality holds.

Open-Ended Problem 3.3. Find classes of graded prime ideals so
that for every ideal P ⊂ (x1, . . . , xn)2 in this class we have reg(P ) =
deg(S/P ) − codim(S/P ) + 1 .

There is only one known family of ideals – the Mayr-Meyer’s examples
– where the regularity is doubly exponential in the number of variables,
while the maximum degree of an element in a minimal system of
homogeneous generators of the ideal is fixed (it is 4) [16, 83, 88,
113]. Eisenbud has pointed recently that it is of interest to construct
and study more such examples.
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Problem 3.4. Find families of graded ideals with large regularity
(doubly exponential, or exponential, or polynomial) in the number of
variables, while the maximum degree of an element in a minimal system
of homogeneous generators of an ideal is bounded (by a constant).

In the spirit of works by Bertram-Ein-Lazarsfeld [18] and Chardin-
Ulrich [28], we consider:

Open-Ended Problem 3.5. Let a1 ≥ · · · ≥ ap ≥ 2 be the degrees of
the elements in a minimal system of homogeneous generators of I. Set
r = codim(S/I). Find nice sufficient conditions on I so that

reg(S/I) ≤ a1 + · · · + ar − r .

One can also consider a multiple of a1+ · · ·+ar−r as a possible bound.

A general problem, which has inspired a lot of work is:

Open-Ended Problem 3.6. Assuming the ideal I satisfies some
special conditions, find a sharp upper bound for reg(I) in terms of the
maximum degree of an element in a minimal system of homogeneous
generators of I.

For a generic linear form f , we have that reg(I + (f)) ≤ reg(I).
However, it is not known what happens if f is not generic.

Problem 3.7. (Caviglia) Let f be a linear form. Is reg(I + (f))
bounded by a polynomial (possibly quadratic) function of reg(I)?

The following two problems stem form a result of Ravi, who proved
that reg(rad(I)) ≤ reg(I) if I is a monomial ideal. Chardin-D’Cruz
[26] constructed examples where reg(rad(I)) is the cube of reg(I).

Problem 3.8. (Ravi) Find classes of ideals for which reg(rad(I)) ≤
reg(I).

Problem 3.9. Is reg(rad(I)) bounded by a (possibly polynomial)
function of reg(I)?

Results of Eisenbud-Huneke-Ulrich [48] in the case dim Tor1(M, N) ≤
1 give rise to the following problem.
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Problem 3.10. Let M and N be finitely generated graded S-modules.
Is reg(TorS

i (M, N)) bounded in terms of reg(M) and reg(N) (possibly
under some conditions on M and N)?

Furthermore, one can study the regularity of intersections, sums, or
powers.

Open-Ended Problem 3.11. Find classes of ideals for which you
can obtain a nice upper bound on the regularity of intersections.

Open-Ended Problem 3.12. Find classes of ideals for which you
can obtain a nice upper bound on the regularity of products.

For example, the following results are of this type: Let I1, . . . , Ir be
ideals in S generated by linear forms. By [31], reg(I1 · · · Ir) = r. By
[32], reg(I1 ∩ · · · ∩ Ir) = r.

Open-Ended Problem 3.13. Find classes of ideals for which you can
obtain a nice upper bound on the regularity of powers. For example,
question [25, Question 7.3] is asking for a bound on the regularity of
a square of an ideal.

Caviglia proved that the following problem is equivalent to Prob-
lem 3.11 on regularity.

Problem 3.14. (Stillman) Fix a sequence of natural numbers
a1, . . . , ar. Does there exist a number p, such that

pd (W/J) ≤ p

if W is a polynomial ring (over k) and J is a graded ideal with a minimal
system of homogeneous generators of degrees a1, . . . , ar? Note that the
number of variables in the polynomial ring W is not fixed.

Problem 3.15. Fix a sequence of natural numbers a1, . . . , ar. Does
there exist a number q, such that

reg (W/J) ≤ q

if W is a polynomial ring (over k) and J is a graded ideal with a minimal
system of homogeneous generators of degrees a1, . . . , ar? Note that the
number of variables in the polynomial ring W is not fixed.
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The following problem is related to regularity, since it yields an upper
bound on it. For problems of this type in the toric case, cf. [21].

Open-Ended Problem 3.16. Fix a certain class of graded ideals.
Obtain a nice upper bound on the maximal degree of an element in a
minimal homogeneous Gröbner basis.

By [9, 12] we have that every graded finitely generated S/I-module
has finite regularity if the quotient ring S/I is Koszul (see Section 13
for definition of Koszulness). This leads to a problem on infinite free
resolutions:

Open-Ended Problem 3.17. Study the properties of regularity over
a Koszul (non-polynomial) ring.

In several cases of interest, we study multigraded rings, ideals, and
modules. For Hilbert functions and regularity in that setting see [67,
87, 108, 114].

Open-Ended Problem 3.18. Study the properties of multigraded
regularity.

4. Characterization of Hilbert Functions.

The following question is very natural and important: “What sequences
of numbers are Hilbert functions of ideals (subject to some property)?”.

The characterization of all Hilbert functions of graded ideals in S was
discovered by Macaulay [86]. The characterization of all Hilbert func-
tions of graded ideals containing x2

1, . . . , x
2
n was obtained by Kruskal-

Katona [82, 84]; such Hilbert functions are often studied by counting
faces of simplicial complexes via the Stanley-Reisner theory. Further-
more, Clements-Lindström [29] (cf. [90]) generalized Macaulay’s idea
and provided a characterization of all Hilbert functions of graded ideals
containing xa1

1 , . . . , xan
n for a1 ≤ · · · ≤ an ≤ ∞.

