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Local imbedding of Riemann spaces
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C. B. Allendoerfer [13 ] defined the type number r of Riemann
space, which is imbedded in a flat space, and proved that, if r>  3
and there exist Hr. ; satisfying the Gauss equation, then we have
M i  satisfying the Codazzi and Ricci equations. Hence, in this case,
imbedding problem in flat space reduces merely to algebraic one,
that is, to solving the Gauss equation. But we were not given by him
any intrinsic method to determine the type number of the space.

The second section of the present paper gives a  necessary
condition that a Riemann n-space be imbedded in an Euclidean
(n+P)-space. A development of the discussion in this section leads
us to the intrinsic definition of  the even type number of a Riemann
space, as will be shown in the third section.

The fourth and subsequent sections concern with the imbed-
ding of Riemann space in  space of constant curvature. The Riemann
curvature K  o f an  enveloping space will be determined by a
system of equations of first degree with respect to K .  The system
of equations is obtained as a consequence of the necessary con-
dition found in the second section. Thus we shall show that the
imbedding problem of Riemann space in space of constant curvature
is generally  reducible to one in fiat space.

§  1 .  Preliminaries and historical notes

Let V, be a Riemann n-space with the metric form

g i i  dxi d
imbedded in a Riemann m (> n)-space V,„ with the metric form

g.,dy° dy 3 ( a ,  0=1,—, rn,),

V„ being defined by equations of the form
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Yoe = 9 u  (x 1•  , (a = 1 ,•• • ,m ),

where the rank of the functional matrix i!dya/3x'11 is n .  In this
place, we suppose that these metric forms are not necessarily posi-
tive-definite. For displacement in V„ we have

g d y 'd y  = dx3,
and it follows that

(1.1) gOEAB71331 -=

where we put BT &y/&x'. Let Bi! ( P = n  I- 1, m )  be orthogonal unit
vectors normal to  V„, so that we have

g M /3 72 --  0  ( P Q ) , = e p  (P = Q ) ,

ga 3 B1 = 0,
where the quantities e = Differentiations (1 .1 ) and (1-2)
give the following equations :

(1.3)B +  P T / 3 J  =  jH I; ,

(1.4) E eQ,

where commas denote the covariant differentiations with respect
to gu  and is  the Christoffel's symbol formed with respect to
go . Three systems of functions 1-g, M .1 and 11,? in (1-3) and
(1-4) satisfy the equations

= Hr.,—  g '  H ,—  I I .

We call usually HI; the second fundamental tensors o f K .  As the
conditions of integrabilities of (1.3) and (1.4), we get the Gauss
equation

(1.5) B 1u B; BZ Bt = e,. (HS, 1-11; M

the Codazzi equation
(1.6) M X  B ir = —114,k+ Wk,

+  e Q (M, II j;)
Q

and finally the Ricci equation
(1.7) B; Bt Ran- =  1,k— M ,„ 1 + M i T13— Tri, k14

+E eR (M i 1-1,, HZi).

(1.2)
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When enveloping space
tively

(1.8)

(1.9)

(1.10)

is  flat, above equations become respec-

= E ep (HS H —  H HID ,

HI,;k— 114, = (114 HQP,. —  M ari ) ,

11;4,k - 11(4,j  = g" (Hl; H3— HS HiY)
— )2,e,(HA HL— HA .14).

is imbedded in a flat ,n-space, if and
systems of functions Ili; ( - 111;) and H,?j

m), satisfying the equations (1.8), (1.9)

set of normal 13; defined by

B; = P,2,13,;

where the m atrix  W I of coefficients is to be orthogonal, it follows
easily that the functions HI] and //X  subject to the transformations

(1.11) Hi; =  E  H i; ,

(1.12) = /6"H i+ E  7 R  7R

• R , s

Now, any Riemann n-space can be imbedded locally and iso-
metrically in a flat space of dimension n(n +1)/2. This result
was enunciated by L. Schlaefli [1] and w as first p roved  by  M.
Janet [7]. E . Cartan also proved this fact by means of theorems
on Pfa ff's form  [8]. I f  V, has some particular properties, V„ may
be imbedded in a flat space of a lower dimension. W hen the lowest
dimension is  equ a l to  n +p, w e  sa y  th a t V , is  o f class p .  This
term " class " originated with G. Ricci [2 ]. The imbedding problem,
so  ca lled , is the intrinsic characterization of this particular pro-
perties.

The imbedding of V . o f  non-vanishing constant curvature is
satisfactorily studied. Such a space V, is  a fundamental hyper-
quadrics in flat (n+1) - space [16, p. 203] and hence V , is of class
one. But i t  i s  impossible th a t  V„ of negative constant curvature
is really imbedded im Euclidean (n +1)-space [3, p. 485]*.

It is  w ell know n tha t
only if there exist two
( = —  H 4) , (P ,Q = n+ 1 , • ,
and (1.10).

If we take another

* W e ca ll a fia t space a  space, the metric form being written in  the form
E e i (dxi) 2 ( e i  ± I ) .  I f  all e i  are positive, we call it an Fuclidean space.
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On the other hand, only partial results have been obtained as
to imbedding of Einstein spaces, but we have many interesting
theories on this. I f  V, is an Einstein n-space of vanishing scalar
curvature, it is impossible that V„ is imbedded in a flat (n +1)-
space. This theorem was proved by E. Kasner for dimension four
[4] and his method is easily generalized to the case of higher di-
mension [16, p. 199]. But, for the proof of this theorem, we use
a supposition that the elementary divisors of the matrix 11,014,—
g i i ll are all simple, and hence, if the supposition on the matrix is
omitted, we have the problem to find the condition that an Einstein
V,, of vanishing scalar curvature be imbedded in a flat (n+1)-space.
On this problem we will note in the end of the fifth section. Be-
sides, C. B. Allendoerfer gave the condition that an Einstein space
of non-vanishing scalar curvature be of class one [10].

For the case of V„ being conformally flat, all of cir'cumstances
of imbedding have become clear. Such a space is a  fundamental
hypercone in a flat (n +2)-space, and hence V,, is of class at most
two, which was proved by H. W. Brinkmann [5]. In addition we
have already the condition that V„ be of class one [19].

Now, in 1936, we were given by T . Y . Thomas the general
theory on V, being of class one [9]. In his paper, the problem on
space of class one was perfectly discussed, except when V„ is of
type two. His paper [9] threw a fresh light on the problem, and
the algebraic characterization in a true sense has arised from him.
Allendoerfer's paper concerning with an Einstein space o f class
one [10] as well as the paper on a conformally flat space of class
one by the present author [19] are residual products of [9]. But
Thomas omitted the case of type two, because the general theory
on V„ of type greater than two can not be applied to the case of
type tw o. The latter case was studied afterwards by the present
author [21], though satisfactory result did not be obtained. Further,
A. Kawaguchi got the simple expression of the condition (8-4) in
[9 ].

