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The purpose o f this paper is to obtain a condition for space
with affine connection to be of class one. In  previous paper"
for embedding of space with projective connection, we have defined
the class number o f the space after the example of Riemann
space and got a necessary and sufficient condition for the space
of class one. We can similarly define the class number of affinely
connected space.

In  order to solve the Gauss equations o f hypersurface in
affine space, we can utilize the method, which are used for the
first Gauss equations of hypersurface in projective space, specially
in case of unimodular affine connection (R =  0 ). In the general
case R„'ii  0 ,  there is a little different aspect ; but the above method
is also applicable after slight modifications.

There are many points (marked by [* ]) in this paper, which
are omitted to prove or are not discussed in details, as these
points can be treated by similar way as in previous paper.

§ 1. Introduction.

Consider an ni-dimensional space with affine connection V„, where
a current point A  is given by a system of coordinates ( y ' n )
and let A, be linearly independent m  vectors at a . point A .  Then
the connection is given by the following equations :

11.„dyoe,
dA,= C a i l ftc l y . ;  I

where the functions PL, of y 's  are called the components of affine
connection o f V,„ referring to the coordinates t .
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Let V. b e  a  varie ty  o f n-dimensions in  V„, defined by the
equations

w here the functional matrix II ayl/ft .` II i s  o f rank n. W hen a
current point A displaces on V,„ w e have

dA= A„B;(sdii ; where (B;u-

Hence, if the quantities A i (1---1,...,n) are defined by

A i=AaB, (1.2)

w e  s e e  th a t  A i a re  linearly independent n  vectors on Vn and
obtain

dA= A i dx'. (1 .3)

Further we define

Ap= AA!' ; (1-4)

w here  the determinant I B;", BV I  is not equal to zero ;  and it is
to  b e  se e n  th a t  the quantities A„ A,(i=1,...,n ;
are linearly independent nt vectors of V„,. For the displacement
on V. w e put

4A,=(1'flA,,,+HriA,)dxi, •

dA ,=  (M i A k + HY3 4 Q )dxi.

Differentiating (1 .2 )  and comparing to (1 .5 )  give

air — — 1 B;ÂB7 + +

Similarly from (1 .4 )  and (1 .6 )  we obtain

aB.; — f BB't +1•1", i Br+

dxj

(3x3

(1.5)

(1.6)

(1 .7)

(1-8)

As the quantities /3Œ must satisfy the relations



+ ar,ri 4 o, (1.14)

1-4.1111; 47' (1-15)
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_  af3r 
axi axi

which are the integrability condtion of a system of equations

aYaB • f a ,

so w e get from  (1 .7 ) -

B;A137S;;,=BiaS7i + Etc" (fg — fg)

where we put

rrp, — 

S' - ' i i _u 

The integrability condition of (1.7), j .  e.

32B;OE.a 2/3;c̀  

axiae a f3 x i

is, making ,use o f (1.10)

IV B7R, R À .a,,,= 13;a (R4, + H411- ,! 1„)

+ B  (H ,j; + H S ) ;

where we put

(1.9)

(1.10)

(1-12)

(1.13)

The tenso r S r ,  and 1? ,.au ,  are call2d the torsion and curvature
tensor's o f V ,. The integrability condition of (1.8) is similarly

IPM ;) - tB;?RA ,---  13 8'  ( I - +  I 112 +  I i>, ,S7k)

+ A da (H,„(6, .11- 7E5H + HJ 5H 1 f k] +. - »QrS .4) •
(1.16)

W hen we transform the coordinates y' of to  the another
Y , w e see  easily  that the functions rz, Hrj , HA  and H  are all
invariant. The other hand, for the transformation of the coordi-
nates xi o f V„ to  the another w e see that those functions enjoy
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the transformations
-EaX  (  &

2f 1 ,1 ,7 , alb   ax e   \
' a.x" area.i* 11(1,=H,̀ ,2„ axa

'

 axbH 4 — H A ax 
ax"

Therefore the functions r i"; enjoy the transformations analogous to
the components of affine connection, so that we shall call Pi.;  the
components o f  affine connection and S , R i ! j k  the torsion and
curvature tensors o f  V. induced from V,„ with reference to A .