The following very challenging conjecture aims to answer the question
“What sequences of numbers are Hilbert functions of ideals containing
a regular sequence?”.
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The Eisenbud-Green-Harris Conjecture 4.1. (Eisenbud-Green-
Harris) [45] If I contains a regular sequence of homogeneous elements
of degrees a1, . . . , aj , then there exists a monomial ideal containing
xa1

1 , . . . , x
aj

j with the same Hilbert function.

Using Clements-Lindström’s Theorem, it is easy to see that if j = n
then Conjecture 4.1 is equivalent to the numerical criterion conjectured
in [45]. The following special case is open, and is the main case of
interest.

Conjecture 4.2. [45] If I contains a regular sequence of n quadrics,
then there exists a monomial ideal containing x2

1, . . . , x
2
n with the same

Hilbert function.

Another challenging conjecture aims to answer the question “What
sequences of numbers are Hilbert functions of ideals generated by
generic forms?”. The conjecture is that if I is generated by generic
forms, then Ii is expected to generate in degree i+1 as much as possible;
the numerical form of the conjecture is:

Conjecture 4.3. (Fröberg) [54] Let f1, . . . , fr be generic forms of
degrees a1, . . . , ar. Set I = (f1, . . . , fr). The Hilbert series of S/I is

HilbS/I(t) =
∣∣∣∣
∏

1≤i≤r (1 − tai)
(1 − t)n

∣∣∣∣,
where | | means that a term cit

i in the series is omitted if there exists
an earlier term cjt

j with j ≤ i and negative coefficient cj ≤ 0.

The conjecture holds for r ≤ n since the generic forms form a regular
sequence in this case. A solution of the following problem could lead
to a solution of 4.3 or at least will shed light on it.

Problem 4.4. (cf. [116, Problem 4.4]) What is the generic initial
ideal with respect to revlex order of the ideal generated by generic
forms f1, . . . , fr of degrees a1, . . . , ar?

Another open problem of this type is:
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Open-Ended Problem 4.5. (cf. [116, Problem 2.16]) Does there
exist a nice characterization of the Hilbert functions of artinian Goren-
stein graded algebras?

5. Lex ideals.

The key idea in Macaulay’s Theorem, which provides a characterization
of the Hilbert functions of graded ideals in S, is that every Hilbert
function is attained by a lex ideal. If I is a monomial or toric ideal,
then we can define the notion of a lex ideal in the quotient ring R = S/I,
see [55].

Open-Ended Problem 5.1. (Mermin-Peeva) [90] Find classes of
either monomial or projective toric ideals I so that Macaulay’s Theorem
holds over R, that is, every Hilbert function over R is attained by a lex
ideal.

Toric varieties are an important class of varieties which occur at
the intersection of Algebraic Geometry, Commutative Algebra, and
Combinatorics. They might provide several examples of interesting
rings in which all Hilbert functions are attained by lex ideals.

It is easy to find rings over which Macaulay’s Theorem does not hold.
Sometimes, the trouble is in the degrees of the minimal generators of
I. Thus, it makes sense to relax the problem as follows.

Open-Ended Problem 5.2. (Mermin-Peeva) [90] Let p be the
maximal degree of an element in a minimal homogeneous system of
generators of I. Find classes of (either monomial or projective toric)
ideals I so that every Hilbert function over R of a graded ideal generated
in degrees > p is attained by a lex ideal.

Furthermore, in view of Hartshorne’s Theorem [69] that every graded
ideal in S is connected by a sequence of deformations to a lex ideal, it
is natural to ask:

Problem 5.3. Let J be a graded ideal in R, where I is either a
monomial or a projective toric ideal, and let L be a lex ideal with the
same Hilbert function. When is J connected to L by a sequence of
deformations? What can be said about the structure of the Hilbert
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scheme that parametrizes all graded ideals in R with the same Hilbert
function as L?

A consequence of the proof of Hartshorne’s Theorem is that the lex
ideal attains maximal graded Betti numbers among all graded ideals
in S with the same Hilbert function; it should be noted that there are
examples where no ideal attains minimal Betti numbers. In the same
spirit we can consider:

Open-Ended Problem 5.4. (Mermin-Peeva) Let J be a graded ideal
in R, where I is either a monomial or a toric ideal. Suppose that L is
a lex ideal with the same Hilbert function in R. Find conditions on R
or J so that some of the following hold.

(1) The Betti numbers of J over R are less than or equal to those of
L.

(2) The Betti numbers of J + I over S are less than or equal to those
of L + I.

Problem 5.4(2) was inspired by work of G. Evans and his conjecture
5.5 , cf. the expository paper [53].

The Lex-plus-powers Conjecture 5.5. (Evans) [53] If a graded
ideal J in S contains a regular sequence of graded elements of degrees
a1, . . . , aj, and if there exists a lex-plus-(xa1

1 , . . . , x
aj

j ) ideal L with the
same Hilbert function as J , then the Betti numbers of L are greater or
equal to those of J .

Conjecture 5.5 was inspired by the Eisenbud-Green-Harris Conjec-
ture 3.1. It is quite challenging. It is proved for ideals containing
powers of the variables by Mermin-Murai [89].

In a different direction: very little is known on when (that is, in what
rings) the Gotzmann’s Persistence Theorem holds. For example:

Problem 5.6. Does the Gotzmann’s Persistence Theorem hold over a
Clements-Lindström ring C = S/(xa1

1 , . . . , xan
n ), where a1 ≤ a2 ≤ · · · ≤

an ≤ ∞?