The work of Thomas was immediately followed by C. B.
Allendoerfer. He got the generalized Frenet equations fo r  V, in
a flat space and discussed the imbedding of an open simply con-
nected domain o f V„ [11]. Further, in his paper [13], the notion
of type number defined by Thomas in the case of class one was
generalized to the case of class greater than one and, making use
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of this notion, many beautiful theorems were obtained as to the
rigidity of sub-space and the independences of the Gauss, Codazzi
and Ricci equations. But the type number of these general cases
was not defined by the intrinsic property and also he gave not a
condition for the Gauss equation to have a solution.

The present author gave the condition for V, being of class
two [18]. It is an natural development of theories by Thomas and
Allendoerfer. The type number, which is not the same one as
defined by Allendoerfer, is determined by the intrinsic property.
In  this case also, V„ of type one and two are exceptional cases.
As an example o f this special case, he offered such a simple
space [20].

§  2 .  A n necessary condition for J-7,  of class p

We shall limit our investigations in this section to the case
when an enveloping space Va .„  is Euclidean. This restriction will
abbreviate following equations. However, by a little modification,
most of the results are perhaps satisfied in the case of V ,„  being
flat but not Euclidean.

The Gauss equation (1.8) is written in the form

(2.1) Ri4k,k, =  11,": Hi

where (.3,Ç are the Kronecker's deltas and we use hereafter the sum-
mation convention for indices p, p ,  and further a7bk„  are
their generalizations. In order to generalize (2.1) we put in the
first time

(2 -2 ) i j k4
is,PIP2HPI H P 2  HQ, HQ2 a2 bi b2

Q1(12 e2.(12 jib] i2b2 " k 1•  k 4 •c2)

This tensor R  is expressible in terms of the components of the(2)
curvature tensor. In fact, the right-hand number of (2.2) is written
as follows :

1 ( ,p, Na, ,b , T IP . T A ). ,a”bo
(-) Q i ” i t 6c i " Q ; "  i2 ;2  : 7 2

1
;2 

()
C2

-

(3P1 7 j P 1  1 1 42 2  ( 3 ( 0 2  i lP 2  H P 2  H Q , ,Na2b,) n•cic2did ,2
Q 2 f2b 2  c1d2 Q1 i2a2 j 1 b1 ( 7 2 d 1k 1k 4

Substituting from (2.1) we obtain

( 2 .3 )
0,102 I h  /2 k1 k4
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D
22 (.7)' t  i n  a , . . acila2bib„

121,
,a2 b ,

1
= .  • h ;  4

22 (R j /l a, R
62 J2a2..

h

2 
R ii :12€0 2 R 12:11a2b1

)  8 12t, lbk2 •

Further, i f  we put

( 2 ' 4 ) ( . . /,?)iii2i3 I i2 k 1 k6

, P1P2Pn Tel TIT?. TIP., T.TQ, T.0 2  TiQn a a 1a2a3b1b2b3
0 Q1(1203—i1 a1 L i2a2 " i3 a 3 1 j1b1 “:12132 k i•-• ••-

and proceed in similar manner as above shown, we establish then

(2 .5 ) R. ; ; ;  ;  , ;,1,2,n, " " K t 3

1  "vu 'R ,  4 h  R ;  ; 1 ; %,,,,a0a3b,b0,53
- 22 - 4 !  ( 3 )

J (2).•2.3 I J  

;
` .1 2. . Rb 1,b ?II

°
 kl •  •

T
 •  •  •  •  k 6

1  -= (R • • R. . +R R
2-4 ! h ',a l b, ( 2 ) 1218!:72:13!a2a3b.2b3 11 j2a1b2 ( .2 ) i2in!:13.ii !a2a8b3b1

+R ,
I , a

 L R , ,  ,

2 l a o a l

, ,s )  x  a nk li a..2.a b. i .b?..bk a.
, y n lu 3  m i2i3! J1 J u ib

1=  R :  ,  ;  , , R , „ ,- . 1  
(R 

.2/2 L.2., 2 '3/3 (13., 3 .2/3 ...2.13 .3/2 .4 3, 2)

▪R
ii :hat b2 ( R i2inazb3 R i3jianb, 

— R i2 j i a.b i
R i3j3asbn

)

± R 11.i3albn ( R 1•2i,a,b, Ri32113b 2 — R i 2 j 2a2b2 R i3 j 1a3b1) _I

x  a a l a 2a 3 b,b 2 b 3

If we generalize above processes and put

(2 .6 )

_= P,. TT Qi (r 1 ' • a ,  h i  •  •b ,.
i i a, " " • i„a„'”- j,b , •••k ,  •  •  •  ' '  - - - -  k 2 , .

then it follows that R  is written in the intrinsic form
(i)

(2 .7 ) k i•  k 2 ,

1 E nt'

- 2'( ,)
w •  - • •• ,••,,a,

R Ri,.i„a,b„,"k, • k 2,
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1 
2• (2 r-2 )! R

X  R
a2 a , b 1 1 7 ,, ••h ,. ^  

°
k 1k 2 ,

1 , . .
4 !• (2r— 4)! 8,t(<s) (2)1112 a1a2k ,b,

,a,• • -a ,.b i • • -1),.X  R  .  .
0 _ 2)73 .1]. • j, rt•-.:1,.(11 • .a,.b, • .3 , •• k2,• •

In these calculations we made use of the following identities satisfied
by generalized Kronecker's deltas*.

f 3 : a t a ,  ac ,g ••-e, a(i....,,,•••c,c,#,
............ b,„........... .a,.............................................

a,
 b ,

(2.8)
,()

Q, (:)

Observe that components of R  (2 5 2r n )  are expressed intrinsically
as homogeneous polynomials of r-th degree in term s of components
of the curvature tensor.

W e can  w rite  the Bianchi's identity as follows :
,,k,k,,k3 = 0

R k3(' 1 1 lo is

and, making use of mathematical induction and the second expres-
sion of R  in (2.7), we establish

0)
(2.9) ,

 k o ,  +1

( 0 1, 1,171 .1, 1k1 k2v , k2 11  "

If V . i s  of class p ,  the indices P 'S and V s  in (2 .6 ) tak e  the
different p  values, so  that w e have ev idently  from  (2 .6 ) and the
definition of the generalized Kronecker's delta

(2.10) R , , 0  (2p <21 _ n)
( o r, zei , j i/ q  k,

Therefore
THEOREM 1. It  is necessary for V „  of  class p <  n )  that the

tensor R  vanishes.
(1,4-1)

W e rem ark  tha t, from  (2.7), R = 0  (q -> p + 1 ) ,  if  R = 0 .
(q) (p + I)

Though this theorem  seem s not to  play a ro le  in the case of
class one [9] and two [18], we see in the fourth and seventh sections

*  W e use throughout this paper the generalized Kronecker's deltas. See O.
Veblen: Invariants of quadratic differential forms, Cambridge, 1927.



• f i  • • •ip,.! le, • k 29 „.

1 
{ (2p)!}

( ) i I : lP 7 l 7r al av bI

X R ,
i p r '

•,;(li •  •  -bp ,
p

-
4 2 t .

j ,,,. a2,
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sections that this is fundamental for the imbedding problem o f V„
in an (n  f  p)-space of constant curvature.

3. Allendoerfer's type numbers

I f  V, is of class p ,  w e put

(3.1) H ; H P ,  H P„
. p ( p

e
) P i " . Pp i p a r

Fil a  1 1 2 • ••  H .?

