Local imbedding of Riemann spaces

By
Makoto Matsumoto

(Received October 10, 1953)
C. B. Allendoerfer [13] defined the type number r of Riemann space, which is imbedded in a flat space, and proved that, if $r>3$ and there exist $H_{i j}^{p}$ satisfying the Gauss equation, then we have $H_{p, j}^{Q}$ satisfying the Codazzi and Ricci equations. Hence, in this case, imbedding problem in flat space reduces merely to algebraic one, that is, to solving the Gauss equation. But we were not given by him any intrinsic method to determine the type number of the space.

The second section of the present paper gives a necessary condition that a Riemann n-space be imbedded in an Euclidean $(n+p)$-space. A development of the discussion in this section leads us to the intrinsic definition of the even type number of a Riemann space, as will be shown in the third section.

The fourth and subsequent sections concern with the imbedding of Riemann space in space of constant curvature. The Riemann curvature K of an enveloping space will be determined by a system of equations of first degree with respect to K. The system of equations is obtained as a consequence of the necessary condition found in the second section. Thus we shall show that the imbedding problem of Riemann space in space of constant curvature is generally reducible to one in flat space.

§ 1. Preliminaries and historical notes

Let V_{n} be a Riemann n-space with the metric form

$$
g_{i j} d x^{i} d x^{j} \quad(i, j=1, \cdots, n),
$$

imbedded in a Riemann $m(>n)$-space V_{m} with the metric form

$$
g_{\alpha 3} d y^{\alpha} d y^{3} \quad\left(a, \beta=1, \cdots, m_{2}\right),
$$

V_{n} being defined by equations of the form

$$
y^{\alpha}=\varphi^{\alpha}\left(x^{1}, \cdots, x^{n}\right) \quad(a=1, \cdots, m),
$$

where the rank of the functional matrix $\left\|\partial y^{\star} / \partial x^{i}\right\|$ is n. In this place, we suppose that these metric forms are not necessarily posi-tive-definite. For displacement in V_{n} we have

$$
g_{\alpha \beta} d y^{a} d y^{3}=g_{i j} d x^{i} d x^{j},
$$

and it follows that

$$
g_{\alpha \beta} B_{i}^{x} B_{j}^{3}=g_{i j},
$$

where we put $B_{i}^{\alpha}=\partial y^{\alpha} / \partial x^{i}$. Let $B_{;}^{\alpha}(P=n+1, \cdots, m)$ be orthogonal unit vectors normal to V_{n}, so that we have

$$
\begin{align*}
& g_{\alpha \beta} B_{P}^{\alpha} B_{Q}^{\beta}=0 \quad(P \neq Q), \quad=e_{P} \quad(P=Q), \\
& g_{\alpha \beta} B_{i}^{\alpha} B_{P}^{\beta}=0,
\end{align*}
$$

where the quantities $e_{P}= \pm 1$. Differentiations (1.1) and (1.2) give the following equations:

$$
\begin{gather*}
B_{i, j}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} B_{i}^{s} B_{j}^{\tau}=\sum_{P} H_{i j}^{r} B_{r}^{\alpha}, \\
B_{P, j}^{\alpha}+I_{\beta r}^{\alpha} B_{r}^{3} B_{j}^{\tau}=H_{P j}^{\alpha} B_{k}^{\alpha}+\sum_{q} e_{q} H_{P j}^{q} B_{\ell}^{\alpha},
\end{gather*}
$$

where commas denote the covariant differentiations with respect to $g_{i j}$ and $\Gamma_{\beta r}^{\alpha}$ is the Christoffel's symbol formed with respect to $g_{a j}$. Three systems of functions $H_{i j}^{P}, H_{P j}^{i}$ and $H_{P j}^{\varphi}$ in (1-3) and (1.4) satisfy the equations

$$
H_{i j}^{P}=H_{j i}^{r}, \quad H_{P j}^{i}=-g^{i k} H_{k j}^{P}, \quad H_{p, j}^{Q}=-H_{i j j}^{P} .
$$

We call usually $H_{i j}^{P}$ the second fundamental tensors of V_{n}. As the conditions of integrabilities of (1-3) and (1-4), we get the Gauss equation

$$
B_{i}^{\alpha} B_{j}^{3} B_{k}^{\top} B_{l}^{\delta} R_{\alpha, i \gamma \delta}=R_{i j \alpha l}-\sum_{j} e_{j}\left(H_{i k}^{p} H_{j l}^{p}-H_{i l}^{p} H_{j k}^{p}\right),
$$

the Codazzi equation

$$
\begin{align*}
B_{r}^{\alpha} B_{i}^{\imath} B_{j}^{\gamma} B_{i k}^{\delta} R_{\alpha, \gamma \% \delta}= & -H_{i j, k}^{p}+H_{i j k}^{p} \\
& +\sum_{\imath} e_{\imath \imath}\left(H_{i j}^{\psi} H_{\ell k}^{p}-H_{i k}^{q} H_{\ell j}^{p}\right),
\end{align*}
$$

and finally the Ricci equation

$$
\begin{align*}
& B_{r}^{\alpha} B_{i,}^{3} B_{j}^{\gamma} B_{k}^{\delta} R_{a ; \gamma \delta}=H_{p j, k}^{\ell}-H_{p ;, j}^{\varphi}+H_{l_{j}}^{i} H_{i k}^{\varphi}-H_{P k}^{i} H_{i j}^{\ell} \\
& +\sum_{h} e_{k}\left(H_{r, j}^{\prime \mu} H_{R k}^{\varphi}-H_{r k}^{R} H_{k j}^{\varphi}\right) .
\end{align*}
$$