A result of Peeva shows that the Gotzmann’s Persistence Theorem
holds for a Borel ideal in C. In order to solve Problem 5.6, it remains
to make a reduction to a Borel ideal.
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6. Extremal Betti numbers and Lower Bounds.

In the spirit of the above conjectures that the lex ideal attains maximal
Betti numbers in various settings, there are several other difficult
problems on minimal/maximal Betti numbers for specific classes of
ideals.

Problem 6.1. (Geramita-Harima-Shin) [58] Does there exist an ideal
which has greatest graded Betti numbers among all Gorenstein artinian
graded ideals with a fixed Hilbert function?

The problem is solved under the additional hypothesis that the weak
Lefschetz property holds in [92].

Conjecture 6.2. (Herzog-Hibi) cf. [74]. Let M be a square-free
monomial ideal in S. Let P be the square-free monomial ideal in S
such that P is the generic initial ideal of M over the exterior algebra
(on the same variables as S). The Betti numbers of M over S are less
than or equal to those of P .

This problem is motivated by the technique of algebraic and combi-
natorial shifting, cf. [74].

It is proved by Bigatti, Hulett, Pardue that a lex ideal in S attains the
greatest Betti numbers among all graded ideals with the same Hilbert
function, cf. [27]. However, there exist examples of Hilbert functions
for which no ideal has smallest (total or graded) Betti numbers [33,
103]. Furthermore, they provide examples where no monomial ideal
attains smallest (total or graded) Betti numbers among all monomial
ideals with a fixed Hilbert function. In view of these examples, it
is interesting to obtain constructions on how to get smallest Betti
numbers. The next two problems propose such ideas.

Open-Ended Problem 6.3. (Nagel-Reiner) [93] Let M be a mono-
mial ideal generated by q monomials of degree p. Let W be the mono-
mial ideal generated by the first q square-free monomials (in a bigger
polynomial ring if needed) of degree p in the reverse lex order. Find
conditions on M that imply

bS
i (S/W ) ≤ bS

i (S/M) for every i ≥ 0 .
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Note that S/W and S/M may not have the same Hilbert function.
The expectation is that many monomial ideals have the property in
6.3.

Problem 6.4. (Peeva-Stillman) [99] Let P be a projective toric ideal.
Is it true that S/P has the smallest Betti numbers among all ideals with
the same multigraded Hilbert function as P?

Problems 6.3 and 6.4 yield lower bounds on the Betti numbers in
the cases that are considered. Obtaining lower bounds on the Betti
numbers is usually a very hard problem. The following conjecture has
been open for a long time, cf. the expository paper [24] .

Conjecture 6.5. (Buchsbaum-Eisenbud, Horrocks) If M is an
artinian graded finitely generated S-module, then

bS
i ≥

(
n

i

)
for i ≥ 0 .

Note that the lower bounds are given by the ranks of the free modules
in the Koszul complex that is the minimal free resolution of k over S.
A more general version of the conjecture is open:

Problem 6.6. (cf. [24]) Let I ⊆ (x1, . . . , xn)2, and let T be an artinian
graded finitely generated R-module. Is it true that

bR
i (M) ≥ bR

i (k) for i ≥ 0 .

The following weaker conjecture is also open, cf. [7].

Conjecture 6.7. If M is an artinian graded finitely generated S-
module, then ∑

i≥0

bS
i (M) ≥ 2n .
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7. The linear strand.

Let F be the graded minimal free resolution of S/I over the polynomial
ring S. The subcomplex

· · · → S(−i − 1)bi,i+1 di−−→ S(−i)bi−1,i → · · · → S(−2)b1,2

of F is called the 2-linear strand of S/I. All entries in the differential
matrices in the 2-linear strand are linear forms. The length of the
2-linear strand is max{i | bi,i+1 �= 0}.

The basic idea is that the existence of a long 2-linear strand imposes
strong geometric or combinatorial constraints. The following is a
generalization of a conjecture of Green (see [36] for a more complete
discussion):

Open-Ended Problem 7.1. (Eisenbud) [36] Let P be a prime
graded ideal containing no linear form and whose quadratic part is
spanned by quadrics of rank ≤ 4. Suppose that the 2-linear strand
of S/P has length p. Find nice sufficient conditions on P so that P
contains the 2 × 2-minors of a v × w-matrix A satisfying the following
conditions:

(1) v + w − 3 = p

(2) A has linear entries

(3) no entry is zero, and no entry can be made zero by row and
column operations.

The need of extra conditions on P in the above problem, is shown to
be necessary by the examples constructed by Schenck-Stillman [106].
Green’s conjecture covers a special case of 7.1 when the ideal P satisfies
the following additional conditions:

(1) S/I is normal (that is, it is integrally closed)

(2) dim(S/I) = 2 (that is, P defines a projective curve)

(3) S/I is Koszul (see Section 13 for definition of Koszulness)

(4) S/I is Gorenstein
(5) deg(S/I) = 2(n − 1).
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Open-Ended Problem 7.2. How is the length of the linear strand
related to the other invariants of S/I?

Next, we focus on the question for how long does the linear strand
coincide with the minimal free resolution; this is captured in the
property Np defined as follows. Let p ≥ 1. A graded ideal I ⊆
(x1, . . . , xn)2 satisfies the property Np if the graded Betti numbers
bS
i,i+j(S/I) vanish for j ≥ 3, i ≤ p. Note that N1 is equivalent to

the property that I is generated by quadrics. In geometric situations,
the property Np typically includes also the property N0, which states
that S/I is projectively normal. We have the following general problem.