F P  IP • • • HP,2a, itla2

F P  IP  •  •  •  HP'pap ipar t p a p

and it follows immediately that

H  4
Q1

 •  •  •  HQ,,»
./I

h i r u p

H ii.•• i l ' i a  •• aP
H

i l• • • :1 P ib l  •b r •

Combining this and (2 -6 ) we get

(3 ' 2 )
N i l  • • • a v b ,•••b p

•= a p l l j , • • • i p i b i •  • • h p  
°

k 1  k 9 ,

Further w e put

(3.3) C ; ;  , ; I I,
2,1. 1.11 . . . t i l l . . . I "Ap r

H
ii . **ip la l • •ap i ir' b l 6 .. •  •

X  I I
 ip 0

,
--01-1

-
ip ria p ( ,- 1 ) +1  •  ap r

i l
ip (r-1 )+1 -

iP
,

b1
,
0.-1)+1

-
b r '

X
-•k 2i„. •

Making use of (2 .8 ) and (3 .2 )  we obtain

(3.4)

ap rb v 6 .-1 )+,• •
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and further we have

• ; ; 
1

;
•/ • 2/1/.

( P ,r )

1
(2p)!• {2p(r-1)}!(,, 1) 1P 21'

X  C  , ;
-Nit in

'/72

_ , )  .p + 1 ; /141  J p 7 . 1 .
/

2p+1 , 2 7 " .  
O 

m
h 

1 4 2 p  •

W e observe that components o f  C  a re  expressible as the homo-
(p,,.)

geneous polynomials of pr-th degree in terms of components of the
curvature tensor.

C . B . Allendoerfer defined type number of V. imbedded in a
fla t space [13]. T h e  quantities Ca a q 18, 8 ,7 defined by (2.3) of
[13] are  equal to Hi , o f  (3.1) in the present paper, so that
C  of (3.3) is equivalent to C. in  (2 .4 ) o f  [1 .3 ]. W e observe

(), , r )

from (3.5) that, i f  C =0, then C=0 (s > r+1). Now, Allendo-
(p,,i) (p,,)

erfer's type numbers are  defined as follows. If  C,. 0 and C„. 1 =0
in a point P  o f  V,„ we say that V„ is of type r  at P .  Therefore
we can define (even) type number by means of the intrinsic pro-
perties o f  V„ as  follows.

DEFINITION. L et V, be a Riemann n-space. If C13 an d  C =0
(p , ,  + 1 )

(2pr<n) at  a po in t P , w e say  that V„ i s  o f  type 2r a t  P , where
C  are defined by (3.4).
(p7)

I f  Va  is of type 2r, there exists such a coordinate system that
C

1 •-•1 3 .•  3  2 r-1 -2 r-1  1 2  2  4  -  4 . -2 r .- .2 r This quantity is a
( p , * )

determinant of 2pr-th order and hence we construct the normalized
cofactors HP of H,, satisfying the equations

a, b=k, ---  k,24,,.
11,": =

0 =1,.•., 2r

P, C1=1, • ••,p

Making u se  o f  these quantities, Allendoerfer proved remarkable
theorems (see [13] in  details). I f  V” is of type 2r, V, is of type
2r o r  2r+1 in  th e  sense o f Allendoerfer, so that those theorems
are  stated as follows.

THEOREM 2. (1) I f  V" is of  type .>_4 at a po in t P , the solu-
tion Hri  o f  th e  G au ss  equation (1 .8 )  at  P , if  exists, is uniquely
determined to within orthogonal transformations ( 1 .1 4
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(2) I f  V . is  o f  type > 4  in  an  neighborhood an d  there exist
functions f lf ; satisfying the Gauss equation (1 .8 ) , we have the func-
tions H','„;  satisfying the Codazzi and Ricci equations (1 .9) and (1-10).

(3) I f  V, is of type >2  at  P  and there exist functions Hri  satis-
f y ing the G auss equation (1 .8 ) , the solution 11,?. ; of  the Codazz i
equation (1 -9), if  exists, is unique.

§  4 .  Imbedding a Riemann n-space in  an  (n +1)-
space of constant curvature

The imbedding problem of Riemann space of dimension n  in
a flat (n+p)-space may be generalized to the case when the en-
veloping space V„+ ,, is not necessarily flat. But those are very
hard to study in general, because quantities f if  arise in the Gauss
equation (1-5). J. E. Campbell seems to the first to have tried this
kind o f problem. He proved the interesting theorem that any
Riemann n-space can be imbedded in an Einstein (n+1)-space of
vanishing scalar curvature [6, pp. 212-219], the method being very
complicated. Also, it is worthy of our notice that K. Yano and
Y. Muto considered the imbedding in conformally flat space [15].

In the following we concern with the case when the envelop-
ing space K „  is of constant curvature 0 .  It is to be accentuated
in this place that we do not think of  enveloping space as previously
given, but it is our purpose to f ind an  enveloping space of the given
space, and hence the constant Riemann curvature K  of enveloping
space is to be found. The necessary and sufficient condition that
a Riemann n-space be imbedded in an (n +p)-space S„+ „ of con-
stant curvature K , whose fundamental metric form is positive
definite, is that there exist two systems of functions Hri
and TO; (-=,- — WI ) satisfying the Gauss, Codazzi and Ricci equations
as follows [16, p. 211] :

(4.1) R i j k , K ( g i k g i i —g„gA ) + (H r,I1Ç i -

(4.2) 111 ,k — H L „1 = (M I 141— MILL) ,

(4.3) M i ,k — = g" (HI; H Hi"i)
— ( 1 -g i llf?2,,— 1 .

On putting

(4-4) S ijk l  = R ijk l— K lg ik g q — g if g a) ,
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we have from  (4.1)
(4.5) =  E (H S  —  L I P  U P

It is c lear that S w d  possesses similar properties as the curvature
tensor for interchange of indices. Hence the process, by means of
which from (2 .1 )  we obtained Theorem 1, is applied equally well
when R , i k i is replaced by S.gd. Thus from the theorem we have

(4.6) S  , , b = (2 p + 2  n),
.4 41 • ./ 24 1  " , I '.2.742

for V„ being imbedded in an (n+p)-space of constant cuavature.
In th is section w e  te a t  the simplest case of p = 1 .  The case

is typical and w e have interesting special type. B ut the general
theory of the case n >  4  can not be applicable to the case of n =
3 , because of 2p+ 2<_. n  in (4 .6 ) , and hence we consider first the
former.

I. T he  case  of dimension n > 4
In this case w e have from  (4 .6 )  S = 0 , so  th a t (2 .3 )  gives

(2)

(4.7) (  Si, j, a, b, 5 . j2a1b2Si2jia4b,)611(121 )1bk" =  0 .