When enveloping space V_{m} is flat, above equations become respectively

$$
R_{i j k l}=\sum_{p} e_{p}\left(H_{i k}^{p} H_{j l}^{p}-H_{i l}^{P} H_{j k}^{P}\right)
$$

$$
\begin{align*}
H_{i j, k}^{P}-H_{i k, j}^{P}= & \sum_{Q} e_{Q}\left(H_{i j}^{q} H_{Q k}^{P}-H_{i k}^{q} H_{Q j}^{P}\right) \\
H_{P j, k}^{\varphi}-H_{P k, j}^{q}= & g^{i l}\left(H_{i j}^{P} H_{l k}^{Q}-H_{i k}^{P} H_{l j}^{Q}\right) \\
& -\sum_{R} e_{n}\left(H_{P j}^{R} H_{R k}^{q}-H_{P k}^{R} H_{R j}^{Q}\right) .
\end{align*}
$$

It is well known that V_{n} is imbedded in a flat m-space, if and only if there exist two systems of functions $H_{i j}^{P}\left(=H_{j t}^{P}\right)$ and $H_{p j}^{\varphi}$ ($=-H_{Q j}^{P}$), $\quad(P, Q=n+1, \cdots, m)$, satisfying the equations (1.8), (1.9) and (1-10).

If we take another set of normal \bar{B}_{r}^{α} defined by

$$
B_{P}^{\alpha}=\sum_{Q} l_{p}^{q} \bar{B}_{q}^{\alpha},
$$

where the matrix $\left\|l_{P}^{\varphi}\right\|$ of coefficients is to be orthogonal, it follows easily that the functions $H_{i j}^{P}$ and $H_{p j}^{\prime \prime}$ subject to the transformations

$$
\begin{gather*}
\bar{H}_{i j}^{R}=\sum_{\ell} l_{p}^{Q} H_{i j}^{\ell} \\
\overline{H_{P ; j}^{\ell}}=\sum_{R, s} l_{P}^{R} l_{l}^{S} H_{R j}^{s}+\sum_{R} l_{p, j}^{R} l_{l}^{R}
\end{gather*}
$$

Now, any Riemann n-space can be imbedded locally and isometrically in a flat space of dimension $n(n+1) / 2$. This result was enunciated by L. Schlaefli [1] and was first proved by M. Janet [7]. E. Cartan also proved this fact by means of theorems on Pfaff's form [8]. If V_{n} has some particular properties, V_{n} may be imbedded in a flat space of a lower dimension. When the lowest dimension is equal to $n+p$, we say that V_{n} is of class p. This term " class" originated with G. Ricci [2]. The imbedding problem, so called, is the intrinsic characterization of this particular properties.

The imbedding of V_{n} of non-vanishing constant curvature is satisfactorily studied. Such a space V_{n} is a fundamental hyperquadrics in flat $(n+1)$-space [16, p. 203] and hence V_{n} is of class one. But it is impossible that V_{n} of negative constant curvature is really imbedded im Euclidean ($n+1$)-space [3, p. 485]*.

[^0]On the other hand, only partial results have been obtained as to imbedding of Einstein spaces, but we have many interesting theories on this. If V_{n} is an Einstein n-space of vanishing scalar curvature, it is impossible that V_{n} is imbedded in a flat $(n+1)$ space. This theorem was proved by E. Kasner for dimension four [4] and his method is easily generalized to the case of higher dimension [16, p. 199]. But, for the proof of this theorem, we use a supposition that the elementary divisors of the matrix $\| \rho H_{i j}-$ $g_{i j} \|$ are all simple, and hence, if the supposition on the matrix is omitted, we have the problem to find the condition that an Einstein V_{n} of vanishing scalar curvature be imbedded in a flat ($n+1$) -space. On this problem we will note in the end of the fifth section. Besides, C. B. Allendoerfer gave the condition that an Einstein space of non-vanishing scalar curvature be of class one [10].

For the case of V_{n} being conformally flat, all of circumstances of imbedding have become clear. Such a space is a fundamental hypercone in a flat $(n+2)$-space, and hence V_{n} is of class at most two, which was proved by H. W. Brinkmann [5]. In addition we have already the condition that V_{n} be of class one [19].

Now, in 1936, we were given by T. Y. Thomas the general theory on V_{n} being of class one [9]. In his paper, the problem on space of class one was perfectiy discussed, except when V_{n} is of type two. His paper [9] threw a fresh light on the problem, and the algebraic characterization in a true sense has arised from him. Allendoerfer's paper concerning with an Einstein space of class one [10] as well as the paper on a conformally flat space of class one by the present author [19] are residual products of [9]. But Thomas omitted the case of type two, because the general theory on V_{n} of type greater than two can not be applied to the case of type two. The latter case was studied afterwards by the present author [21], though satisfactory result did not be obtained. Further, A. Kawaguchi got the simple expression of the condition (8.4) in [9].

