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In the theory o f conformal mapping o f simply connected do-
mains, we chiefly use the unit circle for canonical domain. On
the other hand, in the case of multiply-connected domains, we
utilize various types of domains for canonical one. For example,
we use the concentric circular ring-domain (circular disc or whole
plane) with slits of circular-arcs," ) th e  concentric circular ring-
domain (circular disc or whole plane) with slits of radial segments,
the whole plane with parallel slits, the whole plane with slits of
arcs of finite lengths on the logarithmic spirals arg z—k lo g  zi
=C, (2 '  and so forth.

Hereafter we consider the domain of finite connectivity, and
first, by the potential-theoretic method, we research the problem
of conformal mapping of a given n-ply connected domain onto a
band-domain parallel to the imaginary axis with slits also parallel
to the imaginary axis.

1 . Conformal mapping onto a  parallel
band-domain with parallel slits.

For simplicity we suppose that every boundary-component Rk

(le=1,...,n) of a given n-ply connected domain B in the z-plane
be Jordan curve.

Performing a finite number of suitable auxiliary mappings of
simply connected domains, we can reduce the gixen domain B to
one whose boundary-components are regular analytic curves. Such
method has often been used in the mapping-theory of multiply
connected domains. Thus we assume that all the curves R, R 2 ,

are regular analytic. Let 2 1, z, be arbitrary two points on R„
and g, be two boundary-arcs of R, separated by them. More
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precisely described, R', is  the part of R , f ro m  z , to  z ,  when we
go around along R, in the positive sense with respect to B; 12 1"
is  the remaining part of R ,.  Let U, (2) b e  the harmonic measure
of the boundary-arc R: with respect to  B, i. e . U ,(z ) be harmonic
in B satisfying the boundary conditions : U 1 (2) -= 1 on R;, U 1 (z) =
on R ',' and R ,(k = 2 ,...,n ). N e x t, le t  U ,(z )(k =  n )  b e  the
harmonic measure of the bpundary-component R ,(k=  2,- ••, n) with
respect t o  B, i .  e . ( z )  be harmanic in B  and U,(2) = i  on R,,

k ( 2 )  = 0  on R ,, (h -k ).  Furthermore, le t  Vk (2 )(k  =1, n ) be
conjugate harmonic functions o f Uk (z)(k=1, n ) .  In general,
V,(2) (k-=1, 2,...n) are not single-valued and increase by the perio-
dicity moduli (0„(k, u= i, n )  afte r c irc ling  once along each
boundary-component R,(1)=1, n ) in the positive sense. These
moduli satisfy the relations

>2(ok , =0 (k=1, 2,...,n). (1)
1=1

Furthermore, it holds that for the determinant o f (n— 1) -th order
Wle.1,1

(q), I '7 0( 1) (2)
By means of these facts, w e shall now  prove that there exists a
function

w—  0(2) = U(z) +i V(z), (3)
single-valued, regular analytic in B , and satisfying the following
three conditions :

(i) U (z) is single-valued and harmonic in B,
(ii) U(2) =1 on R ;, U (2 )= 0  on R7 and U(z) =  const. on

R k  (k-=2,...n),
(iii) the periodicity-moduli o f V( z )  with respect to R 1, (P=1,

n ) are zero, i. e.

dV(z) -=0 (1)-=1, n). (4)

Proof. W e consider the function
t t

U(z) + i V(z) =  (2) +  V, (z) + 2_ick(U,(z) + i ( 2 ) ) , (5)

ck (k=2,..., n ) b e in g  re a l constants. Then evidently (5) satisfies
( i ) and (ii). These constants can be, by (2) , uniquely determined
so as to satisfy the simultaneous equations -
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k=2E• CkWAv = 2,- • • , n) • (6)

Therefore

i,ç cl V (2)=0 n).

By (1 )  and (6 ), we have

Ece),,=-
k=2

i, R i el V (2)=0,

.*. n).

Thus we have proved that w= 0(z )—  U(z ) +i V (z ) is single-valued,
and regular analytic in B, and also satisfies the above three condi-
tions. (Q. E. D.)