Open-Ended Problem 7.3. Fix a certain class of graded ideals. Find
a geometric or combinatorial criteria for ideals in the considered class
to satisfy Np.

For example, [46] provides a criterion for monomial ideals to satisfy
Np.

Fix integer numbers r, q ≥ 1. Set n =
(

r + q − 1
r − 1

)
. Let V be the q’th

Veronese ring in r variables which defines the q’th Veronese embedding
of Pr−1. Set T = k[t1, . . . , tr], graded by deg(tj) = 1 for 1 ≤ j ≤ r.
Then,

V ∼= ⊕∞
j=0Tjq = k[ all monomials of degree q in T ] .

Ottaviani-Paoletti [95] conjecture a criterion for V to satisfy Np.
They prove that the criterion gives a necessary condition. Surprisingly,
the following part of their conjecture is not solved yet.

Conjecture 7.4. [95] If q and r are ≥ 3, and p ≤ 3q − 3, then V
satisfies Np.

The general toric case is considered in [70].

8. Betti diagrams.

The graded Betti numbers of a graded finitely generated S-module form
a diagram. A recent breakthrough in understanding such diagrams
was generated by the conjectures of Boij-Söderberg [19], which were
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solved in [20, 43, 51]. Clearly, the diagrams form a semigroup B.
There are many open problems emerging involving the structure of
this semigroup. We list two of them.

Problem 8.1. Is there an algorithm (or criterion) which takes a given
diagram, and determines whether there exists a graded S-module with
these graded Betti numbers?

The semigroup of virtual (or potential) Betti diagrams is the semi-
group of lattice points in the positive rational cone generated by B. The
solution of the Boij-Soderberg conjectures allow us to check whether a
given diagram is a virtual Betti diagram.

Erman [34] proved that the semigroup is finitely generated (if we
restrict which Betti numbers can be non-zero); this raises the next
problem.

Problem 8.2. Describe the generators of the semigroup (when we
restrict which Betti numbers can be non-zero).

9. Free resolutions and Hilbert functions of points in Pn−1.

This section focuses on the possible Hilbert functions and graded Betti
numbers that can occur for ideals representing points in Pn−1. A survey
is given in Migliore’s paper [91]. See [38, 39, 63, 115] for helpful
background on this topic.

One can investigate “ordinary” points, which are reduced zero-
dimensional subschemes of Pn−1, or “fat” points, which one can think
of as points with multiplicity. Geramita-Maroscia-Roberts [59] gave a
classification of the possible Hilbert functions of reduced points (in fact,
of a reduced variety) in Pn−1. One can ask the analogous questions in
other situations, for example:

Open-Ended Problem 9.1. What are the possible Hilbert functions
of sets of double points in Pn−1? How about for sets of points in
Pn1 × · · · × Pnr (or even just P1 × P1)?

For examples of progress on these questions, see work of Geramita-
Migliore-Sabourin [60] for the former question and Guardo-Van Tuyl
[60] for the latter. There are similar problems for Betti numbers as
well.
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Open-Ended Problem 9.2. Given a Hilbert function for a set of
points in Pn−1, what are the possible graded Betti numbers for sets of
points with that Hilbert function?

There is an answer for P2, but little is known in general, cf. [68]. One
could also ask the question for sets of fat points in Pn−1. More fun-
damentally, there are many open problems about the possible minimal
free resolutions for different configurations of fat points.

One can also isolate particular properties of sets of reduced points
and ask about the Hilbert functions of sets with those characteristics.
For example, a set of points possesses the Uniform Position Property
(UPP) if any two subsets of the same cardinality have the same Hilbert
function. The following question is open in P3 and higher [91].

Open-Ended Problem 9.3. What are the possible Hilbert functions
of sets of points with the UPP?

The following conjecture was first stated as a problem in Geramita-
Orecchia [61].

Ideal Generation Conjecture 9.4. If X ⊂ Pn−1 is a generic set of
q points, then the homogeneous coordinate ring of X has the maximal
rank property. (We say that R = S/I satisfies the maximal rank
property if each map Rp ⊗ R1 −→ Rp+1 has maximal rank, for all
p ∈ N.)

Note that if S/I has the maximal rank property and its Hilbert
function is known, then it is easy to determine the degrees of the
elements in a minimal system of generators of the ideal I.

10. Problems from Algebraic Combinatorics.

The expository paper [109] discusses several open problems in Alge-
braic Combinatorics; see also [111]. We focus on problems related to
Hilbert functions and resolutions.

Let Δ be a simplicial complex on vertex set x1, . . . , xn. Let F(Δ) be
the set of facets of Δ. It is said that Δ is partitionable if there exists a
partition

Δ = ∪r
i=1 [Gi : Fi] ,
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where F(Δ) = {F1, . . . , Fr } and the closed interval [Gi : Fi] is the set
{Gi ⊆ H ⊆ Fi }. For example, the simplicial complex Δ with facets
F(Δ) = { x1x2x3, x2x3x4, x2x4x5, x1x2x5 } has a partition

Δ = [∅ : x1x2x3] ∪ [x4 : x2x3x4] ∪ [x5 : x2x4x5] ∪ [x1x5 : x1x2x5] .

A long standing and central conjecture in Combinatorics, cf. [109,
Problem 6], [111, Conjecture 2.7] is:

Conjecture 10.1. If the Stanley-Reisner ring of a simplicial complex
Δ is Cohen-Macaulay, then Δ is partitionable.