The work of Thomas was immediately followed by C. B. Allendoerfer. He got the generalized Frenet equations for V_{n} in a flat space and discussed the imbedding of an open simply connected domain of V_{n} [11]. Further, in his paper [13], the notion of type number defined by Thomas in the case of class one was generalized to the case of class greater than one and, making use
of this notion, many beautiful theorems were obtained as to the rigidity of sub-space and the independences of the Gauss, Codazzi and Ricci equations. But the type number of these general cases was not defined by the intrinsic property and also he gave not a condition for the Gauss equation to have a solution.

The present author gave the condition for V_{n} being of class two [18]. It is an natural development of theories by Thomas and Allendoerfer. The type number, which is not the same one as defined by Allendoerfer, is determined by the intrinsic property. In this case also, V_{n} of type one and two are exceptional cases. As an example of this special case, he offered such a simple space [20].

§ 2. An necessary condition for V_{n} of class p

We shall limit our investigations in this section to the case when an enveloping space V_{n+p}, is Euclidean. 'This restriction will abbreviate following equations. However, by a little modification, most of the results are perhaps satisfied in the case of V_{n+p} being flat but not Euclidean.

The Gauss equation (1.8) is written in the form

$$
R_{t: i k_{1} k_{2}}=\delta_{i l}^{p} H_{i a}^{p} H_{j b}^{j} \delta_{k_{1}}^{v}{ }_{k_{2}}^{u},
$$

where δ_{Q}^{p} are the Kronecker's deltas and we use hereafter the summation convention for indices $P, Q=1, \cdots, p$, and further $i_{k_{1} k_{2}}^{a b}$ are their generalizations. In order to generalize (2•1) we put in the first time

$$
{\underset{(i n)}{i_{1} i_{2} \mid j_{1} j_{2}!k_{1} \cdots k_{4}}}=\delta_{Q_{1} Q_{2}}^{P P_{1} P_{2}} H_{i_{1} a_{1}}^{P_{1}} H_{i_{2} a_{2}}^{P_{2}} H_{j_{1} b_{1}}^{Q_{1}} H_{j_{2} b_{2}}^{Q_{2}} \partial_{k_{1} \cdots \cdots k_{4}}^{a_{1} a_{2} b_{1} b_{2}} .
$$

This tensor $\underset{(N)}{R}$ is expressible in terms of the components of the curvature tensor. In fact, the right-hand number of $(2 \cdot 2)$ is written as foliows :

$$
\begin{aligned}
& \frac{1}{2^{2}}\left(\delta_{Q_{1}}^{P_{1}} H_{i_{1} a_{1}}^{P_{1}} H_{j_{1} b_{1}}^{Q_{1}} \delta_{c_{1} d_{1}}^{a_{1} b_{1}} \cdot \delta_{Q_{2}}^{P_{2}} H_{i_{2} a_{2}}^{P_{2}} H_{j_{2} b_{2}}^{Q_{2}} o_{c_{2} d_{2}}^{a_{2} b_{0}}\right. \\
& \quad-\delta_{Q_{2}}^{P_{1}} H_{i_{1} a_{1}}^{P_{1}} H_{j_{2} b_{2}}^{Q_{2}} \delta_{c_{1} d_{2}}^{a_{1} b_{2}} \cdot \delta_{Q_{1}}^{P_{2}} H_{i_{2} a_{2}}^{P_{2}} H_{j_{1} b_{1}}^{Q_{1}} \delta_{c_{2}}^{a_{2} d_{1} b_{1}} \delta_{k_{1}}^{c_{1} c_{2} d_{1} d_{1} d_{2}} .
\end{aligned}
$$

Substituting from (2•1) we obtain

$$
\underset{\left(z_{2}\right) i_{1} i_{2} \mid j_{1} j_{2}!k_{1} \cdots k_{4}}{ }
$$

$$
\begin{aligned}
& =\frac{1}{2^{2} \varepsilon_{(2)}^{u v} .} R_{i_{1} j_{u} a_{1} b_{u}} R_{i_{9} j_{n} a_{2} b_{v}} i_{k_{1} \cdots k_{4}}^{a_{1} a_{2} b_{1} b_{2}} \\
& =\frac{1}{2^{2}}\left(R_{i_{1} j_{1} a_{1} b_{1}} R_{i_{2} j_{2} a_{2} b_{2}}-R_{i_{1} j_{2} a_{1} b_{2}} R_{i_{2} j_{1} a_{2} b_{1}}\right) \delta_{k_{1} \cdots k_{4}}^{a_{1} a_{2} b_{1} b_{2}} .
\end{aligned}
$$