Next, as a cons .quence o f these conditions, the following pro-
perties of w= 0 ( z )  are derived :

lim V(2) = —  co, lim  V (z) -= 0 0 . (7)
i (ze z+.2(..t,E / I )

Proof. In the function

w= u ( 2) + v(z)=-- ui (z ) + v, (2) + Eck (uk (z) +  vk (z ) ) ,
k=2

U ( z )  is the harmonic measure of the boundary-arc /?; and V 1 (z)
its conjugate harmonic function. Now, we conformally transform
the simply connected domain enclosed only by the boundary-curve
R , and including the domain B , onto the upper half-plane in the
x-plane such that R , corresponds to the real axis Im x=- 0, z =z , to
x= 0 and z =z , to x = 1 . Let such mapping function be x (2) and
its inverse 2 ( x ) .  Then we obtain

U,(z (x )) +i V, ( z ( x ) )   1 log + #F1 (x) ( ' )

—x
in the neighborhood of x=0, (8)

1 
- in

-

 log (x — 1) + T2(1)
in the neighborhood o f x = 1 , (8 ')

where ¶ , ( x )  and iV2 ( x )  are regular analytic in the neighborhood
of x = 0  and x = 1  respectively, and the logarithms are restricted
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to  assume their principal values. By (8 ) and (8 '), w e have

lim V, (z (x )) = — 00, lim V ,(z (x ))=  +x-0(1,..>0)

lim V,(z) = — co, lim V, (z)--= + 0° •

. - o . , (2E 7n zE.7r)

Since the re a l part of the function l ',G (U k (z) + i V„(z)) is zero
k =2

everywhere on the boundary-curve R , w hich is supposed to  be
regular analytic, this function is regular analytic also on R, by the
theorem of analytic continuation. Hence its imaginary part has
a fin ite  lim it w hen  z—yz , and also when z—z2. Thus we obtain
b y  (5)

lim V(z) = — c/o, lim V (z )=  + 00• Q. E. D.
z - ,q i (z t 11) z -0. 2 (z( 1?)

B y m eans of the above properties of the function w= 0(z),
we shall rfow prove that this function maps the dom ain B univa-
lently O1ó. the parallel band-domain 0 <Re w <1 with slits parallel to
the imaginary axis.

P ro o f. B y  ( i i ) and (7), it follows that when the point z moves
from  z, to  z, along R , in the positive sense and further returns to
z, beyond 22, the point w=-- 0 (2 ) moves from —i00 t o  + ioo along
the straight line Re w = 1  and furtherm ore returns to — icia along
the straight line Re w= O. In  other w ords, w  goes once round
along the boundary of the parallel band-domain in the positive
sense. On the other hand, if the point z  goes once round along
R (v =  n )  in the positive sense, b y  ( i i )  and (iii), w  moves
along certain slit parallel to the imaginary axis and returns to its
original position.

Let a be an arbitrary interior point of the parallel band-domain
and not lying on any slit, i. e. 0 <Re a <1 and 60 (z) a on R, (k
=2,... n ) .  Let B r  b e  a sub-domain o f B  obtained by excluding
the common parts of B and circular discs of radius r with centers
a t  z, and z , respectively. Then, b y  (7 ),  we can choose r suf-
ficiently small such that the inequalities

Max V(z) <1m a ,  Min V(z)> 1m a (9)
z - 21 j=r, I 2 2  = n  le

hold. Thus we obtain
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1 da rg ((D (z )— a ) =1, (10)
-

the integration being taken along the boundary of B r .
On the other hand, if a is any exterior point of the parallel

band-domain, we have

2
1
,

 rf,

j  d arg ((P (z) —a) =0.

The relations (10) and (11) hold, however small the radius :r
may be. Therefore, by means of principle of argument, we have
proved that w= (z) is univalent in B  and the image of B  is the
parallel band-domain 0 çRe w with parallel slits. Q. E. D.

Finally, we shall prove that if  tw o points z, and z  are preas-
signed on R „ then such m apping function can be uniquely  deter-
mined except a translation parallel to the im aginary  axis.

