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Introduction.

In this paper we shall study the divisorial ‘ holotomy
group” of an algebraic variety.” When the variety is a cone,
which is normal at its vertex, the local holotomy group can be
described by the theory of “ Picard variety.” In the classical case
this group is a direct sum of a compact dual group of the one
dimensional local homology group at the vertex and a free abelian
group. We then treat the general case by considering the ‘tan-
gent cone ” at the given point. When the tangent cone is normal
at its vertex, so is the original variety. Moreover there exists a
canonical homomorphism from the local holotomy group of the
veriety into the same group of the tangent cone. Also there ex-
ists a canonical isomorphism from the local holotomy group of the
variety into the similar group of its “sheet” at the given point.
It seems that the nature of these homomorphisms depends on the
“character” of the multiple point, about which the writer hopes
to come back on another occasion.

Finally I wish to express my deepest appreciation to Prof.
Akizuki for his constant interest in this paper.

1. Local holotomy group of the cone.

Let W' be a cone in the affine (%+1)-space S™*' over the
“universal domain” K. Since the case d=0 is absurd, we shall

1) The holotomy groups were introduced together with some basic problems in
the last part of Samuel’s thesis, La notion de multiplicite en algebre et en géométrie
algébrique, Paris (1951). We cite this paper as S-T.

2) Cf. A. Weil, Foundations of algebraic geometry, Amer. Math, Soc. Colloquium
Publications, Vol. 29 (1946).
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assume d >1. Let G(W) be the groﬁp of W-divisors which are -
generated by the * divisorial cones’” on W. We note that every
element- of G(W) is a local divisor of W at its vertex P.

Proposition 1. The group G(W) contains a representative of
any local divisor of W at P with respect to holotomy.

Proof. Let Z* be a simple subvariety of W' and let & be
their common field of definition. Let (x) and (x) be the generic
points of Z and W over k and say %, be a variable over k&, then
%, is also a variable over k and the point

M= (xl/x(l) xZ//xOy Y xn/xo)

has a locus V¥ over k. Let G, be the multiplicative group of the
universal ‘domain and let 7"**' be the birational correspondence
between W“*' and the product variety G, x V* with the generic
point (x) x ((1/x,) x M) over k. It is clear that T is biregular along
Z: hence T(Z) =pr.(T- (Zx (G,x V))) isa (G,, x V)-divisor. How-
ever since every G,-divisor of degree zero is linearly equivalent to
zero on G, every “ correspondence’ between G, and V is of
‘valence zero. In other words there exist a G,.-divisor @, a V-divisor
X and a function ¢ on G.,,x V such that

T(Z)y=ax V+G,x X+ (¢).

Thereby T is biregular along every component of @ x V, &, x X and
() hence Z is holotomic to the local divisor 7" (6., x X), which is
surely -an element of G(W). ‘

Let F* be the projective variety with the representative cone
W' then the following assertion is well known. If W is normal
at P, then W is everywhere locally normal and V is a projective
normal variety; hence V is everywhere locally normal. When Y
is a representative cone of a variety X% on ¥V”, we put

r(y)=X.
If we extend ¥ by linearity to G(W), then ¥ gives a canonical
isomorphism from G(W) onto the group %,(¥) of all P-divisors.
Thereby if Y is holotomic to zero on W at P, then ¥ (Y ) is holo-

tomic to zero on V¥V according to Chap. VI, §4 in S-T. Since the
converse is evident, & induces an isomorphism from the local ho-

3) 0. Zariski, Some results in the arithmetic theory of algebraic varieties, Amer,
J. Math., vol. 61 (1939).
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lotomy group H,(W; P) onto the global holotomy group H,..(F).

On the other hand let %/V) be the group of V-divisors
which are linearly equivalent to zero. Let C“~' be the hyperplane
section of ¥ and let (C) be the free cyclic group which is
generated by C, then a V-divisor X is holotomic to zero when
and only when it is contained in ¢, (¥) +(C). Therefore we get
the following theorem.

Theorem 1. If the cone W' is normal at its vertex P, there
exists a canonical isomorphism ¥ from H,(W; P) onto

7y = %)
He ) =g vy x 0y

We note that the group H,..(¥) can be described by the
theory of “Picard variety ” according to which it is a direct sum
of an abelian variety and a finitely generated abelian group.