Further, if we put

$$
\begin{align*}
& R_{(3)} i_{1} i_{2} i_{3} \mid j_{1} j_{2} j_{3} k_{1} \cdots k_{6} \\
& \quad=o_{Q_{1} Q_{2}}^{P_{1} P_{2} P_{3}} H_{i_{1} a_{1}}^{P_{1}} H_{i_{2} a_{2}}^{P_{2}} H_{i_{3} a_{3}}^{P_{3}} H_{j_{1} b_{1}}^{Q_{1}} H_{j_{2} b_{2}}^{Q_{2}} H_{j_{3} b_{3}}^{Q_{3}} o_{k_{1} \cdots \cdots \cdots a_{1}}^{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}},
\end{align*}
$$

and proceed in similar manner as above shown, we establish then

$$
\begin{align*}
& \boldsymbol{R}_{(j)} i_{i} i_{2} i_{3}\left|j_{1} j_{2} j_{3}\right| k_{1} \cdots k_{6}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{2 \cdot 4!}\left(R_{i_{1} j_{1} a_{1} b_{1}} R_{(2)} R_{i_{0} i_{3} \mid j_{2} j_{3} a_{2} a_{2} a_{3} b_{2} b_{3}}+R_{i_{1} j_{2} a_{1} b_{2} b_{((2))}} R_{i_{2} i_{3}\left|j_{3} j_{1}\right| a_{2} a_{3} b_{3} b_{1}}\right. \\
& \left.+R_{i_{1} j_{3} a_{1} b_{3}} R_{(: 2)} R_{i_{2} i_{3} \mid j_{1}} j_{2} \mid a_{2} a_{3} b_{1} b_{2}\right) \times i_{k_{1} \cdots \cdots \cdots k_{i j}}^{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}} \\
& =\frac{1}{2^{3}}\left[R_{i_{1} j_{1} a_{1} b_{1}}\left(R_{i_{\underline{9}} j_{2} a_{2} b_{2}} R_{i_{3} j_{3} a_{3} b_{3}}-R_{i_{9} j_{3} a_{2} b_{3}} R_{i_{3} j_{2} a_{3} b_{\underline{2}}}\right)\right. \\
& +R_{i_{1} j_{2} a_{1} b_{2}}\left(R_{i_{2} j_{3} a_{2} b_{3}} R_{i_{3} j_{1} a_{3} b_{1}}-R_{i_{i_{2}} j_{1} a_{2} b_{1}} R_{i_{3} j_{3} a_{3} b_{3}}\right) \\
& \left.+R_{i_{1} j_{3} a_{1} b_{3}}\left(R_{i_{9} j_{1} a_{2} b_{1}} R_{i_{3} j_{2} a_{3} b_{2}}-R_{i_{2} j_{2} j_{2} a_{2} b_{2}} R_{i_{3} j_{1} a_{3} b_{1}}\right)\right] \\
& \times \delta_{k_{1} \cdots}^{a_{1} a_{2} a_{3} b_{1} b_{0} b_{0} b_{3}} .
\end{aligned}
$$

If we generalize above processes and put

$$
\begin{align*}
& R_{(r, r}^{i_{1} \cdots i_{r}\left|j_{1} \cdots j_{r}\right| k_{1} \cdots k_{2}} \\
& \quad=i_{Q_{1} \cdots Q_{r}}^{P_{1} \cdots P_{r}} H_{i_{1} a_{1}}^{P_{1}} \cdots H_{i_{r} a_{r}}^{P_{r}} H_{j_{1} b_{1}}^{Q_{1}} \cdots H_{j_{r} b_{r}}^{Q_{r}} \delta_{k_{1}}^{Q_{1} \cdots a_{r}, b_{1} \cdots b_{r}},
\end{align*}
$$

then it follows that $\underset{(r)}{R}$ is written in the intrinsic form

$$
\begin{align*}
& \underset{(r)}{R_{1} \cdots i_{r} \mid j_{1} \cdots j_{r}!k_{1} \cdots k_{2},}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{2 \cdot(2 r-2)!} \sum_{s=1}^{r}(-1)^{s-1} R_{i_{1} j_{s} a_{1} b_{s}} \\
& \times \underset{(r-1) i_{2} \cdots i_{r}\left|j_{1} \cdots j_{s} \cdots j_{r}\right| a_{2} \cdots a_{r} b_{1} \cdots \hat{b}_{s} \cdots b_{r}}{R} \times o_{k_{1} \cdots a_{n} \cdots k_{2},}^{a_{1} \cdots b_{r},} \\
& =\frac{1}{4!\cdot(2 r-4)!} \sum_{s, t(s \in t)}^{1 \cdots \cdot r}(-1)^{s+t-1} R_{(2)} i_{1} i_{2}\left|j, j_{t}\right| a_{1} a_{2} b_{s} b_{t}
\end{aligned}
$$

In these calculations we made use of the following identities satisfied by generalized Kronecker's deltas*.

$$
\begin{align*}
& \delta_{b_{1} \cdots a_{t} \cdots b_{s}}^{a_{1} \cdots a_{a_{1}} \cdots a_{t}}{ }_{a_{1} \cdots c_{t}}^{c_{1} \cdots}=t!\cdot \delta_{b_{1} \ldots c_{1}, \ldots \ldots b_{s}}^{c_{1} \cdots c_{t+1} \cdots a_{s}},
\end{align*}
$$

Observe that components of $R((,) \leqq 2 r \leqq n)$ are expressed intrinsically as homogeneous polynomials of r-th degree in terms of components of the curvature tensor.