§  2 .  The fundamental theorem of embedding.

Let a be components of connection of a given n-dimensional
space V. with affine connection. We shall call that V„ can be
embedded in  an  affine space S„ of m-dimensions, if there exists
an n-dim ensional subspace S”, whose components of affine
connection induced from S„, for suitable choice of A , are equal
to th e  given Fiki . The space y , is called to be of  class p, i f  V.
can be embedded in  an  affine space of (n+p)-dimensions but
not of (n+q)-dimensions (p> q 0).

The torsion and curvature tensors S4, RA,,, of flat S„, vanish
and hence from (1 .10), (1-13) and (1 .16) we have

S 1"4— (2.1)

(2.2)

Ri !i h = H 1 A . H (2.3)

H,Sk ] + 114/-1,f,, k i — 0, (2.4)

H j ,k]+ Tgr i f I i f, i k l = 0, (2.5)

k-J + Hk i H j+ = 0 ; (2.6)

where we call equations ( 2 .3 ) ,  ( 2 .4 ) ,  ( 2 .5 )  a n d  ( 2 .6 )  the
Gauss, the first and second Codazzi an d  th e  Ricci equations res-
pectively. First we have from (2 .1 ) the

Theorem 1: I f  a n  n-dimensional space with affine connection
V„ can be embedded in  affine space, the components of  affine connec-
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tion o f  V. is necessarily symmetric.
Now, by means of the fact that the system of equations (2.1),

(2.2), (2.3), (2.4), (2.5) and (2.6) gives the integrability con-
dition o f (1 .7 ), (1 -8 ) and  (1 .9 ), we obtain the fundamental
theorem of embedding problem as follows :

Theorem 2: A  space w ith affine connection of  n-dimensions
can be embedded in  an  (n+p)-dimensional affine space if, and  only
if , the connection is symmetric and there exist three systems of func-
tions Hri ( =M ;), 'pi  a n d  M i (i, j-=1,..., n P, Q= n +1,..., n +p)
satisfy ing the G auss, the f irst and second Coda22i an d  th e  Ricci
equations (2-3) , (2-4) , (2.5) an d  (2.6) .

In our particular case of class one we put

Hn+1n+1, —= H i .

Then, as the fundamental equations of class one, we get

(2.7)

(2.8)

111,1+ II H kM =  0,

Hk A —  Hi i 1Tft=0.

(2-9)

(2.10)

§ 3. The second Codazzi and Ricci equations as
consequences of the Gauss and first

Codazzi equations.

As in the case of Riemann spaces' ) and projectively connected
spaces of class one, so in this case of affinely connected spaces,
we can prove that the second Codazzi and Ricci equations are
automatically satisfied, if the Gauss and first Codazzi equations
are satisfied. In fact, differentiating (2.7) covariantly with respect
to  x-  an d  summing three equations obtained from the first by
cyclic permutation of the indices j ,k  and m , and making use of
the Bianchi identities

R '1.( i k , ) -=(),

we have
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A(k1-41.)=DiukH,..) ; (3.1)

where we put

= Hiu,kj+Higik i ,

kl + Fl[i Hif] •

And so if the first Codazzi equations are satisfied, i.e. D1 j k =0,
we have from (3.1)

Form these relations we see easily that IYA = 0 (1 ,j, k =1,..., n),
j .  e . the second Codazzi equations are satisfied, if th e  matrix
II H1 l is of rank >3 [1.

Next, differentiating (2.8) covariantly with respect to xi and
summing three equations obtained by the above process and ma-
king use of the equations (2.7), (2.8), R ( fk ,) =0 and

we have

Hij Dk i +H i k a i +H„D i k =0 ; (3.2)

where we put

Dk i = 11[ k , 0 + Hal-Ic a .

From these relations w e get D k i= 0 (k ,1=1,..., n), j. e . the Ricci
equations, if the matrix II 1411 is of rank >3 r].

Thus we have find the similar circumstances as in the case
of projective connection.

