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§  1 . Introduction.

To explain simply let us consider the differential equation

dx
then its (x, y )  and ço' (x) construct a locus, generally different from
a locus in the manifoldness. Then at each point on the curve
y-----59(x), the deviation of its direction 50'(x) from that of the ma-
nifoldness is given by I so' (x) — f(x , o(x)) I. Along the curve
y---- F (x )  w e sum up the deviations, i. e., the totaldeviation is

Ii9'(x)— f(x, o (x ) )  d x .  Such quantity is considered in statistics.

I f  it be zero, y=so ( x )  is possibly a solution of the differential
equation. Thus we arrive a t the idea given below ( 2 ) .  We
remark that naturally we may define many other measures of
deviations.

In this paper we shall perform integrating operations always
in the sense of Lebesgue.

Consider a system of ordinary differential equations

f-
d y

- ( 1, y ) defined in a domain of two dimensions. To each point
dx
(x, y)of the domain we adjoin the direction f (x , y ) ;  so we have a
manifoldness of points and directions. To solve the differential
equation is nothing but to find a locus of point and direction in
the manifoldness such that, for all (x, y), f(x, y ) shall be equal to
d y

. Therefore we consider a curve y=---F (x )  say in the domain ;
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(1) dy,
d x  

(1—  1, , n),

where j: (x, Y 2 ,6  •  •  y  Y.) are defined in a domain"'

G : 0 . ‹ . x . <  a, ly,1 < b i (1=1, n)

having the properties as follows :
a) they are measurable with regard to x, and continuous

functions o f (y Y 2, •  •  •  ,  y n )  ,

b) f  (x , 3 1 2,- -.101 (1=1, n), where M, (x) (i=
1, 2, ..., n ) are summable, j. e. integrable in the sense of Lebesgue,
for 0 x _<a. For this differential system we call such functions
ic(x) (1=1, n )  the solution passing through the point P(x,„

y„„) E G that
c) they are defined in an interval I containing x,„

and (x, ( x ) ,  40 2(x) „  S o .( x ) )  E G  (o n  ,
d) so, (x) =y,,,+ io,(x), 9, 2 (x) ,..., (x))dx (xEI ).

By d) the solutions of (1 ) are all absolutely continuous. -

Moreover we represent the vectors in the space of n dimen-
sions by y:n a m e l y  Y (YI,Y2,' • *1 l y 1.-= y7+ y:::+ • • • +
Therefore (1 ) may be represented by

• —  f(x, y) [(x, y) EG].
dx

Let us now enunciate the Carathéodory's existence theorem (2 )

of solutions of ordinary differential equations, which plays an
important part in this paper.

Lemma- If io CO is measurable in 0 x < a ond I  M x ) <
(1=1, n ), f(x , v (x )) is summable in 0 x a.

The proof is omitted.
Theorem. When, in an interval I containing x,„

(x, y„,-E (x)d.x)EG (x€I),

then there exists a solution of (1 ) , which is defined in I and
passing through the point P (x„, y,,) . Hence, if Y f p l < h ,  (i =1, 2, ...n),
there exists evidently a solution of (1) , which is defined in a
certain small interval I containing x, and passing through the point P.

For the proof we refer to Carathéodory, loc. cit..
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§  2 .  Definition o f D(P, Q).

Consid,:r two points P= (x ,, y )  an d  Q= (x,2 , tiQ )  in  G, where
x., <x,2 . By D p ( 2  we represent th e  family o f  all such functions
that are absolutely continuous in xp_< X _<..x,2 and

y(x,) =y,„ y (x(2 ) =m 2, (x, y(x))E G (x,_  x x ( 2 ).

Therefore i f  y(x)(1), Q ,  its derivative yr(x) is summable in
xp x _< x(2 . And so we can define the function D(P, Q) of P and
Q as follows; namely

(2) D (P, Q) = inf (x) — itx, Y (x) )Idx, m

1/(x)EVpQ .p

moreover i f  'cp.-- .x(2, D(P, Q) ==l Y1 YQ 1 ( "̀ and if D(P, Q)
= D(Q, P).

Then we have the following fundamental theorem.
Theorem . In order that the tyro points P= (xp, y )  a n d  Q=

(x(2,11(2) in  G should lie on a same soludon of (1), it is necessary
and sufficient that D(P, Q) =O.