Substituting from ( 4 .4 )  w e have a system of equations of second
degree in term s of K .  But it is easily verified that coefficients of
K 9 in these equations are identically zero and resulting equations
become then

(4.8) Amiii,2■iii2:ki 4 4  • K — 2R
(2 ) , , I2J.11,21.1' k., =

where we put
(4.9) k, gi2a2 gi2b2 gj2a2 ghb i

- } - R i2i2m2b2 Ri2:11a2bi g,0, g i 2b2) ( 1, (121342

which satisfies the identities
(.4.10) k5 r

k4,k 5
(  1, • 15  —

as easily shown. Therefore i f  Tin  can be imbedded in S>H_I of con-
stant curvature t h i s  K  must satisfy ( 4 .8 ) .  Elimination of
K  from  (4 .8 )  gives

A„ „ R , , , =  O.
( 2 )  

.41 , 421('w2 (2).9,421,,),21 L i  "  4.4

(4.11)
R 4A

( .2 )  i 2  I  :12
;

! k l k4 (2).1.
; 
2 1 1  121

rh b

(a, b, c, ), k 1, • ,  n)
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If we suppose that A , the coefficients of K  in (4 .8 ), is zero tensor,
then we obtain, contracting (4 .9 ) b y  g  gir2k4,

1 2( gilki Ri,k2.—gi1k2Riikl+Rilleigille2

— R • L g • i . )+    ( g i  k k  — g i  k  g •  k )( n - 1 ) ( n - 2 )  "  2 1 2  j "

This im plies that the conformal curvature tensor o f 17. vanishes
and hence, i f  V„ (n 4 )  does not be conformally flat, there exists
a t least one components of A  not to vanish. Conversely we can

(2)
easily show that, if A  vanishes. Hereafter we suppose that(2)
V , ( n > 4 )  is  n o t  conformally flat. T h e n  the equation (4 -8 )  is
thought of as one, from which the constant curvature of envelop-
in g  s p a c e  S ., and hence S „ , ,  itse lf  is  to  be  de te rm ined . The
necessary and sufficient condition th a t  (4 .8 )  has a common solu-
tion K  is clearly (4 .11 ) and then K  is uniquely determined.

It is  easily  seen  tha t K  vanishes, if and only if R  is  a zero
(2)tensor, so that w e have the

THEOREM 3 .  L e t Vn  ( n 4 )  be a R iem ann  n - s p a c e  not to be
c o n f o r m a l l y  flat. I f  there exists a n  ( n + 1 ) - s p a c e  S „ ,  of constant
curvature K ,  in  which V , is imbedded, then K  is equal to zero, if
and only if  the tensor R  of  V .  vanishes.

(.2)
The solution K  o f (4 .8 ), under the condition (4 .11 ), will not

necessarily be constant, and hence we must find further condition
that as thus determined K  be constant. Differentiating (4.8) cova-
riantly with respect to  x , w e  ge t in virture of K,1 =0

(4.12)
)

A
iii2iiii,21k,•• ,k41

-K - 2 R
i,i2Iiii2Ik,.•• k4, 1 =

( 2( 2 )

Equations (4 .8 ) and (4 .12 ) must be consistent and the condition
arising from this is clearly given by

A !„
( .4  (116 -2 . . 1 . 2  . 1 ,4 Rm a,a2 !bi b2,16.1 . - c40 .

(4-13) i A

• •k1,1 h.1,11

(a, b, c, ) , k, 1=1, • • • , n)

Consequently the constant curvature K  o f enveloping space is
determined from (4 .8 )  and the necessary and sufficient condition
for possibility of determination is the equations (4.11) and (4-13),
Therefore

I?



Local imbedding of Riemann spaces 191

THEOREM 4 .  Let V„ be a Riemann n-space not to be conformally
f la t .  I f  there exists an  (n+1)-space S„ + ,  of constant curvature en-
veloping V,„ the constant curvature K  is given by the equation (4 .8 )
under the condition (4 .11) an d  (4 .13).

It is possible that the solution K of (4 .8 ) ,  if exists, is uncon-
ditionally constant, sim ilar to  the case of Theorem  given by F.
Schur [16, p. 8 3 ] .  Differentiating (4 .8 )  and making use of (2.9)
and (4 .1 0 )  w e have

(7k, kA
III2j),J k,• k  

•
.K

, k51 , ,(2)

But the author has no hope to deduce from above equation
0 , and so the condition (4 .1 3 ) is unavoidable.

Now we define Si,ki b y  (4 .4 ) , where the intrinsic expression
of K  as above found is substituted and then our problem reduce
to finding the condition that there exists H ,, satisfying the following
equation :

(4.14) S,jki

(4.15) — 0.

W e rem ark  tha t (4 .1 4 )  is formally same as the Gauss equation
in the case of space being of class one and (4 .1 5 )  is  the Codazzi
equation ;  and hence, from now on, the similar process in [9 ] can
be applicable to  (4 .1 4 )  and ( 4 .1 5 ) .  Namely, in the first time, we
define the type number 7  o f V , .  If the matrix

. • •

S i j k l  S i j k 2 S i jk o l

is of rank one or zero, w e say that V„ is of type one. If the rank
is 7 (>2), w e say  tha t V„ is of type 7. Then the rank  of matrix
III-L i ll is  equal to  the type number o f T4,. I f  r > 3 ,  the solution
H, j  o f (4 .1 4 )  is uniquely determined to within algebraic sign. If
7 > 4 ,  the Codazzi equation (4 .1 5 )  i s  a consequence  o f  (4.14).
Further, the condition th a t  (4 .1 4 ) has a real solution is that

r S h , j k  & k J  S h e l l  =  S a b c i j k  >  0 .
S c a k i  S r a i j



192 Makoto Matsumoto

Finally, if V„ is of type more than two, there exists H i ,  satisfying
(4 .1 4 ) , if and o n ly  if S&,Jk 0, I l s „ b c „ k > o  and the system of
equations R „(S) = 0  be satisfied, where R „(S ) is the resultant system
of equation (4 .14 ) and

E L M S ijk l+  H  a lS  ±  H i k  Slab, H  jk S iam  0  •

However, if V„ is  of type three, the further condition H„(S) = 0
must be subjoined, which is obtained by substituting Hi i ,  as above
determined, in the Codazzi equation. Consequently we establish the

THEOREM 5. L e t V , (n 4 )  be a R iem ann n-space not to be
conformally fiat. I f  there exists an (n+1)-space S „ + , of  constant
curvature, the curvature is determined by the equations (4 .8 )  under
the condition (4 .1 1 )  an d  (4 .1 3 ) . I f  V „ is of type more than three,

farther condition that there exists an  enveloping space is that
Sw„.1 .11, S o c i j k ‘ ›  0  and R  „(S ) =0. I f  V , is  of  type three, the
condition H„(S) = 0  is subjoined.

On the other hand, if V„ is of type two, the problem to find
Hi ;  sa tisfy ing  no t on ly  (4 .1 4 )  but a lso  (4 .1 5 ) does not yet be
solved, so far as the author know s. H ow ever, it is show n as in
[21] tha t in this case Sh i i ,  satisfies the following equation

S ara j  S a b k 1  —

Scaii S o l k l

(a, b,c, d, j, k, 1=1, • - • ,

 

and these are necessary and sufficient condition th a t  (4 .14) has a
solution, w hich  is  no t be  unique. Substituting (4 -4 ) , the above
equation is written in the form

(4.16) ( g a b ii g a  ki —  g a b k ig ca , j)  K 2 — gc,,k,—

godaR cdo)K + ( R o i j R c a

— R a w a R c d i i )  - --  
0 ,

where we put
g a i g b , — g „ i g b ,  •

H ence there is not any possibility fo r  V„ being of type two, if
(4-16) is not consistent to  (4.8).