§  4 .  The case of unimodular affine connection.

First, we consider the unimodular affine conncetion, that is,
the contracted curvature tensor R„r!,,, is identically equal to zero.
In  this case we can have H,=0 for suitable choice of vector
A +1

1 , and hence the first Codazzi and Ricci equations have the
forms

H ik,i z= 0, (4.1)
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(4.2)

respectively. If we put

(4 . 3)

and its contraction

K„=K1,14,=Hh,117,', (4-4)

the tensor K, i  so defined is symmetric on account of (4-2).
Therefore we can applicate the methods, by which we have dealed
with the first Gauss equntions of hypersurface in projective space.

That is, from (2.7), (4.3) and (4.4) we have

(4 . 5)

and further from (4.5)

— K‘.1 rfA y — Ka.i;  3 K k ( I )

and finally contracting ( I )  with respect to a and b w e get

K i k K i t —  K i l K j k ; (4-6)

where we put

This intrinsic tensor M, i k i satisfies the identities

M j i k l -

and that it is necessary to satisfy the identity M
( k) =0 from

(4 .6 ). This identity is result from

4.„)k  b)  + (II)

by contraction of a and k, b and 1 [ ] .
Now, we define the type number of space as follows:
Definion : A  unimodular hypersurface S in  a n  affine space

w ill be  said  to  be o f  ty pe one if  the rank  of the m atrix  H H  is
zero or one. It w ill be said to be of  ty pe  7  where 7 is an integer
of the set 2,..., n , if  the rank  of  the above matrix is  7 .
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It is easily seen [*1 that S  is of type one if, and only if, the
tensor M ,j ks is identically equal to zero ;  and the type number z-
(>  2 )  of S  is equal to the rank of the matrix

M . b e l  M a b ‘ -..................................................

M i l k u

Mpqri Mvq,2 ........................ Mpqr.

Hence the type number is determined by intrinsic properties of S.
Next we can prove that, if S  is of ty p e  (>  3 ) , the system

of functions K ,, satisfying the equations ( 4 . 6 )  is uniquely deter-
mined to within algebraic sign and this solution will be real if,
and only if, the condition

M a b i j

M b c i j

M a b j k

M b e j k

M a b k i

M b c k i

> 0,
(III)

M c a j M c a j k M a k i

is satisfied, when S  is of type (>  3 )  [ 1 .  Next let us write (4-6)
in the homogeneous form

K i k K j I  K t i K j k , (4 - 6')

and we obtain easily from (4-6)

K j k —  K I D M  Claim
=

 O. (4  7 )

Represent the resultant system o f  ( 4 - 6 ' )  and ( 4 . 7 )  by R .( M ) .
We can prove that the equations ( 4 . 6 )  will have a real solution
if, and only if, the inequalities (III) and

M a b j k M a b k i >0,
114

;■(3.7 M b c j k M b c k i (IV)

MC¢2,7 M b a j k M c a k

and that the equations

R (M )=0, (V)

are satisfied N. Further we se 2 easily a ;  where a  is the
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rank o f th e  matrix 11 H,5 a n d  from  ( I )  w e  have a  tensor
Ifh .t intrinsically for r > 3, which must satisfy the following equa-
tions

(VI)

(VII)

1.(“ :1,3 Ka 1.'1,1 = 0,
(VII)

K c • ir1J

and (I) [1. Finally we put

L oK 134 , (4-8)

and shall confine our considei ation such a  domain in V, that Lu

does not vanish. We put

1-4=eL u , (4-9)

and substituting this expression in (4.1) giv3s

(4-10)

where we put

L iik = L i k , j

a log pPi= •ax'

(4-11)

(4-12)

Let us write (4.10) in the homogeneous form

PkL3 — P,Lik+ t  L ,3 k
=  0, (4-10')

and represent the resultant system of (4-10') by Qn (L ), it fol-
lows that the equations

Q,, (L)  0 (IX)

are necessary and sufficient for (4.10) to have a solution and then
the solution is uniquely determined [1.