Proof. Suppose that both 01 (z )  and 0 2 (2) are such mapping
functions. Performing an auxiliary mapping onto the half-plane
in the x-plane, in the same way as (8) and (8') are derived, we

1(z (x)) — log  1x  +F i (x )  in the neighborhood of x = 0,

(5=1, 2) (1 2 )
1=  log ( x - 1 )  +( x )  in the neighborhood of x=1,
in

where the meanings of and are same with V 1 (x ) in (8) and
T2(x) in  (8 ')  respectively. B Y  (1 2 ) ,  0 1(2) — 0 2(2) =- ( Pi (2 (x)) —
02 (2 (x )) is regular at x=0 and x=1, and hence, as a function of
z, also at z= z i and z= z,. Further, we have

Re{ 0 1(0 — 0 2(2) } 0o n  R', and
= const. on R,c (k=2,...,n).

Accordingly 0,(z)— 0 2 (z ) is single-valued and analytic in the domain
B  o f finite connectivity, possessing the bounded boundary-values
and its real part remains constant on each boundary-component.
Hence, by a  well-known theorem,  0 1 (z)— 0 2 (z ) ,  is identically
constant in B  and furthermore, since its real part is equal to zero
on R1, it must be
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0 1 (2) — 02 (2) =iC,

C being a real constant. This is just what is required.  Q. E. D.

2 .  Example.
In this section, we shall, as an example, determine explicitly

the m apping function of the circular ring-domain. Let the cir-
cular ring-dom ain B  be q< 121  < 1  and let 21= 1, 2 „ =  +1.

By Villat's form ula," the regular analytic function 12(z) whose
real part gives the solution of Dirichlet's problem such as

R e ( z )id (2) M (99) ( z - - > e ) ,  Re39 (2)3 N (9) (2 .--q e ') ,

is given in term s of elliptic functions by the following expression :

f2 (z) = I .2: M (9 0 )  IC(̀ i l l ( i log z  + 5)) — ( 1
 —  

 7 2 1  ) c/log 2}so
2(03

(0, N(901c
3
(  çr

D' (i log z+50))-- (  1   — )log 4c/50 +iC,
0  •7r. . / 20,37 r j

2w1 ( r e a l)  and 2w 3 (pure im aginary) being the primitive periods
of Weierstrass's e llip t ic  fu n c tio n  p ( z ) ,  C  b e in g  a n  arbi-
trary  rea l constant and q  e .

To find the function O W  whose real part coincides with the
harmonic measure U, (2) of : I 2 I =1, r <arg z <27r with respect to
B , w e  put M(40) =0(0  <50 <r), M (50) =- 1(7r <50 <27r) and N  (0=  0
(0_40 <27r) in the above formula. Then w e have

U, (2) + i V, (z) —
,

ic(  "   (i lo g  +  )— (

2
 1 — *'

i  
)log .21

7rli = 7r (0, r

1 to, 7),=  - - [ lo g  a ( (i log z+ so))] —

(  1. —  )log z
711 7r n.j 2 w 3

By fomulae of elliptic functions,

a (u  2 (0 0 = — (u) , a ( u  co) = et" (N O i (u )

and p (u )  e 1 —(
6 , ( u ) ) 2

,  w e have
6r (U)
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U, (z) + i V, (2) -= - k - lo g-log —  1 0 ), log  z + iC'
r i , s/pl  iw ' log z)— e, 2 7 i  " 3

\ a-
(C' :  real const.)

Therefore the periodicity-modulus of V , (z) w ith  respect to I 21=q

is . Next, the harmonic measure U 2 (z )  of I z  = q  can easilyJo),
be found :

1  log
U,(2) I

z 
I lo g  I z

and hence

U2 (z) + i K(2) —  log z 
log q

Hence the periodicity-modulus o f  V2 (2 ) w ith respect to  I z  I=q
27z.2 w ,is  —   T h u s

log q

w-=  (2 )  = U,(z) + ( 2 )  + 2
1 ( U2(z) + V2(2)),

1or w =  ( z )  =  lo g  1  
7ri ,s1p( iW I log z)— e,

is the required mapping function by the general argument discus-
sed in the preceding section.