In any case, the problem reduce finally to the consideration
o f  v„ to  be  of class one.

II. The case of dimension three
If the dimension of the space  is  th ree , w e  are in special



Local imbedding of  R iem ann spaces 193

circumstances ; there exists always FI1 satisfying the Gauss equation

fk i = I I  .

From the theorems of determinants we have
H„„

H„

Ha ,
IL,,
11,„

Ha,.

H„

S,,,„
S„„,,.
S„,„

S i,„„
Se ,
S„,„ S a h p q

where (a, b , c ) , (p , q , r )  are even permutations of (1, 2, 3 ), and then
we get

(4.17) .1-1„„ = 0—' 1 2 • S ,„,„ S c „„
S„,„.„

as a unique solution of the Gauss equation. Thus the Riemann
curvature K  of the enveloping space S,, is not determined only by
the Gauss equation, and hence we must consider the Codazzi equa-
tion, by which K  will be determined.

In the first time, we substitute (4 .17 ) from (4 -4 ) and obtain

X K 2 + Ya „ K + Za „ Ha y  _
/ AK' + BK 2 ± CK+ D

where we put for brevity and

= g - gar (g =
(4.19) -= — g • R „Z , , 1, _= pbq —  pcq

A  —  ,  B =  l e • R ,
2

C  —  g R  ,  D

Observe that X„„ and A  are covariant constants. From (4 .18 ) the
Codazzi equation (4 .15 ) is written in the form

(4.20) L i j ,• +  jk • 10 + Ni j k • .K= + k • K+ Qok 0,

where we made use of K  being constant and put

jk =—• 2A Yi u ,k7,—Xi c A k ] ,

Miik 2 B } { [j ,k ]+ 2 A Z i[jm —  X ir jC Y iriB ,k]

AT, =  2C r.[ j .k]+ 2B Z, [i,k] — [iD,c —  [ IC,k]  — ,

=  2D Y, t-i ,c+ 2CZ, Ei ,c — YiE lD ZEJC .k] ,

=--  2D Z EJA — Z[iD ,,-,

(4.18)
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Therefore, if V , can be imbedded in  a  4-space of constant
curvature, nine equations (4 .20) must have a common real solu-
tion K , which is constant and does not satify

(4.21) A K 3 +B K 2 +C K +D = 0.
Then the Riemann curvature K  of enveloping space S , is given by
a solution as above mentioned and further the second fundamen-
tal tensor H „ o f V , is given uniquely by (4 .1 8 ) . As a result we
have the

THEOREM 6. A  space V , can be imbedded i n  a  space S ,  of
constant curvature, if  and  only i f  (4 •2 0 )  hav e a common real solu-
tion, w hich is constant and does not satisfy  ( 4 - 2 1 ) .  T hen the
curvature K  of  S , is giv en by  the  above solution and the second
fundamental tensor H „ of  V , is given by (4-18).

I f  (9 .20 ) has many solution K 1 , K 2 , •••, as above mentioned,
every K, K „•••, defines a enveloping space of constant curvature
and thus there exist at most four spaces enveloping a given K,
if exists.

As in general cases of V  (n > 3 ) being conformally flat, for the
case of conformally flat V ,, we have also special circumstances.
For such a  y„ we have

1 
R k — R k — = 0

' 4

and it is easily verified that is identically zero and converse.
Thus (4.20) is o f three degree in terms of K  and there exist at
most three spaces enveloping V3 .

§  5 .  Imbedding an Einstein n-space in  an  (n+1)-space
of constant curvature

We can evidently apply the general discussion in the last
section to an Einstein n-space, which is not conformally flat. A n
Einstein space, which is conformally flat, is of constant curvature
[16, p. 93] and hence such a space may be excepted from our dis-
cussion. However, following the Allendoerfer's treatment on an

'Einstein space o f class one [10], we give the simpler discussion
for such a space. The condition for this case is more briefly ex-
pressed and so we are interesting about it. On the other hand,
A. Fialkow already investigated the similar problem [1 2 ] . But he
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thought of as an enveloping space S„,.1 being previously given and
so his discussion is exactly similar to Allendoerfer's one, while our
purpose is to find S „,,, in which a given space V„ is imbedded.

In the general case of the last section, we paid attention to a
necessary condition (2 -1 0 ) ( q = 2 )  fo r y, being of class one, and
replaced the curvature tensor by Su p, defined by ( 4 - 4 ) .  Also, in
this case we are going to use the similar process. Allendoerfer
deduce the equation

(5-1)H ,  H i k — D,,jJjk

eRe n  
g h i g i k-E ( R a b . „ , R b a . a —  2Rk̀ :ik ka)n(n— 2) 2R(n —2)

from the Gauss equation and hence the matrix liDul i k.11 being neces-
sarily of rank one and semi-definite. Further, from (5 .1 )  and the
Gauss equation we must have the equation

(5.2) (n -2 )R   { n ,„
It  hi

n  
(  n  —  2 )

ik }  R a b .h iR  b ' jk

R ib•ka —  Rli■kb =  0,

Thus the above matrix condition and (5 .2 )  is the necessary and
sufficient condition that an Einstein space Vi b e  o f  class one
[10]. I n  order to obtain (5 .1 ) and (5 .2 ) , it is not necessary but
the fact that R  hi i k  is written in the form (1.8) (P=1) and the Ricci
tensor satisfies the characteristic equation R,,-----(R/n)go  of Einstein
space. In our case S h  is also written in the form (4 .5 )  (P= 1)
and that we have

= ( =g°" S,,,5), S  =  R _ n (11 - 1 ) K  (= g a b  So )  ,

by means o f ( 4 .4 ) .  Hence, from (4 .5 ) we have in like manner
the equation

(5.2') (n -2 )S15  S   
n 1"2 n(n —2)

S j b S  11b: kes — '  9  ib  S  &. 0.

Substitution fo r Sk,A  an d  S  the form ( 4 .4 )  and R — n(n-1)K
respectively gives the following equation of first degree in terms
of K :

(5.3) A h ij k •  K— B , , .  =  0,
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where we put

A h i j k  =  ( n - 1 )  ( n - 2) { Rhdi k—  R  g m i 4n  (n -1 )

B h ijk
(n —2)R  {

R , njk —  hgn (n — 2)

We may naturally assume th a t  V„ itself is not of constant curvature
and hence the tensor A h i j k ,  the coefficient of K  in  (5 .3 ), is not
zero. Accordingly we have clearly unique solution K  o f (5 .3 ) if
and only if the equation

(5.5) Anbed

A hd fk

Habed

B h ijk

= 0

(a, b, c, d, h, i, j, k=1, , n) ,

be satified. Further it will be unavoidable that the equation

(5.6) B a h n d  =  0 ( a ,  • , k, 1-=-1, • • , n) ,

A h i jk , t  H h i jk , I

must satisfy as the condition that K  determined as the solution of
(5 .3 ) is constant, sim ilar to (4.13).