This intrinsic tensor pj  so determined must satisfy th2  equa-
tions

P i,i =  3 (X)
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from (4 .1 2 ) ; and then we define a system of functions II„(i, j
n )  by (4 .9 )  ;  and we prove easily that the functions 11,,

satisfy the equations (4 .1 )  and further we have a system of fix-
tions H; (i, j n )  satisfying the Gauss equations ( 2 .7 )  N .
Consequently we have the

Theorem 3: I f  an n (> 3)-dim ensional space -V, with sym-
metric unim odular af f ine connection is of type r (> 3) and the tensor
Lo  does not v anish, V  is of  class one  if , and  only  if , the ineqqal-
ities (III) and  (IV), and the equations (I) ,  (II), (V), (VI), (VII),
(VIII), (IX), an d  (X ) are satisfield.

§  5 .  The general case.

Now we consider the general case when the tensor R„'!„ does
not identically vanish. In  this case, though we define also the
tensor and K ,, by (4 •3 )  and (4 .4 )  respectively, K ,, is never
symmetric and yet we have

(F)

that is analogous to (I). We put

-
1

-- (KZ:0 +
2

and then we obtain from (4 -3 ) and (2-7)

(5-1)

(5-2)

and hence P„,bi i  an d  --/?„ 1:0 /2  are symmetric and skew-symmetric
parts of K„.1',J  w ith  respect to i  and j  respectively. Contracting
(5 .2 )  with respect to a  and b gives

IC0 -=P0 +Q,.; ; (5.3)

where we put

(5-4)13 ,„— P„:

1  p
2

(5.5)
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and hence P 0  and Q r are symmetric and skew-symmetric parts
of Ifo  respectively, and that Q., is intrinsic tensor. Substituting
(5 .2 ) and (5 .3 ) in (I ')  and summing the equation cbtained frcm
(I') by interchanging i, k into j, 1 respectively, give

PaYi j P k i t  Pa.16Pc, ;

where we put

2/Va.biiik=RafiRc.'ik + R r!k iR cf'0+ R a f'i[ i  Q  —  Raf'11:1Q

Contracting (X I) with resrect to a and b, gives

N  ijk 1
=

P a P j l
—

P i C P J k ; (5.7)

where we put -

N w d= --1( 5 . 8 )
2

The intrinsic tensor N w d so defined has.çthe identities

(5.9)'

Moreoyer this tensor must have the identity N,0 ,4 = 0 from (5.7)
and this is equivalent to (II), whin is easily seen by contraction.

Now, if the conditions (II) are satisfied, the tensor N i j k l  has
the same properties with, the tensor A fw , in the last section.
Hence, we can define the type number of space with non-unimodular
connection, in  terms of the symmetric part P, ;  o f  lf,3 instead
of lf,1 itself. Consequently we havé the

Lem m a : i f  a  space w ith sy m m etric non-unim odular af f ine
connection of dimensions  n (>. 3 )  is of  ty pe r (> 3 ) ,  th e  equations
(5 .7 ) have s  ch a real solution P i,) ,  that is uniqely  determined
to w ithin algebraic sign if , and only  if , the inequalities .1

N e th ij N a b jk

N h e i j N b e jk  N b c k i

N c a ki

> 0,

and
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N ab o N roOk N abkt >0,
a,b,c,i,j,k

• beif N bcjk N bck i (IV')
Ncall Nets.

and the equations (II) and further

(V')

are s a t i s f i e d ;  w here the system of  polynomials R ( N )  o f  N, i ,, are
analogous to (V).

Next, making use of Po  and  (X I), we obtain the functions
P2',1 intrinsically [ 1 ,  and, from (5 .2 ), K„f',,. It is to be remarked
here, that we have two kinds of solutions Po  a n d  /5 ,2 (= —Po )
satisfying(5.7) and hence, according to them, two kinds of functions
Par:o  'and' (=— P;:ii) from  (XI), and from  ( 5 .2 )  and (5.3)
we get

and

K a i:O =  P<af'ij —  -

K =  +

1
2

K o — — P+  Q 5.