The conjecture clearly holds for shellable simplicial complexes, but
is open for constructible ones. By Alexander duality [34, 115], a
simplicial complex Δ is Cohen-Macaulay if and only if the Alexander
dual ideal IΔ∨ has a linear resolution. Thus, Conjecture 10.1 leads to
the conjecture that if a monomial ideal has a linear resolution, then it
has a Stanley decomposition, cf. [79, 73, 49].

Recall that there exists a polynomial h(t) such that the Hilbert series

of S/I is
h(t)

(1 − t)dim(S/I)
. The coefficients of this polynomial form the

h-vector.

According to [109, Problem 1], the question whether the g-Theorem
holds for Gorenstein simplicial complexes is perhaps the main open
problem in the subject of h-vectors. It states:

Problem 10.2. (Stanley) [109, Problem 1] If I is a square-free
monomial ideal such that the quotient S/I is Gorenstein with an h-
vector (h0, . . . , hq), then is it true that h0 ≤ h1 ≤ · · · ≤ h q

2
? (It might

be reasonable to generalize the problem to non-monomial ideals.)

An overview of the cases when the g-Theorem holds is given in [109].
A possible goal is to characterize the Hilbert functions (equivalently, h-
vectors) of Gorenstein simplicial complexes, cf. [111, Conjecture 6.2].
Another goal was stated in Open-Ended Problem 4.5: to characterize
the Hilbert functions of Gorenstein graded algebras; for example, see
[22] for a result in this direction. Another conjecture in the Gorenstein
case is:
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Problem 10.3. (Charney-Davis-Stanley) [102], [109, Problem 4] Let
I be a quadratic square-free monomial ideal such that S/I is Gorenstein
with h-vector (h0, . . . , h2e). Is it true that

(−1)e(h0 − h1 + h2 − · · · + h2e) ≥ 0?

It might be reasonable to generalize Problem 10.3 to all Koszul (non-
monomial) ideals. (See Section 13 for definition of Koszulness.)

A sequence c0, . . . , cr of real numbers is called unimodal if for some
0 ≤ s ≤ r we have c0 ≤ · · · ≤ cs−1 ≤ cs ≥ cs+1 ≥ · · · ≥ cr . The
sequence is called log-concave if c2

i ≥ ci−1ci+1 for all 1 ≤ i ≤ r − 1. A
log-concave sequence of positive numbers is unimodal.

Conjecture 10.4. (Stanley) [110] If S/I is a Cohen-Macaulay integral
domain, then its h-vector is unimodal.

See [75] for a result in this direction. The following problem is in the
spirit of the above conjecture.

Open-Ended Problem 10.5.

(1) Find classes of graded ideals for which the sequence of Betti
numbers is log-concave or just unimodal.

(2) The graded Betti numbers are log-concave or just unimodal if
for every j ≥ 0 the sequence of the Betti numbers in the j’th strand
{bS

i,i+j(S/I)}i≥1 has the desired property. Find classes of graded ideals
for which the graded Betti numbers are log-concave or just unimodal.

11. Betti numbers of infinite free resolutions.

We continue with open problems and conjectures on infinite free res-
olutions. Expository lectures in this area are given in [3]; see also [5,
6]. In view of the examples in [37] which show that the beginning of
an infinite free resolution can be unstructured, it is natural to focus on
the asymptotic properties of the resolutions. In the rest of this paper,
we assume that R = S/I and I ⊆ (x1, . . . , xn)2.

The following problem seems to be the most basic open problem on
infinite free resolutions.
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Problem 11.1. (Avramov) [4] Is it true that the Betti numbers of ev-
ery finitely generated graded R-module are eventually non-decreasing?

The following two special cases of 11.1 are of interest.

Problem 11.2. (Ramras) [100] Is it true that if the Betti numbers
of a graded finitely generated R-module are bounded, then they are
eventually constant?

Problem 11.3. Does there exist a graded finitely generated periodic
R-module (that is, a module isomorphic to some of its syzygies) with
non-constant Betti numbers?

In the rest of this section, M stands for a graded finitely generated
R-module. The following question related to 11.1 is also open.

Problem 11.4. (Avramov) [3] Is the limit lim supn→∞
bR
i+1(M)
bR
i (M)

always finite?

For a long time the rationality of the Poincarè series
∑

i≥0 bR
i (M)ti

was a central problem in Commutative Algebra. After Anick’s example
of an irrational Poincarè series [1], the research can be continued in the
following directions.

Open-Ended Problem 11.5. Find classes of graded rings over which
every finitely generated graded module has a rational Poincarè series.

Open-Ended Problem 11.6. If the Poincarè series of a finitely
generated graded module is rational, then what can be said about its
denominator and its roots?

A motivation for the above problem comes from the fact that the
radius of convergence of the Poincarè series can provide a measure of
the asymptotic behavior of the Betti numbers, cf. [112]. There are a
number of questions on the asymptotic growth of the Betti numbers.
It is known that the growth of the Betti numbers in a minimal free
resolution over a quotient ring is at most exponential. The following
problems are wide open, cf. [3].
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Problem 11.7. (Avramov) What types of growth can the sequence of
Betti numbers have? Are polynomial and exponential growth the only
possibilities?

Polynomial growth can be measured by the complexity

cxR(M) = inf
{
c ∈ N

∣∣∣ there exists a polynomial p(t) of degree c − 1,

such that bR
i (M) ≤ p(i) for i ≥ 1

}
.