In fac t w e can  a lso  d irec tly  verify  that th is is the required
function as the following show s. It can be decomposed into the
functions :

(I )  C—  i "log z, (II) t= (C)—e„ (III) w—  1 •  lo g  
 1

7r 7rt t

B y (I) the upper half of the ring-domain q <1 2 <1 is transformed
onto a rectangle —w <Re C <0, — I (08 1Im C <0, by (II) this rectangle
o n to  a  r ig h t  h a lf  o f th e  lower half-plane Im t <0, and b y  (III)

1this quadrant onto a  parallel band-domain 0 <Re w < .  Apply-2

lo g  1 log q  '
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ing the inversion-principle to the composite fu n c tio n  w =  (2 )  of
(I), (II) and (III), w e see at once tha t th e  circular ring-domain
q <I 2 I < 1  is conformally represented onto the parallel bond-domain
0  < R e  w  < 1  su ch  th a t io o  and + ic,3 correspond to z, = —1 and
22= 1  respectively. E sp e c ia lly , to  the inner circle I 2 I= q corres-

ponds a  s l i t  o n  th e  stra igh t lin e  R e  w =  w hose  leng th  is
2

1  log,s / e l   where e = ( w )  (j=1, 2, 3,).
7r ei—e,

3 .  Conformal mapping o f ring-domains.

In  th e  present section, w e  d e a l w ith  the position and the
length of a slit in the conformal mapping of any ring-domain onto
a  parallel band-domain. Using the same notation  as in  § 1, we
suppose th a t  th e  boundary-components R , and  R o o f  a  given
ring-domain B  be both Jordan curves.

The ring-domain B  whose modulus is log  1 (0 <q <1), can be

conformally represented onto a  circnlar ring-domain in  th e  t-
plane q <I t  <1  such that I t I = 1  and I  t i = q  correspond t o  R,
and 122 respectively. Such mapping function is uniquely determi-
ned except a rotation around th e  o rig in  t= 0 . H e n c e , w e  c a n
determine th e  function in such a way that t=e(0 <50 <27r) and
t= 1 correspond to  z =z , and 2=20 respectively. Let us denote the
circular-arcs I t  =1 (io < arg t <27r), t I =1(0 < arg t < v ), and I t

(OE< arg t <27r) by r%  ri" and T 2 respectively.
Using again the Villat's formula, w e  n o w  f in d  th e  mapping

function w= OM  of the ring-domain q<I t l  <1  on to  th e  parallel
bnad-domain 0 <Re w <1 with a slit such that Re w -1  corresponds
t o  ri and Re w = 0  to  I T .  W e have

U, ( t) + i V, (t) =  i c ( (i log t+s9))—(  1 - 7± 1—)log t}dio+ iC
7v- z Jr 2 col J r

a (
(
O (i log t+ 271")) ( 

71  )(27r—v)log t+ iC1  
7ri 

lo g  

 a
 (

7rÛ1  (i log t+ F ) ) 7 7 2 i  2  w 3
(

g i  \
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—e 2747-"1"'" " - i i   i log t)1 ir log  w i  '21. ) (2n- — 50) log t+iC
7ri ni  W I (i log t+ 50)) 7r2t 2(0,

\ 7r
( 0 )

1 I  log t)
1 :r  (  1 72,

1 .  
(0

1 l o g t + i C ,log —  )y0 log t—rj a("-(ilogt + 40)) 7r-1 ' 2W 7 4  W s

. 7r

C and C ' being real constants. Hence the periodicity-modulus of
i V ,(t) with respect to  1 t I = q is

1  (_ 2 n (0, 1  _so\_2(0,( \„„ + 2(01_2(0,( 1 _
).iri 7r k2(03 g (0(03W .7r 27:

The periodicity-modulus of i172 ( t )  with respect to I t I -=q  is
—2  "  (c. f. § 2). Accordingly, the required mapping function is

(0,
given by the general argument of §1, in the form

w =0 (t)=U ,W +iV i( t)  +(1—
27

)(U2(t)+iV 2(0),
r

" i log t)
7r 

or w =  (t)=  1 . log +  '21 "  F log t+ iC. (14)
(ilogt + in)) '

3

7r

If the point t  is situated on the inner circle 1 t I=q, then, putting
t=qe"(0__<0 <Dr) in  (14), we have

"  
7r (qe")

1

r i  
log F O '7 ' 3

7r4 0 1 + (
7
0
1.