N ow  S,,i i k  has been intrinsically determ ined and the second
fundamental tensor H15 satisfying (4.5) is found from the equation

(5.7) II,,i H  =  e DL lik

w here / ,  is obtained from  D,j j h by  rep lacing  R,,,A  and R  by
Shi,x and S  respectively. The fact, tha t m atrix  IIDLo kll is  of rank
one and semi-definite, is the condition tha t there  ex ists 11,  satis-
fying (5 .7 ).  But w e must exclude the special case of S=0, this
case be characterized by

(5.8) jk  A h i j k •  R— n (n—=  0,

which follows from (4-4 ) and (5 .3 ).  Thus defined 11,i  satisfies
the Gauss equation, because the condition for th is is g iven by
(5.2') , which is same as (5 -3 ). It is to be noted that the Codazzi
equation is a consequence of the Gauss equation, i f  S  does not
v an ish . In fact, contracting the Gauss equation, namely

R h ijk —  K. g„,75,„ e  ( H , 5 H h k H i f )

(5.4)
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by g ,  w e have

- = e(gik g" 11,,

F rom  th is it fo llow s by  the sam e process as in [10] th a t  the
determinant does not vanish for Consequently

THEOREM 7. L e t V . (n >3 ) be an Einstein n-space, such that
it is not of constant curvature and the tensor Th i i , does not be zero.
In  order that V  is im bedded in an  (n+1)-space of  constant curva-
ture, it is necessary and sufficient that the equation (5.5) and (5.6)
are satisfied and the matrix  II D L I jk l l i s  of  rank  one and semi-definite.
The constant curvature K  of  the enveloping space is determined by
the equation (5-3).

Next we consider the special case of S =0 .  Then the constant
curvature of the enveloping space must be  equa l to  R /n(n -1 ).
It should be rem arked that the scalar curvature of any Einstein
space  is  constant [16, p. 93], and accordingly K =R /n (2 -1 )  is
constant. W e have from the Gauss equation

H ,b S  +  R a j S i jb le  H i l e S  jab/. I I f  Sja i , 0*.

Contracting by g "  w e have by means of So  =0

HS i x e b H a b ) .
If we m ultiply this by H ,, and subtract from  it the equation ob-
tained by interchanging h  and 1, w e have in virture of the Gauss
equation

1-1 (II IA II,,, S i jk h )

From this and similar expressions for the other term s in the right-
hand member of the following equation it follows that

11J 'P k  S e—  (Sablle Sk" . i j +  Sab leh  Si r! f +  Saba • S :•11) •2

Eliminating HI-Ibk w e  have

(5.10) S  ih i  P b k i =  0 (a, ". =1 n ) 9

Sa cr lm  P bk ;iz edm

where P,,,,1 ,» ,, is the right-hand member in (5.9) divided by e. From

* Cf. (8.2) in Pl.

(5-9)
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(5 .10 ) we have the equation of second degree in terms of K  and
sustitution for K  the expression R / n ( n - 1 )  gives

(5•11)R 2 ( bk lard al bk I ij1 d )

+ n ( n - 1 ) R ( R i i „d0741 aedra —  R ard 1,4 Q i 1 5 i ,

—gip, Ph'  k ae d gacd,„P4.1,0,)

+ n 2 ( n - 1 ) 2 (R1011) 41.,,,,,, —Racd„,P,:kiiihi) 0,
where we put

bk  aed  =  Ra* R  bedm —  g a l ?  b a d m  g a  m  R  bed k

g',.. Rbadk 4- g a d  R  bek m —  ged R  bak m

P b ik  jaed =  R  i b m d R 4 f . „ , . +  R  Oka R  t b m k R i . „ , .

Contracting (5 .9 )  by g 'k  we have

(5.12) ff2 S,, 1 = e P i i ,,, (  =  e g b k P )-

where K  in Siva and Pi o ,  is replaced by R / n ( n - 1 ) .  Elimination
H 2 from (5 .12 ) gives

Saber' P a b e d  = 0 ,

.9 0 1 P i j h l

which is a consequence o f (5 .1 0 ) .  Hence, if (5 -11) is satisfied,
then (5.10) is satisfied and so we obtain from (5 .12 ) H ", because
S o ,,, does not be zero for V , which is assumed not to be of con-
stant curvature. In this case e  must be chosen so that H  is real.
Then from (5 .9 )  we have H,,,, because the condition that (5.9)
has solution H b k  is given by (5 .10), which is equivalent to (5.11).
But we must suppose H 0 , that is  to  say, P 0 from (5.12).
Therefore Ho  is thus determined under the condition (5 .1 1 ) and
P J hI 0.

Further we must get the condition that as above determined
Ho  satisfy the Gauss equation. From (5 .9 )  and (5 .12) we obtain

1 pH 2 • I l i a  S i ih j  • 11c,,, S adpq I ilia P ,  adpq .
3

7 qi i t  •

4

Interchanging k  and n i  we have from the Gauss equation

(5.13) S bck ,„ S aap q

1 p  p
— \ . b k  I i —em iadpq an P e k  I adpq) •4
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Conversely i f  (5 .13) is satisfied, as above determined H o  satisfies
the Gauss equation, as easily seen.

Finally we give the condition that these I f  satisfy the Codazzi
equation. In this case, the Codazzi equation is perhaps independent
f ro m  the Gauss equation. S ince 11,1 is  e x p re sse d  in te rm s of
curvature tensor, the Codazzi equation itself is also expressible in
term s of the curvature tensor and its derivatives. But we can
explicitly write this condition. In  fact, m ultip ly ing  (5 .9 ) by  H
and substituting from (5.12), we get

Hbk P,, =  1-1Pbk

Covariant differentiation of this equation w ith respect to .e" and
multiplication by  HS„,., S,,,„ gives

H• H h h • on  P ip it S p rp l  S, ,e1 1  —  H "L k S  p rp , Saede P i jh l

11110,, Siwg P .  ! i l i a  4 "  H 2  •S p y , ,S a e l l t  P l • k t  j h t  o h  •

Substitu ting  from  (5 .9), (5 .12) and the equation obtained from
(5.12) by covariant differentiation with respect to x'", we get

(5.14) R_ .1h/ = i k  b k m  f

where we put

1  ( p
Q pqr8 I neon I WI ,,, —  \ .  l w r h  • • • • , acrlt •-• • rop

p
'. 9  7rI . 4 0 1 1

\

/  .  
p

bk  I JP2 

( P b  I JP,/ P r p , c—  P1.4 , 1 .

The equation (5.14) is satisfied by H,j  above determined, so that
the equation

(5.15) Qpqrs nedi 1.01,11 Qk v s I aim I b b a , 9

is equivalent to the Codazzi equation. Consequently
THEOREM 8. Let V. ( n > 3 )  be a n  Einstein n-space such that

it is not of  constant curvature and the tensor Thzjk vanishes, but not
P , , . .  I n  order that V „ is  inzbedded in  S .., o f  constant curvature,
it is necessary and sufficient that the equations ( 5 .1 1 ) ,  ( 5 .1 3 )  and
(5 .1 5 )  are satisfied. The curvature K  of S..; is equal to R /n ( n - 1 ) ,
where R  is scalar curvature o f  K.