2. Relation with the local homology group.

In this section we shall assume that K is the field of all com-
plex numbers. We shall first consider the principal bundle % with
the circle 7' as its fibre and with compact manifold ¥ as it base
space. If we denote by 26(¥) and J£ (V) the one dimensional
homology groups of & and ¥ with integer coefficients, the pro-
jection p from $ to V induces a homomorphism from J(¥) onto
X(V). On the other hand & has two dimensional cohomology
class £ with integer coefficients as its “ characteristic class”.

Now an element x in the free abelian group G generates a
cyclic group of the form a-Z with respect to a suitable base of G,
where Z means the additive group of integers. The integer a does
not depend on the choice of the base in G, and will be called the
index of x in G. If we consider the two dimensional cohomology
“ with division” in ¥V, we get a free abelian group. Therefore £
has an index i(£) in this group.

Lemma. The kernel of p: X (F)—X (V) is a cyclic group of
order i(£2).

This can be proved readily by examining the nature of the
obstruction cocycle. However if we apply the powerful tool of
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‘“exact sequence”,” we proceed as follows. The kernel is isomor-
phic with the factor group of Z modulo its subgroup of Kronecker
indices I(# nz) where z are the two-cycles in ¥. On the other
hand by the meaning of the cap product, the G.C. D. of I(£nz2)
is nothing but i(£).

When ¥V’ is a compact complex manifold, we are sometimes
led to the consideration of the principal bundle § over V with the
fibre &,.” we note that &, decomposes into the product T'x E
of T and the additive group R of real numbers. Therefore %cé is
reducible to the principal bundle ¥ with the fibre T. On the other
hand since V“ is orientable in this case, the characteristic class £
can be represented by some 2d-2 dimensional homology class over
Z according to Poincaré’s duality.

Now let ¥ be a non-singular variety in the complex projective
space L” and let W' be its representative cone with the vertex
P, then the abstract variety

%124-1: _P
is a fibre bundle of this type.

Proposition 2. The characteristic class £ of ‘E is represented by
—C"' when C is the hyperplane section of V.

Proof. 1If we denote by X, X,,---, X, the homogeneous co-
ordinates in L", then, after a suitable projective transformation if
necessary, we may assume that the intersection C, of V¥V and the
coordinate plane with the equation X;=0 is an irreducible variety
without multiple point over some field.” If we put

(@) =a(x) = (uxy, 01,0+, 0%2)

with
| % |

n
% (201 4 ks

u=

for the point (x) in F—C,, it is clear that f is a cross-section of
V—C, in §. We then cover V by a sufficiently fine simplicial
complex K such that C, is a (2d—2)-cycle in the dual complex of

4) Cf. S. S. Chern and E. Spanier, The homology structure of fibre bundies,
Proc, Nat. Acad. Sci. U. S. A, vol. 36 (1950).

5) Cf. A. Weil. Fibre-spaces in algebraic geometry, Conference on algebraic geo-
metry and algebraic number theory, Chicago (1949).
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K. Let o be a two-simplex of K which meets with C, at its
barycenter . Then the boundary 3¢ of ¢ has a parametric repre-
sentation of the form (x) = (x,(£), ,(#),"--, . (#)) (0 < t < 1), where
% ()= | %@ | -exp(27 it) does not vanish on do. In this case we
have

F(1)) _exp(=2mit) - (x(¢))
(Ea EZOIPES

on das, hence the mapping f: ds—T has degree —1.
Corollary. The integer i(£) is a divisor of deg( V)
deg(¥) =0 (mod. i(£)).

Thereby the equality hols surely when V is a curve.

Now we shall assume that W is normal at P, then we can
prove the following remarkable

Theorem 2. In the classical case the local holotomy group
H.,(W; P) of the cone W is a divect sum of the compact dual group
of the one dimensional local homology group of W at P and a free
abelian group.

Proof. The local homology group of W at P is, by definition,
the homology group of the intersection of W and a sufficiently
small sphere with center P. Therefore it is the homology group
of the principal bundle . Moreover we conclude from Lefschetz-
Hodge’s theorem® that a V-divisor has the same index in the 2d-2
dimensional homology group with division either topological or al-
gebraic.

~ On the other hand if we denote by ¢ (V) the group of V-divi-
sors ‘which are periodic modulo %,(¥V)+ (C), where ¢.,(V) is
defined by the numerical equivalence, we see that the factor group
of ‘¢(¥V) modulo ¢.(¥V)+(C) is a finite cyclic group of order
i(£2). We now define a group multiplication between the compact
group ¢ (V)/% (V) + (C) and the discrete group (%) as follows.”

6) W. V. D. Hodge, The theory and applications of harmonic integrals, Cambgidge
University Press (1941).