We can write the Bianchi's identity as follows:

$$
R_{i j k_{1} k_{2}, k_{3}} \partial_{l_{1}}^{l_{1} k_{2} l_{2} l_{3}}=0,
$$

and, making use of mathematical induction and the second expression of $R((r)$ in (2.7), we establish

If V_{n} is of class p, the indices P 's and Q 's in (2.6) take the different p values, so that we have evidently from (2•6) and the definition of the generalized Kronecker's delta

$$
{\underset{(q)}{ } i_{1} \cdots i_{q} \mid j_{1} \cdots j_{q}!k_{1} \cdots k_{2}}=0 \quad(2 p<2 q \leqq n)
$$

Therefore
Theorem 1. It is necessary for $V_{"}$ of class $p(2 p<n)$ that the tensor R vanishes.

We remark that, from $(2 \cdot 7), \underset{(q)}{R}=0(q>p+1)$, if $R=0$.
Though this theorem seems not to play a röle in the case of class one [9] and two [18], we see in the fourth and seventh sections

[^1]sections that this is fundamental for the imbedding problem of V_{n} in an $(n+p)$-space of constant curvature.

§ 3. Allendoerfer's type numbers

If V_{n} is of class p, we put

$$
\begin{align*}
& H_{i_{1} \cdots i_{p} \mid a_{1} \cdots a_{\nu}}=\underset{(\nu)}{ } P_{1} \cdots P_{p} H_{i_{1} a_{1}}^{P_{1}} \cdots H_{i_{\nu} a_{p}}^{P_{p}}
\end{align*}
$$

and it follows immediately that

$$
\begin{aligned}
& i_{Q_{1} \cdots Q_{p}}^{P_{1} \cdots P_{p}} H_{i_{1} a_{1}}^{P_{1}} \cdots H_{i p a_{p}}^{P_{p}} H_{j_{1} b_{1}}^{Q_{1}} \cdots H_{j p} Q_{p} \\
& Q_{p}
\end{aligned} H_{i_{1} \cdots i_{p} \mid a_{1} \cdots a_{\nu}} H_{j_{1} \cdots j_{p} \mid b_{1} \cdots b_{p}} .
$$

Combining this and (2•6) we get

$$
\begin{align*}
& R_{(p)^{\prime} \cdots i_{p}\left|j_{1} \cdots j_{p}\right| k_{1} \cdots k_{p}} \\
& \quad=H_{i_{1} \cdots i_{p}, a_{1} \cdots a_{p}} H_{j_{1} \cdots j_{p} \mid b_{1} \cdots b_{p}} \partial_{k_{1} \cdots \cdots \cdots k_{2}}^{a_{1} \cdots a_{p} b_{1} \cdots b_{p}} .
\end{align*}
$$

Further we put

$$
\begin{align*}
& \underset{(p, r)}{\boldsymbol{C}_{1} i_{1} \cdots i_{p r}\left|j_{1} \cdots j_{p, n}\right| \boldsymbol{k}_{1} \cdots \boldsymbol{k}_{2 p},} \\
& =H_{i_{1} \cdots i_{p}!a_{1} \cdots a_{y}} H_{j_{1} \cdots j_{p}!b_{1} \cdots b_{p}} \cdots \\
& \times H_{i_{p(r-1)+1} \cdots i_{p, n} \mid a_{p(r-1)+1} \cdots a_{1, r}} H_{j_{p(r-1)+1} \cdots j_{p r}!b_{p(r-1)+1} \cdots b_{p r}} \\
& \times \delta_{k_{1} \cdots k_{2 p,}}^{a_{1} \cdots b_{p, r}} .
\end{align*}
$$

Making use of (2.8) and (3.2) we obtain

$$
\begin{align*}
& \underset{(p, r)}{C_{i} \cdots i_{2},!j_{1} \cdots j_{p r}!k_{1} \cdots k_{2 p}, r} \\
& =\frac{1}{\{(2 p)!\}^{r}} R_{(\nu)^{\prime} \cdots i_{p} \mid j_{1} \cdots j_{p} a_{1} \cdots a_{p}, b_{1} \cdots b_{p}, \cdots} \\
& \times R_{(p)} i_{p(r-1)+1} \cdots i_{p r}: i_{p(r-1)+1} \cdots j_{p,}: a_{p,(r-1)+1} \cdots a_{p r} b_{p(r-1)+1} \cdots b_{p r r} \\
& \times \delta_{k_{1} \cdots k_{2 p},}^{a_{1} \cdots b_{\eta, r}},
\end{align*}
$$

and further we have

$$
\begin{align*}
& \underset{(p, r)}{C_{i}} i_{1 \cdots i} i_{p, r} \mid j_{1} \cdots j_{p, r}, k_{1} \cdots k_{2 p}, \\
& =\frac{1}{(2 p)!\cdot\{2 p(r-1)\}!(p, 1)} C_{1} \cdots i_{p}\left|j_{1} \cdots j_{p}\right| l_{1} \cdots l_{2}, \\
& \underset{(p, r-1)}{\times} \boldsymbol{i}_{i_{p+1} \cdots i_{p, r}\left|j_{p+1} \cdots j_{p r}\right| l_{2 p+1} \cdots l_{2 p r}} o_{k_{1} \cdots k_{2 p},}^{l_{1} \cdots l_{2, r r}} .
\end{align*}
$$