Proof. Evidently the condition is necessary. Now let D(P,
Q) =0 , then there is a  sequence of functions iy,(x)}  (Y (x)EDp Q ,

such as

limf Q I y', (x) —  f(x, y,(x))1 dx= O.

Hence, if w put

Y ,(x) — ?/1. - 1  f (x , Y, (x) )61x= c ( x),

we have evidently

lim a, (x) =  0  (i= 1, 2,...,n,

Put

(x) =y,(x)—  a, (x)

and then, for xp__ x, < x2

(x,) f (x , y ,(x ))dx ,
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and so we have

I 1 7
, ,  (x,) — lif(x)1 dx.

Consequently the sequence of the functions IV. ( x )  is equally con-
tinuous. Hence we can select a uniformly convergent sequence
by Ascoli and Arzéla theorem, and we have in the limit

-1-(x1)=-- PIP, 1 7 Gx0---YQ,

Y ( x ) = y , +  fix, Y (x))dx.

Therefore we have obtained a solution y x )  of (1) , passing
through P and Q. Q. E. D. -

Remark. Let H . be a  hyperplane b y  -a (O <  a )  in G,
and S c,  an arbitrary closed sub-set in H . N o w  let St and St , be
two closed sub-sets in G  such as x= and x== ' respectively.
Then define

• D (St , S t ,) min D (P, (?).
PE St
QE S 1

D(S„., SO  has the same properties as D(P, Q) ; e. g., for that
a solution of (1) shall exist so as to pass th rough S t and St ,, it
is necessary and sufficient that D (St , -= O.

§  3 .  Properties of D(P, Q).

In this paragraph we shall enumerate certain important pro-
perties of D(P, Q).

1 )  Consider two points P  and Q  in G  such as x, <xQ. For
y(x) E D pg,

r  I Y' (x) — f (x , Y (x) )  dx I Y' (x ) dx — 1:Q
,  i(x ,Y  (x ))I dr

P

? ) ' ( X )  dx —  Q I 111(x)I.dx

> Iy ' ( x ) d x  — 111(x) I dx"-'
j  c P

>IYQ — YP Hr M(x) 1 dx.
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Therefore evidently we have

(3) D(P, Q) Y (2 —  tip I .S. :Q
P  I 31(1)1 d.x.

Now consider the function y(x) which represents the segment PQ,
then clearly y (x ) belongs to J J Q  and

r4;(2

Yf q  ? i ' (x)Y '  (A) d x ! II Q-

Hence we have

(4) D(P, .Q) I y Q — y ,  I +  f Q I 31(x) ;

for I Y '(x )-1(x ,Y  (x )) Idx (X) I dx+ .31-(x) I dx.
» r p

Therefore if X , = 4, it is convenient to define D(P, Q )= I  y _ -y .  I-
2 )  For three points P, Q and R  such a3 x, x,„

(5) D(P, R) D (P , Q ) +  D (Q , R )

This is clear when x, KXQ  Kx,,. Hence let us e. g. consider the
casa where x„ <4= x,.. Then by the definition of D(P, Q), it is
evidently possible to find a sequence o f functions {y ,(x )} (y „(x)

= 1, 2,...) such that

D (P, Q) Q  ! ,(x) — f(x, y,(x))1 dx.

And so take a point y,(xQ ,)) such as xi .
then

y(x)—f(x, y„ (x))  I dx= y'l(x)—f(x, y,(x))I d.x

f(x, Yv (X) ) D(P, + D(Q Q) ,

hence for xi .

D(P,R)— D(Q„, +  D (Q „ , Q )

D (P , R ) —  y  y ( 4 1 — f 31(x)Idx+ I -

- dx
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> D(P, R) —1 gy,— — 2 f '9  I 31(x) I dx.

By tending I) to infinity, we have

D(P, (2)> D(P, — Y R—YQ

namely

D(P, R)5 D(P, +  D(Q, ;

for xQ, may be arbitrarily mar to x(2.
3 )  For three points P , Q  and R  such as x,..<./eQ ‹ x k , we

have

D(P, D(P, Q) !in — NI - 1Z 31(x)I dx
(6)

D(P, R )> D(Q, R ) y g — 31(.01 dx.