Avramov raised the question whether complexity satisfies the ana-
logue of the Auslander-Buchsbaum Formula:

Problem 11.8. (Avramov) [3] Suppose that cxR(M) < ∞. Is it true
that cxR(M) ≤ codepth(R)?

It is also unknown if finite complexity forces polynomial asymptotic
behavior:

Problem 11.9. (Avramov) [3] Suppose that c = cxR(M) < ∞. Is it
true that there exists a constant a ∈ R such that

lim
i→∞

bR
i (M)
i(c−1)

= a ?

The curvature

curvR(M) = lim supi→∞
ln(bR

i (M))
ln(i)

is another numerical invariant introduced by Avramov in order to
measure growth.

Problem 11.10. (Avramov) [3] Does curvR(M) = 1 imply cxR(M) <
∞?

Problem 11.11. (Avramov) [3] Suppose that curvR(M) > 1. Is it
true that there exists a constant a ∈ R such that

lim
i→∞

bR
i (M)

(curvR(M))i
= a ?
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The sequence of Betti numbers {bR
i (M)}i≥0 has strong polynomial

growth if there exist two polynomials f(x) and g(x) in R[t] of the same
degree and with the same leading term, such that f(i) ≤ bR

i (M) ≤ g(i)
for i >> 0. The sequence {bR

i (M)}i≥0 has strong exponential growth
if there exist two numbers α, β ∈ R, such that α > 1, β > 1 , and
αi ≤ bR

i (M) ≤ βi for i >> 0. It is of interest to find modules with such
types of growth.

Open-Ended Problem 11.12. Find classes of graded finitely gener-
ated modules with strong polynomial growth, or with strong exponen-
tial growth.

12. Complete intersections and exterior algebras.

There has been a lot of exciting progress on the structure of minimal
free resolutions over complete intersections (cf. [8, 12, 37]) and over
exterior algebras (cf. [2, 40, 41, 42]). Although we list only two
specific problems, we believe that these areas are very fruitful and
important, and that it is of high interest to continue studying such
resolutions.

Let I be generated by a homogeneous regular sequence f1, . . . , fc,
and consider the complete intersection R = S/I. Given a complex
of free R-modules G, choose a sequence of homomorphisms of free S-
modules G̃, such that G = R⊗SG̃. Since R ⊗ d̃ = 0 (where d̃ is the
differential in G̃) there exist maps τ̃i : G̃ → G̃ of degree −2, such
that d̃2 =

∑c
i=1fiτ̃i. Then for 1 ≤ i ≤ c define maps τi : G → G

of degree −2 by setting τi = R ⊗ τ̃i. These operators are called
Eisenbud operators and were introduced by Eisenbud in [37]; cf. also
[10, 13]. They are independent up to homotopy of the choice of the
lifting d̃, they are homomorphisms of complexes, and they commute up
to homotopy. Thus, TorR(M, k) and ExtR(M, k) are graded modules
over the polynomial ring in c variables. It would be helpful to have this
property for the resolution itself, but the following conjecture is open.

Conjecture 12.1. (Eisenbud) [37] Let G be the minimal free resolu-
tion of a finitely generated module over a complete intersection. The
Eisenbud operators on G can be chosen so that they commute asymp-
totically. (Here, “asymptotically” means that we ignore the beginning
of the resolution and consider a high enough truncation.)
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In [47] the following problem is stated in the case when R is a
complete intersection, but the authors remark that this assumption
might be unnecessary.

Problem 12.2. (Eisenbud-Huneke) [47] Let G be a graded minimal
free resolution over R. Do there exist a number p and bases of the free
modules in G, such that for all i ≥ 0 we have that each entry in the
matrix of the differential di has degree less than p?

13. Koszul rings and Rate.

Throughout this section we assume that R = S/I and I ⊆ (x1, . . . , xn)2.
If regularity is infinite, then a meaningful numerical invariant is rate.
Backelin introduced

rateR(k) = sup
{ pi − 1

i − 1

∣∣∣ i ≥ 2
}
,

where pi = max{ j | bR
i,j(k) �= 0 or j = i},

called the rate of k over R (sometimes called the rate of R).

By [50], if I is a monomial ideal and q is the maximal degree
of a monomial in its minimal system of monomial generators, then
rateS/I(k) = q − 1. Furthermore, rateS/I(k) ≤ rateS/in(I)(k) for every
initial ideal in(I) of I. Therefore, rateR(k) < ∞. Thus, Open-Ended
Problem 3.18 yields an upper bound on the rate.

Open-Ended Problem 13.1. Find classes of rings over which you
can give a sharp bound on the rate of k.

Koszul rings play an important role in Commutative Algebra, Al-
gebraic Geometry, and other fields. A ring R is called Koszul if the
following equivalent conditions hold:

◦ if i �= j then the graded Betti number bR
i,j(k) of k over R vanishes

◦ the entries in the matrices of the differential (in the minimal free
resolution of k) are linear forms.

◦ rateR(k) = 1.
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Open-Ended Problem 13.2. Find classes of rings, which are Koszul.

Roos [105] constructed for each integer j ≥ 3 a quotient ring
W generated by 6 variables subject to 11 quadratic relations, with
bW
ij (k) = 0 for i �= i < j and bW

j,j+1(k) �= 0. Therefore, the Koszul
property cannot be inferred from the knowledge of any finite number of
Betti numbers of k. One of the most fruitful techniques in establishing
the Koszul property is to obtain a quadratic Gröbner basis. Thus,
Open-Ended Problem 13.2 leads to:

Open-Ended Problem 13.3. Find classes of ideals with quadratic
Gröbner basis.