We observe that components of $\underset{(p, r)}{C}$ are expressible as the homogeneous polynomials of $p r$-th degree in terms of components of the curvature tensor.
C. B. Allendoerfer defined type number of V_{n} imbedded in a flat space [13]. The quantities $C_{a_{1} \cdots a_{\eta} \mid \beta_{1} \cdots \beta_{7}}$ defined by (2.3) of [13] are equal to $H_{i_{1} \cdots i_{\eta}!a_{1} \cdots a_{9}}$ of (3.1) in the present paper, so that C of $(3 \cdot 3)$ is equivalent to C_{2}, in $(2 \cdot 4)$ of $[1 \cdot 3]$. We observe from (3.5) that, if $\underset{(p, r+1)}{C=}$, then $\underset{(p, s)}{C=0}(s>r+1)$. Now, Allendoerfer's type numbers are defined as follows. If $C_{r} \neq 0$ and $C_{r+1}=0$ in a point P of V_{n}, we say that V_{n} is of type r at P. Therefore we can define (even) type number by means of the intrinsic properties of V_{n} as follows.

Definition. Let V_{n} be a Riemann n-space. If $\underset{(p, r)}{C \neq 0}$ and $\underset{(p, r+1)}{C=}=0$ (2pr $\leqq n$) at a point P, we say that V_{n} is of type $2 r$ at P, where $\underset{(p, r)}{C}$ are defined by (3.4).

If V_{n} is of type $2 r$, there exists such a coordinate system that $C_{(p, r)} \cdots 13 \cdots 3 \cdots 2 r-1 \cdots 2 r-1 \mid 2 \cdots 24 \cdots 4 \cdots 2 r \cdots 2 r: k_{1} \cdots k_{2 m} \neq 0$. This quantity is a determinant of $2 p r$-th order and hence we construct the normalized cofactors $H_{P}^{i n}$ of $H_{i a}^{\prime}$, satisfying the equations

$$
\begin{aligned}
& H_{i a}^{p} H_{Q}^{j a}=\grave{\delta}_{i}^{j} \grave{o}_{Q}^{P} \\
& H_{i a}^{\prime p} H_{l}^{i b}=\delta_{a}^{b}
\end{aligned}\left(\begin{array}{l}
a, b=k_{1} \cdots k_{2, p} \\
i, j=1, \cdots, 2 r \\
P, Q=1, \cdots, p
\end{array}\right)
$$

Making use of these quantities, Allendoerfer proved remarkable theorems (see [13] in details). If V_{n} is of type $2 r, V_{n}$ is of type $2 r$ or $2 r+1$ in the sense of Allendoerfer, so that those theorems are stated as follows.

ThEOREM 2. (1) If V_{n} is of type $\geqq 4$ at a point P, the solution $H_{i j}^{p}$ of the Gauss equation $(1 \cdot 8)$ at P, if exists, is uniquely determined to within orthogonal transformations (1•11).
(2) If V_{n} is of type $\geqq 4$ in an neighborhood and there exist functions $H_{i j}^{p}$ satisfying the Gauss equation (1.8), we have the functions $H_{p_{j}}^{\varphi}$ satisfying the Codazzi and Ricci equations (1-9) and (1-10).
(3) If V_{n} is of type $\geqq 2$ at P and there exist functions $H_{i j}^{P}$ satisfying the Gauss equation (1-8), the solution $H_{P j}^{Q}$ of the Codazzi equation (1.9), if exists, is unique.

§4. Imbedding a Riemann n-space in an $(n+1)$ space of constant curvature

The imbedding problem of Riemann space of dimension n in a flat $(n+p)$-space may be generalized to the case when the enveloping space V_{n+1} is not necessarily flat. But those are very hard to study in general, because quantities B_{i}^{α} arise in the Gauss equation ($1 \cdot 5$). J. E. Campbell seems to the first to have tried this kind of problem. He proved the interesting theorem that any Riemann n-space can be imbedded in an Einstein $(n+1)$-space of vanishing scalar curvature [$6, \mathrm{pp} .212-219$], the method being very complicated. Also, it is worthy of our notice that K. Yano and Y. Muto considered the imbedding in conformally flat space [15].