7) Cf. ]J. Igusa, On the Picard varicties attached to algebraic varieties, Amer. J.
Math., vol. 74 (1952\.
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Let X be any element in % (¥), then we can find an element
Y in %,(¥) and an integer @ such that

i(2)-X=Y+a-C.

Since Y is in %.(¥), it is a divisor of some “ multiplicative func-
tion” Fon V. If C is the section of ¥ and the hyperplane with
the equation 3% ,#,X;=0, we attach the function

ox(9) =[F(x) - (3 ux) "

on ¥ to X. It is clear that ¢x is a multiplicative function on §
with the divisor Z-*(X) and the pairing

G (V)X
e )X r=multiplicator of ¢x along 7
o7

induces an orthogonal multiplication of ¢ (¥)/%,(¥V)+(€) and
K-

Finally if we denote by p(¥) the ““ Picard number” of ¥, the
factor group %,(V)/% (V) is a free abelian group with p(¥)—1
generators. Therefore since W is normal at P, our theorem follows
from the previous theorem.

We note that the local theory of the representive cone at its
vertex is more comprehensive than the global theory of the base
variety.

3. Homomorphisms /' and 4.

Let K be an arbitrary field and let O be the ring of poly-
nomials in #+1 letters X, X,,---, X, with coefficients in K. The
elements of © with no constant terms form a maximal ideal X
in O®, by which we can construct the quotient-ring O After
Krull® we shall attach to every element F(X) in Oy its “ begin-
ning form” F(X) and to every ideal &b in Oyits “direction
ideal” (d. We note that (b is the module which is generated by
the beginning forms of the elements in (3. On the other hand we
can consider the “graded-ring” % (Ox/Q) of the factor-ring
Ox/Q% and we get the relation

8) W. Krull, Dimensionstheorie in Stellenvingen, J. Reine Angew. Math., vol. 179
(1938)
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X’ @x‘*’@ » >

Since the local rings
0=0,/G and 6=0 /O

have the same graded-ring, they have the same dimension and the
same multiplicity. The first assertion is known as the “dimension
theorem” of Krull; the following lemmas are due dlso to him.
(1) When two ideals (b, C b, in Ox have the same direction ideal,
then (b,=Q,. This is a simple consequence of the fact that every
ideal in a local ring is closed with respect to its natural topology.
A combination of this lemma and the dimension theorem leads to
(2) Let Q4 be an ideal in O such that every component of Cb has
the same dimension, then every component of (b has the same di-
mension. The following lemma is elementary and goes back to
Lasker. (3) Let (b be an ideal and F(X) an element in Oy such
that F(X) is prime to (b, then we have G+ FQO y=C+ FO.

These lemmas are valid also when Oy is replaced by its
completion O*. We shall now prove the following

Proposition 3. Let (b be an ideal in Ox such that a belongs
to a wvariety W', then (b also belongs to a variety U of the
same dimension which is analytically irreducible at the vertex P of
the cone W.

Proof. We first understand the word variety as an irreducible
variety over .K. Let “,Z) be a minimal prime “of (3, then: ? con-
tains . However since @ and @ have the same dimension and’

since’ @ is prime, we have @ —=(. Therefore by lemima 1, we
get @ (% and & is prime. Moreover since a local ring and its
completion have the same graded-ring, we conclude readily that
(b remains prime in the completion O* of Oy,

On the other hand if W is an absolutely irreducible variety,
Q is absolutely prime. However since the field extension and the
transition to the direction ideal are compatible, (2 is also absolutely
irreducible.

The following theorem is a natural generallzatlon of ZaI‘lSle
result according to which every simple pomt is a normal point.”

9) O. Zariski, Algebraic varieties over the groimd field of characteristic zero, Amer.
J. Math., vol. 62 (1940).
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Theorem 3. If the tangent cone W is normal at P, then the
vavriety U is also normal at P.

Proof. Let F,(X) be a set of polynomias in (3 such that
F,(X) form a base of (&, then F,(X) form a base of (3. Let 3,
be a base of all derivations in K, then we denote by F?(X) the
polynomial which is obtained by applying 3, to all coefficients in
F(X).

When W4*! is an irreducible variety over K, then the ‘ mixed
Jacobian matrix "

has rank #—d on W except for the singular locus I of W with
reference to K. Therefore if we denote by D,(X) the minors
of order n—d extracted from the above matrix, 9t is the common
zero of Fy(X) and D,(X). On the other hand if D,(X) is con-
structed from F,(X) as D,(X) from F,(X), then, by the basic
property of the determinant, D,(X) is the beginning form of
D,.(X). Therefore according to the dimension theorem, the local
common zero M of F,(X) and D,(X) has dimension at most
equal to that of M. Naturally M is the singular locus of U at P
with reference to K. Hence if W' is is normal at P with refe-
rence to K, we have dim M <d—1; and a fortiori dim M<d—1.