The following is the most interesting currently open conjecture on
Koszul toric rings.

Problem 13.4. (Bφgvad) Is the toric ring of a smooth projectively
normal toric variety Koszul?

In particular, it is not known:

Problem 13.5. (Bφgvad) Is the toric ideal of a smooth projectively
normal toric variety generated by quadrics?

Problem 16.7 is a very challenging open question on Koszul rings and
comes from the theory of Hyperplane Arrangements.

14. Generic Poincarè series.

This is a new area of research on infinite free resolutions. Avramov has
recently raised the problem to search for meaningful conjectures and
ideas on what generic behavior means for Poincarè series.

Let I be the ideal generated by the set U = {f1, . . . , fr} of r generic
forms of fixed degrees a1, . . . , ar. Let V be a matrix with homogeneous
entries; for simplicity, we may assume that the entries are linear forms.
The data U, V is parametrized by an algebraic variety. We consider
the minimal free resolution of the cokernel of V over the quotient ring
R = S/I. Thus, we consider the minimal free resolutions of cokernels
of generic matrices over generic quotient rings.

There are several directions, which one might explore. One of them
is to vary the generators of I.
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Open-Ended Problem 14.1. (Avramov) Let I be generated by
generic forms f1, . . . , fr of degrees a1, . . . , ar. What can be said about
the Poincarè series of k over R?

For example, Fröberg and Löwfall prove that if a1 = · · · = ar = 2
and r ≤ n or r ≥ n/2 + n2/4 then generic quotient rings are Koszul,
and Conca [Co] studies quadratic Gröbner basis. More generally one
can ask:

Problem 14.2. (Avramov) Is the Poincarè series of k over R deter-
mined by the Hilbert series of R if I is generated by generic forms?

Another possibility is to fix the generators of I, but vary the module
that we are resolving.

Open-Ended Problem 14.3. (Avramov) Let R be fixed (here we
either want I to be generated by generic forms, or to have another
assumption on I). What can be said about the Poincarè series of the
generic finitely generated modules over R?

Yet another possibility is to fix some parameters or properties, and
then search for generic behavior. An example of this kind is that if
you take 7 generic quadrics in 4 variables and a module presented by
a (2× 2)-matrix with generic linear entries, then its Betti numbers are
constant and equal to 2. Results over rings with (x1, . . . , xn)3 = 0 are
obtained in [30, 11]. Recall that the pair U, V is parametrized by an
algebraic variety X . The following question was raised by Avramov,
Iyengar, and Sega recently.

Problem 14.4. (Avramov, Iyengar, Sega) Let I be generated by
generic quadrics. Here we vary both U and V . Denote by A the set
of points in X for which the cokernel of V over R has constant Betti
numbers. Does A contain a non-empty Zariski open set? Denote by B
the set of points in X for which the cokernel of V over R has constant
Betti numbers and a non-periodic minimal free resolution. Does B
contain a non-empty Zariski open set?

Eisenbud raised (long time ago) a related question, where U is fixed.
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Open-Ended Problem 14.5. Consider a fixed quotient ring R =
S/I, where I is generated by (generic) quadrics (perhaps, we need
to impose some restrictions on R). For example, consider the ring
constructed in [56].

(1) Denote by B the set of points for which the cokernel of V
over R has Betti numbers equal to 2 and a non-periodic minimal free
resolution. Does B contain a non-empty Zariski open set? What can
be said about B?

(2) Let T be a graded finitely generated R-module with Betti numbers
equal to 2 and a non-periodic minimal free resolution. What can be
said about the infinite set of points that are syzygies of T ?

15. Monomial and Toric ideals.

The problems in this section concern both finite and infinite minimal
free resolutions.

Some of the known concepts/constructions useful for studying finite
resolutions of monomial ideals are: the Stanley-Reisner correspondence,
simplicial and cellular resolutions, Alexander duality, the lcm-lattice,
algebraic and combinatorial shifting, discrete Morse theory, the Scarf
complex. The main goal in this area is:

Open-Ended Problem 15.1. Introduce new constructions and ideas
on resolutions of monomial (or toric) ideals.

A monomial ideal M is p-Borel fixed if it is invariant under the
action of the general linear group in characteristic p; such ideals are
characterized by a combinatorial property on the multidegrees of their
monomial generators. The interest in studying such ideals comes from
the fact that the generic initial ideals are p-Borel fixed in characteristic
p. The minimal free resolution of a 0-Borel fixed ideal is known; it is
the Eliahou-Kervaire resolution.

Problem 15.2. (Evans-Stillman) Describe the minimal free resolution
and find a formula for the regularity (and the Betti numbers) of a p-
Borel fixed ideal if p > 0. Note that the resolution is considered in
characteristic 0.
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There are a number of particular classes of monomial or toric ideals,
for which one might expect to get interesting results on the structure
of their minimal free resolutions. For example:

Open-Ended Problem 15.3. Find a formula (or at least sharp upper
bounds) on the regularity of an edge monomial ideal in terms of the
properties of the defining graph.

Open-Ended Problem 15.4. Find a formula (or at least sharp upper
bounds) on the regularity or rate of an edge toric ideal, in terms of the
properties of the defining graph.

Let G be the minimal free resolution of a monomial ideal over
R = S/I. Assume that I is either a monomial or a toric ideal. It
will be interesting to explore what can be said about the structure of
G. For example:

Open-Ended Problem 15.5. Develop the theory of infinite cellular
resolutions.