In the following we concern with the case when the enveloping space V_{n+p} is of constant curvature $\neq 0$. It is to be accentuated in this place that we do not think of enveloping space as previously given, but it is our purpose to find an enveloping space of the given space, and hence the constant Riemann curvature K of enveloping space is to be found. The necessary and sufficient condition that a Riemann n-space be imbedded in an $(n+p)$-space S_{n+p} of constant curvature K, whose fundamental metric form is positive definite, is that there exist two systems of functions $H_{i j}^{P}\left(=H_{j i}^{p}\right)$ and $H_{p j}^{\nu}\left(=-H_{q j}^{p}\right)$ satisfying the Gauss, Codazzi and Ricci equations as follows [16, p. 211]:

$$
\begin{align*}
& R_{i j k l}=K\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)+\sum_{p}\left(H_{i k}^{p} H_{j l}^{p}-H_{i l}^{p} H_{j k}^{p}\right), \\
& H_{i j, k}^{P}-H_{i k, j}^{P}=\sum_{Q}\left(H_{i j}^{q} H_{Q k}^{P}-H_{i k}^{\rho} H_{q j}^{P}\right), \\
& H_{p, k, k}^{q}-H_{l \cdot k, j}^{Q}=g^{i l}\left(H_{i j}^{P} H_{i k}^{Q}-H_{i k}^{P} H_{l j}^{q}\right) \\
& -\sum_{R}\left(H_{\rho^{\prime} j}^{R} H_{R k}^{O}-H_{r \cdot k}^{R} H_{R i}^{\prime}\right) .
\end{align*}
$$

On putting

$$
S_{i j k l}=R_{i j k l}-K\left(g_{i k} g_{i l}-g_{i l} g_{i k}\right),
$$

we have from (4•1)

$$
S_{i j k l}=\Sigma\left(H_{i k}^{p} H_{j l}^{p}-H_{i l}^{p} H_{j k}^{p}\right)
$$

It is clear that $S_{i j k l}$ possesses similar properties as the curvature tensor for interchange of indices. Hence the process, by means of which from ($2 \cdot 1$) we obtained Theorem 1 , is applied equally well when $R_{i j k l}$ is replaced by $S_{i j k l}$. Thus from the theorem we have

$$
\underset{(p+1)}{S_{1} i_{1} \cdots i_{\mu+1} \mid j_{1} \cdots j_{\eta+1}: k_{1} \cdots k_{2 \eta+2}}=0 \quad(2 p+2 \leqq n),
$$

for V_{n} being imbedded in an $(n+p)$-space of constant cuavature.
In this section we treat the simplest case of $p=1$. The case is typical and we have interesting special type. But the general theory of the case $n \geqq 4$ can not be applicable to the case of $n=$ 3 , because of $2 p+2 \leqq n$ in (4•6), and hence we consider first the former.

I. The case of dimension $n \geqq 4$

In this case we have from (4.6) $S=0$, so that $(2 \cdot 3)$ gives

$$
\left(S_{i_{1} j_{1} a_{1} b_{1}} S_{i_{2} j_{2} a_{2} b_{2}}-S_{i_{1} j_{2} a_{1} b_{2}} S_{i_{2} j_{1} a_{2} b_{1}}\right) d_{k_{1} \cdots k_{2}}^{a_{1} a_{2} b_{1} b_{2}}=0
$$

Substituting from (4.4) we have a system of equations of second degree in terms of K. But it is easily verified that coefficients of $K^{\text {a }}$ in these equations are identically zero and resulting equations become then
where we put

$$
\begin{align*}
& A_{\left(i_{2}\right)} i_{i_{1} 1_{1} \mid j_{1} j_{2} / k_{1} \cdots k_{4}}=\left(R_{i_{1} j_{1} a_{1} b_{1}} g_{i_{2} a_{2}} g_{j_{2} b_{2}}-R_{i_{1} j_{2} a_{1} b_{2} b_{2}} g_{i_{2} a_{2}} g_{j_{1} b_{1}}\right. \\
& \left.\quad+R_{i_{2} j_{2} a_{2} b_{2} b_{2}} g_{i_{1} a_{1}} g_{j_{1} b_{1}}-R_{i_{2} j_{1} a_{2} b_{1}} g_{i_{1} a_{1}} g_{j_{2} b_{2}}\right) \dot{v}_{k_{1} \cdots k_{2} a_{4} b_{2}}
\end{align*}
$$

which satisfies the identities

$$
\underset{(2)}{A_{i_{1} i_{1} \mid j_{1} j_{2}!k_{1} \cdots k_{4}, k_{5}} \delta_{l_{1} \cdots l_{5}}^{k_{1} \cdots k_{5}}=0, ~}
$$

as easily shown. Therefore if V_{n} can be imbedded in S_{n+1} of constant curvature $K \neq 0$, this K must satisfy (4.8). Elimination of K from (4.8) gives

$$
\begin{align*}
& \left|\begin{array}{ll}
A_{(2)} a_{1} a_{2}\left|b_{1} b_{2}\right| c_{1} \cdots c_{4} & R_{(\because)}^{a_{1} a_{2}\left|b_{1} b_{2}\right| c_{1} \cdots c_{4}} \\
{\underset{(2)}{ } i_{1} i_{2}\left|j_{1} j_{2}\right| k_{1} \cdots k_{4}}^{R_{i, i_{1}!}\left|j_{1} j_{2}\right| k_{1} \cdots k_{4}}
\end{array}\right|=0 . \\
& \left(a, b, c_{1}, i, j, k=1, \cdots, n\right)
\end{align*}
$$