1 — 40)

1  0

i  
+1+1 lo g  77

ev:3_(olio( 7 3 (  ( 7:  )

r a l  t o ,  e_v i w i

"k 7r 91 r3

'271.1(2°; +

(0,
1 6T'( log - )+  soe+ iCrt 0 . 3 ( 7 r( 0 1  0_ 90)2 7r

(13)
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1
.  l o g 0

(  : 7 r )   + 272, oh .ft  0   Y )1.2+ ( 1  )k\i 2 ' 2 7 r 27rF 
\

+  )21
"  90+ iC

6'4 ( 267r) 1
. l o g 0 _

d 4 ( 27r7
+f( io),

where f ( v )  is a  function of io independent of 0.
By a formula of the elliptic function

( ÎI (1 — q ) ( 1(1 — 2q" - ' cos 0+ q4 "- 2 ),
27r n=--I it=1

we have

./7 (1 — 2e - lcosd — 
+ 

e n - 2  
)

(qe") I 1  log — 1„, + f (so), .(1 5 )7r 11(1 —  2 t1 ' cos O+q1 2 )

where f (i0 ) is a  function of independent of O. By (15), we get

CO

/1(1+ e - 1 ) 2

1Max Im {  (qe") —log
.  / /  (1  —

+  f , ( s o ) ,  , (16)
7r

1 1 (1 + e " ) 2

n=i Min Im {  (qe") — 1 l o g + . (17)
w=r1

From (16) and (17 ), an  inequality

CO

.11(1+en-1)4
n=1 Max Im{ 0 (qe") I —Min Im { 0 (qe")IS   1   lo g  . (18)o<o <2,n 0,-0 <2,, 7r 11 (1 — e' - ' ) 4

—1

is derived.
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By the formulae

el — a t ;  V ,  "V e1—el — 7rQ 1 ,20), 2 to,
C I CO CO

Q0 =.11 (1— e), (:),= .11 (1+e"),
n.1 n ----- 1

we have

M ax  Im{ 0 (qei°' )} (qe2)}1_<1  log ,s 1 e
3 —

 1  lo g  1 
0<9I, El2S:2•n ir e,— e2 71.

(19)

k' denoting the complem. e n ta ry  modulus of sn-function. It is ob-
vious that th e  equality in  (1 9 ) holds if and only if so= ;:-,
(or 7r) and 02 -=-71- (o r  0).

In the above described mapping, the ring-domain B  is trans-
formed onto a  circular ring-domain q t 1 < 1  su ch  th a t t=1
and t=ei? correspond to  22 and  21 resp ective ly . In  such a case,
let the angle io be called the "angular distance" measured from
22 to  2 , with respect to B .  Especially, let two points 21 and z  be
called to be "diametrically opposite" with respect to B, provided
that 50= 7 r. Then, we get the following theorem.

1 . 0 3

Theorem. I f  any ring-domain B of  a modulus log -
1

( q = e )

is conformally represented onto a parallel band-domin 0 <Re w <1 with
a  slit in  such a  w ay  that w= —ici3 an d  w= +ic,3  correspond to
2=2 1 and 2=22 on  R, respectively, and the slit corresponds to another
boundary-component R 2  of  B, then the slit is situated o n  a  straight

F 18 1e,— e,line Re w 1 — an d  its length not greater than log7r e,— e,'
where yo is  the angular distance m easured from  22 to  21 with respect
to B  an d  e,-80(,,, j ) (j= 1, 2, 3). T he equality  about the slit-length
holds if  and  only  if  2, and  22 are  diametrically opposite with respect
to B.