This theorem can be applied well when we discuss the problem
for an Einstein n-space of vanishing scalar curvature to be of class
one. Namely, we replace merely b y  in the above discus-
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sion. But, in this case, it must be required that elementary divisors
of matrix are not all simple [16, p. 199].

§  6 . Imbedding a conformally flat n,(> 3)-space
in  an  (n+1)-space of constant curvature

In th is  section we consider an n-space y„ whose conformal
curvature tensor vanishes. Such a space is the only case excepted
from  the general discussion of the fourth  section, because all of
coefficients of K  in (4-8) are equal to zero, and hence a particular
circumstance will be anticipated. If )1 - > 3, V „ is  conformally flat
and w e have already the condition th a t  V, be of c lass one [18]
and so w e go along the similar process as shown in the last two
sections.

The conformally flat n-space V , (n > 3 ) is characterized by the
equation

(6.1) R„iik ,

where we put

—  1 ( R__.„ g,o) •n --2 2(n-1)

Making use of (6.1) and the equation

1 1 ,0 R i jk l+  H r a R l i b k jethl f  R ,

which is deduced from the Gauss equation

e(H ik H  H i k) ,

we obtain in [18] the equation
= a go + blo

Now S,10 . in (4.4) is also written in the form

(6.2) S h  =  g h j i t k —  gh k i ; j  rilt k

where is defined by

Thus the similar process used in [18] leads us to

(6.3) =  a go + b ,

where a and b  are scalar.
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W e rem ark here that the rank of the matrix is  n. Be-
cause the Ricci's directions coincide with principal directions [12]
and so  it is  easily  p roved  tha t a t least n - 1  principal curvature
are equal, so that the process used in [18] is not lim ited to our
case for the proof of IH, j 1 0. Accordingly the Codazzi eqUation
is a consequence of the Gauss equation and then we consider only
the Gauss equation in the following.

Substitution from  (6.3) in  the Gauss equation

(6.4) R h i j k - K g , „ j k  -= 11,,,, 1-4),

gives

(6.5) — ab + —K2  b ' s)R (a- + —K4- 2 109 + (e—  ab) 01,,„

+b 2 (.1hilik-1117c11,1)••
In the first place we consider the particular case when the matrix
11/0 11 is  of rank  less than  tw o . S ince  V , m ay be assum ed not to
be of constant curvature, it follows that the rank is one, and from
(6.5) we have

K(6.6) e— ab+ ---b- = O,+ — 1 r + (e — ab )K  -=  0 ,
2 4

from which we get immediately
e(6.7) — — e K

•

 b ' —  — a _ _ K b
4 K 2 •

Conversely if I l  is  o f  r a n k  o n e , w e  ta k e  an arbitrary  constant
K 0  an d  choose c  plus or minus one, according as K  is negative
or positive, and then w e define a , b  b y  (6 .7 ). Moreover I-L i  is
d e fined  b y  (6.3), th en  w e  o b ta in  (6 .4 ) b y  substitution. Con-
sequen tly  V  can  be  im bedded  in a n y  (n+1)-space of constant
curvature 0 .  On the other hand, V„, can not be imbedded in flat
space ; since otherwise we show easily /0 =0.

T hu s, from  ou r stand-point, w e ob ta in  the special type of
conformally flat space, in which i s  of ra n k  o n e . In the fol-
lowing, we treat such spaces for a w hile. W e get in the first place

= /, (i, • • • ,

since 1,j  is  sym m etric  and  IlI  i s  of rank  one. W e see that
defined by the above equations, is unique to within algebraic sign.
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Multiplying (6 .1 ) b y  1, and subtracting from this the equation
obtained by interchanging k and ni, w e have

(6.8) R jkhilm +  R 1,4" Rji,,m — 0
by means o f (6 -1 ). Contracting (6.8) by e .g . " '  w e have

R  \(6.9) ( R ,— =  0 (/ "  =

from which we get
_  R

2

which is called the mean curvature of the space for the direction
and, from  (6.9), l  i s  the Ricci principal direction [16, p. 113].

Therefore l' is the Ricci principal direction and the mean curvature for
this direction is R/2.

W e re tu rn  to  the general case w hen II/o 11 is  of rank greater
than one. Then w e can easily show th a t  (6 .5 ) must have non-
trivial solutions e — ab + (K / 2)1)2 , a 2 + (K 2 / 4) b + —  a b )K  and b ' ;
so that w e have as the condition

(6.10) R „,,,,, ga b cd

R h , i k g h i j k,
R

P'P's g P q rs

1„h,,
1
 hip-,

1
P?rs

= 0

(a, •  •  •  , s = 1 ,  •  •  • ,  a)

where we put

/ho k - /hk /0  •

However we have in [18] that a conformally flat n-space (n>3) is
of class one, if and only if the m atrix 114111 is of rank greater than
one and (6.10) is satisfied. Thus such a space can be imbedded
in flat space. Nam ely, the equation

t R A ghijk +B lh ij::,

has a non-trivial solution A , B ,  and t  ( 0) and hence we have

(6.11) R h ij k  =  Cgrhi j k + D lh i j k .

In the case of class one, we define a and b as follows :

eCa= b =_
1  2 2
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On the other hand, cqmpairing this with (6 .5 )  we put

e '— ab+K-b p  ( 0),
2

(6.12) +K -
4  

b2 + (e—  ab)K  1'C,

203

-= pD ,
and from this we get

. K2a e „
1
 C—  K + —

4
- DI

\

 . b  = e ,, pD ,
2—KD

where e„, e„, and e ' are plus or minus one and satisfy the condition

D e' >0 , e„e„e ' >0 .

Conversely, i f  we choose a ,  b  a s  above mentioned, where K  is
arbitrary constant such that K D 2 ,  then (6 .1 2 ) is satisfied and
hence, i f  we define I-Li  b y  (6 .3 ) ,  these I-1,; satisfy the Gauss
equation. Therefore our space V„ can be imbedded in any (n+1)-
space of constant curvature K =0  or O .  B u t w e m ust except
the special case when K  is taken = 2/D . If  D  is constant and K
=2/D, we see easily e - 0 ,  and hence V,„ can not be imbedded in
a n  (n+1)-space of constant curvature 2 / D . Therefore

THEOREM 9. L et V „ (n > 3 ) be a conformally f lat n-space not of
constant curvature.

(1) If  the  m atrix  11l,J is (f  rank  one, V „ is im bedded in  any
(n+1)-sPace of  constant curvature but not in f lat space.

(2) I f  th e  rank  is  g reater than  one , V , is im bedded in an
(n+1)-sPace of  constant curvature, if  and anly  if  (6.10) is satisfied.
S uch a  space V „ can be im bedded in  any  (n+1)-space of  constant
curvature 2 /D , w h e re  D  is def ined by  (6.11).

In addition. we consider n-space 17,„ which is imbedded in a
conformally flat (n+1)-space The conformal curvature tensor
o f  V. is expressed in  the  form [151

C ijk l M i k M ia M " ;  g i i —  M,„114.,"
n - 2

11V 111' + kik M ir.1111" — AI A?) (n - -1 ) (n -2 )
where we put

2—KD
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from which we have

(6-13) R o k i — 4 A , - -  MuMik+ ga  A i l  — g,, A A + A i k  gi i —  A g k ,

where 24.,; is defined by the following form

1A

( n —  2 )  
(R  ij+  

+ R 
M ;) A i.