Moreover let fo be a principal ideal in o, then it can be
written in the form fo=Q+ FO x/(b with some polynomial F(X).
Thereby if F(X) is contained in &, we can find a polynomial
A,(X) in & such that F(X)=A4,(X). If we take F,(X)=F(X)
—A,(X) instead of F(X) and repeat the same process, either we
get a polynomial F,(X) such that F,(X) is not contained in &
or the process can be continued indefinitely. However in the latter
case F(X) would be contained in &+ %7y for every p, hence
F(X) would be in (b; a contradiction. Therefore by taking

F,,(X ) instead of F(X), we may assume that F(X ) is not contained
in . Then we have G +FO =G +FO according to lemma 3.
However since W is normal at P with reference to K, we see

10) O. Zariski, The concept of a simple point of an abstract algebraic variety,
Trans. Amer. Math. Soc., vol. 62 (1947).
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readily that every component of b+ FQO has dimension d; and so
is also &+ FOy according to lemma 2. Thus the principal ideal
fo is unmixed and o is integrally closed.

On the other hand if P is an absolutely normal point of an
absolutely irreducible variety W, by the compatibility of the field
extension and the transition to the direction ideal, U is also
absolutely normal at P.

We have also proved the following

Supplement 1. Let 9 be the singular locus of U at P and let
M be the singular locus of W, then it holds

dim M < dim M.

Moreover the following supplement can be proved in the same
way™

Supplement 2. If W is normal at P,-then the unique sheet U*
of U at P is normal.

Now we shall assume that U is normal at P, hence is also U*
with reference to K. We define the local holotomy group H,(U*; P)
in an obvious manner, which is canonically isomorphic with the
“class-group ” in the completion o* of 0. We shall denote this
isomorphism by ¢*.

The following theorem is a slight generalization of Zariski’s
theorem according to which the quotient-ring of a simple point is
a unique factorization domain.”®

Theorem 4. There exists a canonical isomorphism I" from the
local holotomy group H,(U; P) into H,(U*; P).

Proof. Let p, be the highest prime in o belonging to a local
variety Z,” of U“*' at P, then we put

8(X m.Z)=np, .

In view of prop. 1 of Chap. VII, §4 in S-T, the mapping ¢ in-
duces a canonical isomorphism between H,(U;P) and the class-
group in o. Moreover we put

T(NP"e) = (NP,") - 0%,
o a

11) Recently O. Zariski suceeded to ﬁrove that the unique sheet of any locally
normal variety is also normal. This theorem is more general than our supplement 2,
12) 0. Zariski, loc. cit. 10.
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then 7 glves a homomorphlsm from the class-group in o into the
, class-gxoup in o* However it holds

(np {m )) 0*_ np(m )()*_np* (m)

When pm*— np is-a minimal representatlon ™ Therefore if it

s e quasx-equal ” to a principal ideal, it must coincide with the
principal ideal. On the other hand if the completion of any ideal
# in o is a principal ideal f*0*, then it is a principal ideal in o.
~'In fact” let a, a,, ---,a, be a base of #, then we can find s
elements b,*,b,*,---,b,* in o* such that

a:=*b* (i=1,2,--,s).

Thereby at' least one of the b* must be a unit accosding to Krull’s
theorem. However if b;* is a unit, we have
. ‘ z'=dioo*no=aioo
as. asserted.
Therefore if we put I'=d* 'eyed, I’ gives an isomorphism from
H,(U;P) into H,(U*; P).
If we assume that W is normal at P, then U and U* are also

normal at P and it holds the
. Theorem 5., Th re exists a canonical homomo;phzsm d from
the local holotomy group H,(U*; P) into H,(W;P).

We shall use the following lemma which follows immediately
from the definition.

Lemma. Let o, (i=1,2) be two local rings of the same dimen-
- sion. such that o, is homomorphic to o, then we have

e(0,) é e(0,),

where e(0;) is the absolute multiplicity of 0:(i=1,2).