Proof. It is obvious by (1 3 ) and (19). Q. E. D.
In the above argument, we have fixed the ring-domain B  and

selected two points 21 and 22 arbitrarily on the boundary-component
R, of B .  B u t in  th e  following, we deform the boundary-arc RV
(or R ;) on  R,, 21, 22 being fixed  an d  investigate th e  conformal
mapping of such deformed domain onto the band-domain 0 <Re w <1.
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Then we obtain the following theorem.
Theorem. L e t  any  giv en ring-dom ain B  be ex tended to a

ring-dom in B * by substituting any Jordan curve RP lying outside B
f or R ', w hile tw o points 21, 2 2 o n  R , and other boundary-arcs of  B
are kept f ixed. Furtherm ore, let w =f (z ) be the mapping function of
B  onto the band-domain 0 <Re w <1 such that Re w=1 and Re w=0
correspond to R ; and R," respectively and w = ±iooto 2 2 , z , respectively
and  w * -1 1̀  (2) be the sim ilar mapping function of  B * such that Re
w* =1 and Re w* =0 correspond to R ; and RP respectively. Then an
inequality

Ref (z ) SRef *(2)
v. 112 f  le 2 •

holds good. T he equality holds if  an d  only  if  B B*.

Proof. Let the moduli of B  and  B *  log  1   and log  1 res-q*

pectively. Then log  11 S log  since B c and hence q*q q*
The equality holds if and only if B " ) .

We now represent B *  conformally onto th e  circular ring-
domain q* C *  I <1, and let c* -= G(z) be such mapping function,
whereby th e  boundary-arcs l e ,  a n d  R P  a r e  transformed into
circular-arcs r' an d  (3' on  1 C* 1= 1 .  A t  th e  same tim e, the
sub-domain B  of B * are represented on a certain ring-3ubdomain
o f th e  circular ring-domain. Next, we represent B  conformally
onto the circular ring-domain q <I C I < 1, and let C= F(2 )  be such
mapping function,whereby the boundary-arcs R and R," are trans-
formed into circular-arcs r and a on 1 C 1 =1 respectively. There-
fore, by the composite function C* = Gi (C) }, the circular ring-
domain q C  I <1 are represented onto the ring-subdomain of the
domain q* <I C* I < 1  in  such a  way that the boundary-arc r on
C 1=1 is transformed into if o n  1 C* 1=-1 and the inner circle

1 C 1 = q  into 1 C* Hence, by a  theorem due to Prof. Y.
Komatu,'" we obtain

where the equality hold if and only i f  q=q*  , therefore B  B*.
Since (3 ane (3' are the angular distances measured from 22 to  2,
with respect t3 B  and B ? rasp ectively, we obtain, by the preceding
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theorem, the required inequality.
Similarly, i f  we extend the boundary-arc /?:, instead of R ',

outside the domain B, we have an inequality

Re f (z ) ›._ Re f* (z).

At the end I wish to express my hearty thanks to professors
T .  Matsumotg, A . Kobori of Kyoto University and Professor
Y. Komatu of Tokyo Institute of Technology for their kind gui-
dance during my researches.

May 1950 Kyoto University.

References.

1) G. Julia, Leçon sur la représentation conforme des aires multiplement con-
nexes, (1934) P .  46.

2) Y. Komatu, Theory o f conformal mapping (Japanese ;=TOkakushazO-ron) II.
(1949) pp. 189-218.

3) G. Julia, loc. cit. p. 54.
4) R. Nevanlinna, Eindeutige analytische Funktionen, (1936) p. 35.
5) G. Julia, loc. cit. p. 48 Lemma.
6) H. .Villat, Le probleme de Dirichlet dans une aire annulaire. Rerd. di

Palermo 33(1912) p. 149. A brief proof of the Villat's formula is found in Y. Komatu,
Sur la représentation de Villat pour les fonctions analytiques définies dans un anneau
circulaire concentrique. Proc. Imp. Acad. Tokyo 21 (1945) pp. 94-96.

7) 0. Teichnualler, Uutersuchungen fiber konforme und quasikonforme Abbil-
dung. Deutsch. Math. 3 (1938) p. 626.

8) Y. Komatu, Untersuchungen iiber konforme Abbildung von zweifach zusam-
menhingenden Gebieten. Proc. Phys-Math. Soc. (1943) pp. 33-36.