(5.10)

(5.10')

Now we impose the conditions (I ') , which must be satisfied two
intrinsic tensors K a b , j  and K o ,  and also I f -a .'„ and I .  T h e n  w e
get

K b —
K a. biLIK  kV

=
 R  a:'11:1?

Ka.1;[j KE j =  Ral" bliRc•jk•

Subtracting the above two equations and making use of (5-10)
and (510') give

R R tx•iLib P k ] i  2P,.bcfQ k]l —  2 P a• fk iQ  kit.
=

 0 ,

and contracting with respect to a and b  we have

P Q u i — PciQui= 0, (5.11)
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i3y the similar methods; which we find the functions KZO from
(I), we obtain Q o  0 ( i,  j= 1 ,.. . ,  n )  for 7 3  on accont o f (5-11),
contradicting to hypothesis of y., to be non-unimodular. Therefore,
if the conditions (I') are imposed, we can not adopt both systems
Po , Ko  and Ka r.O ;  and hence those functions are uniquely determi-
ned.

Now the functions KZ.O so determined must satisfy the condi-
tions (VII') and (VIII'), which are formally analogous to (VII) and
(V III)  respectively, on account of the definition of If“ 1.O (4-3).
The other hand, the condtion (VI) are satisfied naturally by means
o f  (5.2 ) i n  th is  case. M aking use of Ka r.O and (V II'), (VIII')
g ives tw o  sy stem s o f functions Ho  (=H o ) and j=,..., n)
sa tisfy ing  (4 .3 ) and therefore the Gauss equations (4.7)
Consequently we have the

Theorem 4 .  ....... I f  a  space with symmetric non-unimodular
affine connection of  n(>3)-dim ensions is of type r( > 3), there exist
two, systems of functions Ho (= Ho ) and H.; (i, j=1,...,n) satisfying the
G auss equations (2 .7 )  if , an d  only i f ,  th e  inequalties ( I I I ')  and
(IV ') , an d  th e  equations (I'), (II), (V '), (V II'), (V III') an d  (XI)
are satisfied.

Next the Ricci equations (2.10) can be written in

H — 2Q (5-12)

from  w hich the functions IL can be always found. Because the
integrability condition"' of a system of partial differential equations
(5.12) is

that is

i. e . the B ian ch i iden titie s . T hu s w e  o b ta in  the functions
, n) satisfying (5.12) but not uniquely. Howeuer, this fact

is not hindered in the following discussions.
Finally , in  the similar manner with the case of unimodular

connection w e shall confine our consideration such a domain in
V„ th a t  the functions L,,---K,3„ does no t van ish  T hen  w e put
(4 .9 ) and substitute in the first Codazzi equations (2-8) and have
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L = 0

analogous to (4.10); where we put

Cri Pi + Hi.

Hence we have

Q.(L)--- 0,

as a necessary a n d  sufficient cond ition  fo r (5.14) t o  have  a
solution a  ;  where' the  system of equations (IX') is analogous to
(IX) ,  th a t  is , the  system o f  polynomials of the curvature tensor
and i t s  c o v a ria n t derivatives. T h e n  a solution ai  is  un ique ly
determined and is expressed intrinsically [*].

T he integrability condition of

3log _

is equivalent to the equation

-  k , j  = 2 Q , (X')

from  (5-14) and  (5-12) ; w here (X ')  is  a  system of equations in-
volving only the curvature tensor and its first and second covariant
derivatives. Conversely if ( X ')  a r e  satisfied by the solution
o f  (543), w e obtain  a  function p  a n d  f ro m  (4 ,9) 11(=H ,,)
(i, j =1, n )  satisfying (2 -9 ). Consequently we have the

Theorem 5: I f  a  space V . w ith sym m etric non-unimodular
af f ine connection of  n(>3)-dim ensions is of type r(> 3), and the
tensor L o  does no t v an ish , 17„ is  of  class one if , and only if , the
inequalities (IIr) a n d  (IV'), a n d  th e  equations ( I ') ,  (II) , (V'),
(VII'), (VIII'), (IX '), (X ') an d  (X I) are satisfied.
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