Now we shall prove the theorem. Let #* be any ideal in 0¥,
then it can be written in the form z*= J*/GO* with some ideal
F* in O*. We put #*= 2*/QO, then the mapping

(%) =55

13) O. Zariski, Analytical irreducibility of normal wvarieties, Ann. of Math., vol.
49 (1948). )
14) This part was proved independently by Y. Mori and Nagata.
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induces a homomorphism from the class-group in o* into the class-
group in o.
We first note the identity

e[o*/ Npi™e]=XIm,-e(0*/p¥)
which follows from the definition. Moreover for any Np;™< we
can find n PpEma which is prime to Np#™ such that their inter-
section N py™¥ is a principal ideal f*o*. Then as in the proof of
A=a, o/ - - .
theorem 3, we see that d(f*0*) is a principal ideal fo in 0. Since
the local rings o*/f*o* and o/fo have the same graded-ring,
it holds e(o*/f*o*)=e(0o/f0) and similarly e(o*/p%)=e(0o/d(®}))
(A=a,#’). On the other hand if 6(»*,) is quasi-equal to NP,ma),
8

we get

NP, & mms) C fo.

3
Therefore by the previous lemma it holds the following inequality

e(0/fo) < e[o/ Np.2 mm»)] < e(0*/ 1 *0*).

However since the both sides are equal, the strict inequality can
not hold. Since fo is an intersection of the symbolic powers, we
conclude the identity

n 1;.,,(2 mans) =/70—
8

Therefore we see that é(np.*™<) is quasi-equal to 7I6(p,*)"s,

hence ¢ induces a homomorphism from the class-group in o* into
the class-group in o.

Finally since there exists a canonical isomorphism ¢ between
" H,(W;P) and the class-group in o, the mapping d=g""°d°¢* gives
a homomorphism from H,(U*;P) into H,(W; P).

We have defined the following three homomorphisms

H:(U;P)?HI(U* ;P)‘;’Hd(W;P)';’Hi-l(V)-

Thereby if we define directly a homorphism from H,(U;P) into
H,(W;P) in the same way as 4, we get 4° I Also if we define
the multiplicity function in H,(U; P) as

m({: m.Z?) =3 mq-e(0/P.)
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and similarly in the others, it is preserved by [’ and 4 and coin-
cides with deg. in H,_,(V).

Appendix

In the following we shall explain why we prefers the “ direc-
tion ideal ” to the ‘leading ideal” for the *Leitideal” of Krull.
Let K be the universal domain and for the sake of simplicity let
@ be a prime ideal in O Then (& determines a variety U®*!
in S**! and if we denote by P the origin of the ambient space,
O,/ is the “ quotient-ring ” of U at P with respect to the universal
domain

QU(P)= @x/a.

We shall denote by ¥ the bunch in S**! attached to Qb and we
shall show that T3 consists of the * exceptional directions” D through
P such that either e [Q.(P)]<i(P;U-D) or DcU.

Let £ be a common field of definition of U and W over which
the direction (@) of the ray D is rational. We may assume, say,
a;,=1 and we take a set (uy;) (0<i<d, j>=j) of (d+1)n
independent variables over k; we put

Uijo=— ;);;‘jouua,, K=Fk(u).

Then the set of equations 3j%,X;=0 (0<i<d) defines a
generic linear variety L*~* through D and, by definition, we get
i{(P; U-D)=i(P;U-L) when one of them is defined. On the other
hand let (x) be a generic point of U over K and @, (P) be the
specialization-ring of P in K(x). Then if D does not belong to I8,
we conclud without difficulties from the content of Chap. II in
S-T that the ideal

{Z:::) (.12:3) uljxj) Qv (P)

in @ y(P) has the same multiplicity as its maximal ideal. There-
fore the symbol i (P; U-L) is defined and is equal to e [Q,(P)],
hence D is not exceptional.

On the other hand let (U;) 0<i<d+1,0<j<#n) be a
set of (d+2)(n+1) letters and put

Yi= 3 UX, 0<i<d+1),
3=9
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then the polynomials in (3 which can be written without (X) under
this substitution are of the form

PU,Y).
Q)

with some P(U,Y) and Q(U) and with a fixed H(U,Y) in
K[U,Y). We write H{U,Y)=3,P.(U) -H,(X) with H,(X) in O
and with linearly independent P,(U) in K[U]. Itis then clear that
H,(X) are polynomials in (%, hence H,(X) are contained in Q.
Moreover when the direction () of D is a common zero of H,(X),
we conclude from the results of Chap. V, §3 in S-T that D is
exceptional.

The above consideration shows also that the minimal primes
of the direction ideal Cb have the same dimension. Also we could
formulate in geometric terms a suffiicient condition such that the
homomorphism 4°/" is an isomorphism. Moreover in the classical

case the variety U and the cone W have the same local homology
group.

HU,Y)