Open-Ended Problem 15.6. Find how to compute the Betti num-
bers of G using various simplicial complexes.

When I is a square-free monomial ideal and J is the maximal
ideal, Problem 15.5 is solved by Berglund [17] and he also proved
the conjecture by Charalambous-Reeves on the possible terms in the
denominator of the Poincarè series.

Problem 15.7. Construct G in the case it is resolving a lex ideal. (For
example, we can assume here that R is a Veronese or a Segre ring.)

Problem 15.8. Let C = S/(xa1
1 , . . . , xan

n ), where a1 ≤ a2 ≤ · · · ≤
an ≤ ∞, be a Clements-Lindström ring. Construct the minimal free
resolution over C of a Borel ideal.
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16. Problems on Subspace Arrangements.

The problems in this section concern both finite and infinite minimal
free resolutions. For background on Subspace Arrangements, see [94].
A set A of subspaces in Cr is called a subspace arrangement.

Open-Ended Problem 16.1. Study problems that relate the prop-
erties of subspace arrangements and minimal free resolutions.

The above problem sounds vague, but this is a new area of research
and Problem 16.1 is just inviting to explore in that direction. [98]
provides a result of this type. Another similar problem is about the
complement Cr \ A, whose topology has been extensively studied in
topological combinatorics. [57] provides a result in the spirit of the
next problem.

Open-Ended Problem 16.2. Relate the cohomology algebra of the
complement Cr \ A and Tor-algebras.

In the rest of this section, we assume that A =
n⋃

i=1

Hi ⊆ Cr is

a central arrangement of n hyperplanes (“central” means that each
of the hyperplanes contains the origin). The cohomology ring A of
the complement Cr \ A has a simple combinatorial description; it is a
quotient of an exterior algebra by a combinatorially determined ideal.
Namely, if E is the exterior algebra on n variables e1, . . . , en, then the
Orlik-Solomon algebra is A = E/J where J is generated by all elements

∂(ei1 ∧ · · · ∧ eip) =
∑

1≤q≤p

(−1)q−1ei1 ∧ · · · ∧ êiq ∧ · · · ∧ eip

for which codim (Hi1 ∩ · · · ∩ Hip) < p ;

such a set {i1, . . . , ip} is called dependent. The Orlik-Solomon algebra
is similar in some ways to the Stanley–Reisner ring, but formulas for
the graded Betti numbers are elusive.
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Problem 16.3. Find a combinatorial description for the Betti numbers
dimCTorE

i (A,C)j (in special cases).

First steps in this direction are taken in [81]. The Betti number
dimCTorE

i (A,C)i is the ith Chen rank [107]. The Resonance For-
mula in [112] is an intriguing conjecture for these numbers.

Even more challengingly, we could ask for descriptions of the dif-
ferentials in the resolutions. Investigating in special classes of rings
(arrangements) is likely to yield results.

Problem 16.4. Construct the minimal free resolution of the Orlik-
Solomon algebra A over the exterior algebra E (in special cases).

Problem 16.5. Construct a nicely structured non-minimal free reso-
lution of the Orlik-Solomon algebra A over the exterior algebra E (in
special cases).

We can also study the minimal free resolution of C over the quotient
ring A.

Problem 16.6. Find a combinatorial description for the Betti numbers
dimCTorA

i (C,C)j .

When A is Koszul, then a formula is known for the Betti numbers
dimCTorA

i (C,C)i. These linear Betti numbers are of great interest
in algebraic topology since they are related to the homotopy of the
complement Cr \ A by the formula∏∞

j=1
(1 − tj)−ϕj =

∑
i≥0

dimCTorA
i (C,C)it

i ,

where ϕi is the ith lower central series rank (LCS rank) of the
fundamental group π1(Cr \ A), cf. [97]. In the introduction to [78],
Hirzebruch wrote: “The topology of the complement of an arrangement
of lines in the projective plane is very interesting, the investigation of
the fundamental group of the complement very difficult.” The following
problem is a very challenging open question in this direction.
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Problem 16.7. [52, Problem 2.2] Find a non-supersolvable central
hyperplane arrangement for which the Lower Central Series Formula∏∞

j=1(1 − tj)ϕj = HilbA(−t) holds. Equivalently (by [97]), find a
Koszul Orlik-Solomon algebra without a quadratic Gröbner basis.

See [52] for more problems in this direction. Problem 16.7 is similar
in flavor to the example of the pinched Veronese ring, which was proved
to be Koszul by Caviglia in [23].

A set W ⊆ {1, . . . , n} is called a circuit if it is dependent and
has minimal support among the dependent sets, and W is a broken
circuit if there exists a hyperplane Hi such that W ∪ i is a circuit
and i > max(W ). We call the monomial ei1 ∧ · · · ∧ eip a circuit (or
broken circuit) if W has that property. The broken circuit ideal T
the monomial ideal in E generated by the broken circuits. Consider
the lex order in the exterior algebra E with e1 > · · · > en. If
W = {i1 < · · · < ip} is a circuit, then the initial term of ∂(ei1∧· · ·∧eip)
is the broken circuit ei1 ∧· · ·∧eip−1 . Therefore, the ideal T is contained
in the initial ideal of J . By [94, Theorem 3.43], it follows that T is the
initial ideal. In view of the above questions, it is interesting to obtain
information about E/T .

Problem 16.8. Consider problems 16.3–16.6 for E/T instead of A.

Another interesting object is the module Ω1(A) of logarithmic one-
forms with pole along the arrangement or (dually) the module D(A)
of derivations tangent to the arrangement.
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