2(n-1) (n -2 )

Now we shall generalize (6.13) and consider V„, the curvature
tensor of which is expressed in the form

(6 -1 4 ) Rin d  = N aN ii— NuN o +Goan— Gilaik+aikG 31—aiiG ik  •

It is easily verified that the tensor R  defined by (2 .3 ) vanishes.
(1)

Therefore if this space V„ can be imbedded in an (n+1)-space of
constant curvature K , we see from (4 .8 ) that K =0  or the tensor
A  vanishes, so that V„ is of class one or conformally flat. Hence
(2 )

we have the
THEOREM 10. I f  V „ can be im bedded in  a n  (n+D -space of

constant curvature and the curvature tensor is expressed in the form
(6 .1 4 ) , then V „ is  conformally f lat or of  class one.

From (6.13) we have the following corollary :
COROLLARY. Let V , be such an  n-space, that is not conformal-

ly  f lat and not of class one, but is im bedded i n  a  conformally f lat
(n +1 )-sp ac e . T h e n  V „ can not be im bedded in  any  (n+1)-space
of constant curvature.

§ 7 .  Imbedding a  Riemann n-space in  an  (n +P )-
space of constant curvature

In  this section we show a remarkable theorem that the pro-
blem of imbedding in an (n+p)-space o f constant curvature
for 2 p = 2 ,• • • , n - 2  is reducible generally to one of imbedding in a
flat (n +p)-space, as seen in the fourth section for p = 1 .

From (4 .6 ) we have

(7.1) S • • b b 0
(,,+,) ,,"1,4,, / I ../1)+1 , .1 "  ' , 27•1, 2

as a condition for V„ to be imbedded in an (n+p)-space of con-
stant curvature. We substitute from (4.4) and then have equations
o f (P +1)-th degree in terms of K , the constant curvature of en-
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veloping sp a c e . But coefficients of K 2 , —, K P "  in  these equations
are a ll equal to  zero . In fact w e see from  (2 .7 )

, • , • . rh h 1 1••••p+1

R    E
„,+,),. r".--22,+0 4 !(2 p -2 )! s ,e t<i)

x  R R • . • 4 1,,(2) J1 (7,_1113• • ' 17 ,1 1 1 .1 1 ' .2 8 —./2,1-1 ; WI ap+lb,•• •b  A • • •b,•• -b ,+1•

I • ay, + I bl bpf  I

By means of (7 .2 )  coefficients of K2 are equal to the sum  of terms,
one of which, for example, is as follows :

1
4 !(2 p - 2)!

x ; ! „ „ , ,
(2 ,1 ? ))1 2 t Ian • a 7,+1111

-,(7,1 •••(12 ,4 . 1 h, •h p f ,
" k i  ....................................... k22,+2

where Ro ) i i i 2 j is obtained from

(2) 112 .7.s j e
1---e " -
2 2 m  R „ c i d„R „ 111 (0 , 6 ,

b y  rep lac in g  R i .j c i d „ , • • b y  g 1i c i g i , 4 „ — g i 1 d , ,•  •  •  ,  and th is is
clearly equal to zero. Thus the coefficients of K 2 vanish  and the
similar proof is applicable to the case when we show that coefficients
of K 1,•••, K 1'+' are all vanishing. Consequently from (7 .1 )  we obtain
the equations of first degree in terms of K  as follows :

(7 . 3) A ,  ; K - 2 R
0 ,+ ,) .1 " • I ! J i k2pI-2 • ( p + ,) i l • i v + i 'k l k2 7 ,+!.

,

The component of A , coefficient of K  in (7 .3 ) , is easily calculated
(7.4-1)

b y  ( 2 .7 )  as follows :
(7

( 1 , 1 . 4 i i k22,1-2

p+1
___ e  u  •  •  •  vxy • • •z  (g. g. —g. g. ) R . . --R . •,a1,b z 1 1 . 7 „ a i b „ , s_ lb „2 8-1 tp+1)

• - • by +X  
R i  , + i i a  + h , 1 " j 1 j a e + 1 11 " k i••4 2

2,+:
p+1

6  u  -V x y  • Zg. g m z  R  „ a d )  u • • • R „s =t  ( v +i)

••; a ,  • • 4 ) p + ,X  R i .
kv+2

(7 . 2)

+1
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The latter is generalization o f (4 .9 ). If A  does not be zero, (7.3)
(p +1)

will uniquely determine the constant curvature of enveloping space
S'”+ „  and accordingly the enveloping space S „ „  itself, under the
condition

A • • , A, b
( p )  . " / 2 411 J I  ' ' 'J p + 1 1 .1 "  ' .2 p + 2

And further condition that as thus determined K  b e  constant is
clearly given by the condition

A ,, 
• .'7411 .J .1242 (7 , + , ) ai ..p+11 , 1 ' . . ./11+11 , 1

„

G2p+2

A  ; ; , ,; ; , R  • ; ; j,
(p + ,) . 1 . - ‘314-1111 . . . ./11+11n1 . • • . 22 , +2, (p+.)11".1.214-11

N ow  w e have the intrinsic form  of constant curvature and
then is in trinsica lly  define . H ence our problem  reduces to  the
consideration of the equations (4.5), (4.2) and (4.3), which are
formally equivalent to the Gauss, Codazzi and Ricci equations re-
spectively in the case of V„ being of class p. For example, we
can give the condition th a t  V„ be im bedded in an (n +2)-space
o f constant curvature, i f  A  does not vanish ; namely, we make

(3)

merely use of the discussions in [18 ].
If A  does not vanish, the enveloping space of constant curva-

0 1 +1)
ture, if exists, is unique. While, i f  V , can be imbedded in (n +p)-
space and both  of which are of constant curvature K ,
K ' w e have from  (7.3) A = 0 .  Therefore

(p+ 1 )

THEOREM 10. If the tensor A  o f  V „, does not vanish, the en-y+ I)
v e lô p in g  space of constant curvature, if  ex ists, is unique. I f  there
exist more than one (n + p )-sp ac e  of constant curvature such that these
curvatures are dif ferent, the tensor A  of "V , is necessarily equal to

(p + 1 )

zero.
It is very  compricated to study such a space that the tensor

A  vanishes. For instance, we contract A i ; ; , • • h k  by g inkn g i 3 k
(73+1) (3 ) 1 .2 '3 1 2 /3 1

and, if we moreover contract, we have a tensor, which is identic-
a lly  ze ro . This fact is sim ilar to the case for the conformal cur-
vature tensor. W e can easily give an example of such a space
th a t A  vanishes, but the problem of studying the geometrical pro-

(3)

(7.5) A
(p+oal av+, ( p +

• a , , +  b 1 .• •b y + 1  ic i  'C2p+2
= 0 .

(7 . 6) 0 .
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perties of all the space, in which A vanishes, is probably very hard.
(3)

As in the case of p = i, it is possible that there exists such a space
that can be imbedded in more than one (n+p)-spaces of constant
-curvature.
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