As in 2), for .x,, <z 1 <x,, consider a sequence of functions Iy,,(x)}
such that

D(P, R )=1im f  l e I Y (x ) — f (x , y,(x )) I dx,

and points (x,2, y, (xQ )). Then

ri 4 p  I 1Y (x)— i(x,11,(X )) dx= 111' (x) .(X )) I dx

J?
+ f(X , Y v(X ))I dx

D (P, + D(Q, R )

D(P, —  D(Q„ Q) + D(Q„ R )

D (P, Q )—  .Y Q 1+1 y1 — y1 I J-1(x) I dx

> D(P, Q) —1 Y  Y  Q  i — 11(X )1dx.

Hence evidently, fo r  xr _< x(2‹ we find (6 ). Consequently, in
gen.,n-al;  we have
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(7) D (P, Q) — D(P, R)I M(x)dx

where M (x) 3/(x) A/M 1+ +11C.
Then we can conclude that D (P, Q) is a non:n _gative conti-

nuous funtion o f (P, Q).

§4. Lemma.

Now let P  be a fixed point in G  and put

v (x , y ) D (P, Q )  with Q= (x, y ) ,

then, in G, so (x, y ) is  a non-negative continuous function of
and, for two points (x i, Y1)  and (x2. y2), we have

-(8) I 9 ( 1 1/ Y1) - SC(z29 1/2) I Y I - Y 2  I ± M(x)dx

lith e  points Q and R  are on the same solution of (1) and
x2,., then since

D(P, R)K D(P, Q) + D(Q, R) = D(P, Q ) (by D(Q, R) =0) ,

we have

 1  ( r .+,
urn (x + + .11-(1))ell) —59(x, Y)}.=_.< 0,t

y =  y  (x )  being a  solution passing through the point (x, y ) .  Mo-
reover, by (8),

1   {4x+ t, Y (X+ t)J - V[X+ t, y+ !In}

< --1- (x +I • -
-Ax, Y) I.

On the other hand, at almost every point in a,

. 1 -um  (x  +  — y )  a. e. ( 6 ) .t

Therefore we have, for almost every point in .x,_< < a,
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(9 ) lim  1   150(x+ t, y+ tf(x, y)).--50(x, y)}_<() a.e..
t

Conversely, i f  there  ex ists a function 50(x, y ) which satisfies the
conditions (8 ) and (9), we se2 that 15Y (8) 50(x, ii(x)) is absolutely
continuous, where y---4 ( x )  i s  a solution of (1) passing through
the point (x, y) EG (x,, x), and b y  (9), for almost every point in

x <  a,

lim  1   Ir(x+ t, (x+ t))---sp(x, y ) }5 O a.e..t

Hence 42(x, y )  does not increase with x  on any solution of (1).
Remark.' I f  f(x, y)" is  a continuous function o f (x, y ) in  G,

the conditions (8) and (9) can be replaced respectively by the
next ones :

(8') I r (x, 1I1) —so(x, 112)1 -.5-  1J1- 1/2 I,

(9') e-*O t t, 11+ tAx, 11)) — 40(x, II)} 0

(for all x in x _< a).

§  5 . Applications to the uniqueness theorems.

Thus w e have succeeded to find D(P, Q) which has the almost
samè properties as those in the case where f(x, y ) is  continuouS")

in G, and so we can extend, without any great modifications, the
Okamura's uniqueness theorems (7' of solutions of Cauchy-problem
and our uniqueness theorems °  of solutions of boundary-problems.
For 'example,

Theorem. Consider the differential system  (1), where f(x,
0 )= O (0 =  (o, o,...o)) for almost !every x in o x  . <  a .  Then in
order that the solution of (1) passing through the origin 0(o, 0 )
should be uniqu2, it is necessary and sufficient that there exists a
cotinuous function r (x ,y ) in  G, such that

so(x, 0) --- 0 for 0 x <  a,
r (x ,y )> 0  for y (),
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So(xl,y1) - - 59 (.Y2, Y2)1=-_<-_L Yi — Y2I + IN ( x ) d x l ,

where L  is a suitable constant and N (x ) a non-negative summable
function in 0 x a , and moreover that for almost every point
(x, y )  in G , we have

lim  1   IF(x +t,y +tf (x ,y ))  --F (x ,y)} 0  a. e..
g-00 t

Example. If in the equation

dy 
d x

=f(x ,Y ),

f (x , y ) satisfies the extended Lipschitz condition,'" ) i. e ., there exists
a non-negeative summable function . N (x ) such as

Y )  - .N ( x )  Y  ,

with our theory it is enough to put

where L (x )=EN (x )dx .
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