If we suppose that A, the coefficients of K in (4.8), is zero tensor, then we obtain, contracting (4.9) by $g^{i_{2} k_{3}} g^{j_{2} k_{4}}$,

$$
\begin{array}{r}
C_{i_{1} j_{1} k_{1} k_{2}}=R_{i_{1} j_{1} k_{1} k_{2}}-\frac{1}{n-2}\left(g_{i_{1} k_{1}} R_{j_{1} k_{2}}-g_{i_{1} k_{2}} R_{j_{1} k_{1}}+R_{i_{1} k_{1}} g_{j_{1} k_{2}}\right. \\
\left.\quad-R_{i_{1} k_{2}} g_{j_{1} k_{1}}\right)+\frac{R}{(n-1)(n-2)}\left(g_{i_{1} k_{1}} g_{j_{1} k_{2}}-g_{i_{1} k_{2}} g_{j_{1} k_{1}}\right)=0 .
\end{array}
$$

This implies that the conformal curvature tensor of V_{n} vanishes and hence, if $V_{n}(n \geq 4)$ does not be conformally flat, there exists at least one components of A not to vanish. Conversely we can easily show that, if $C_{i j k l}=0, A_{(2)}^{(2)}$ vanishes. Hereafter we suppose that $V_{n}(n \geqq 4)$ is not conformally flat. Then the equation (4.8) is thought of as one, from which the constant curvature of enveloping space S_{n+1} and hence S_{n+1} itself is to be determined. The necessary and sufficient condition that (4.8) has a common solution K is clearly ($4 \cdot 11$) and then K is uniquely determined.

It is easily seen that K vanishes, if and only if R is a zero tensor, so that we have the

Theorem 3. Let $V_{n}(n \geqq 4)$ be a Riemann n-space not to be conformally flat. If there exists an $(n+1)$-space S_{n+1} of constant curvature K, in which V_{n} is imbedded, then K is equal to zero, if and only if the tensor R of V_{n} vanishes.

The solution K of $(4 \cdot 8)$, under the condition $(4 \cdot 11)$, will not necessarily be constant, and hence we must find further condition that as thus determined K be constant. Differentiating (4.8) covariantly with respect to x^{l}, we get in virture of $K_{, l}=0$

$$
\underset{(2)}{A_{i_{1}, i_{2}\left|j_{1} j_{2}\right| k_{1} \cdots k_{4}, l} \cdot K-\underset{(2)}{2 R_{i_{1}}\left|j_{2}\right| j_{2} \mid k_{1} \cdots k_{4}, l}{ }^{2}=0 .}
$$

Equations (4.8) and (4.12) must be consistent and the condition arising from this is clearly given by

$$
\begin{aligned}
& (a, b, c, i, j, k, l=1, \cdots, n)
\end{aligned}
$$

Consequently the constant curvature K of enveloping space is determined from (4.8) and the necessary and sufficient condition for possibility of determination is the equations (4•11) and (4.13), Therefore

ThEOREM 4. Let V_{n} be a Riemann n-space not to be conformally flat. If there exists an $(n+1)$-space S_{n+1} of constant curvature enveloping V_{n}, the constant curvature K is given by the equation (4.8) under the condition (4.11) and (4.13).

It is possible that the solution K of (4.8), if exists, is unconditionally constant, similar to the case of Theorem given by F . Schur [16, p. 83]. Differentiating (4.8) and making use of (2.9) and $(4 \cdot 10)$ we have

$$
\underset{(\because)^{\prime}, i_{2}\left|j_{1} j_{2}\right| k_{1} \cdots k_{4}}{ } \cdot K_{k_{5}} \partial_{l_{1} \cdots l_{5}}^{k_{1} \cdots k_{5}}=0 .
$$

But the author has no hope to deduce from above equation $K_{, j}=$ 0 , and so the condition ($4 \cdot 13$) is unavoidable.

Now we define $S_{i j k l}$ by (4•4), where the intrinsic expression of K as above found is substituted and then our problem reduce to finding the condition that there exists $H_{i j}$ satisfying the following equation:

$$
\begin{gather*}
S_{i j k l}=H_{i k} H_{j l}-H_{i l} H_{j k} \\
H_{i j, k}-H_{i k, j}=0
\end{gather*}
$$

We remark that (4.14) is formally same as the Gauss equation in the case of space being of class one and (4.15) is the Codazzi equation ; and hence, from now on, the similar process in [9] can be applicable to $(4 \cdot 14)$ and $(4 \cdot 15)$. Namely, in the first time, we define the type number τ of V_{n}. If the matrix

$$
\left|\begin{array}{cccc}
S_{a b c 1} & S_{a b c 2} & \cdots & S_{a b c n} \\
\cdots & & & \cdots \\
S_{i j k 1} & S_{i j k 2} & \cdots & S_{i j k n} \\
\cdots & & \cdots \\
S_{p q r_{1}} & S_{p q \cdot 2} & \cdots & S_{p q r n}
\end{array}\right|
$$

is of rank one or zero, we say that V_{n} is of type one. If the rank is $\tau(\geqq 2)$, we say that V_{n} is of type i. Then the rank of matrix $\left\|H_{i j}\right\|$ is equal to the type number of V_{n}. If $\tau \geq 3$, the solution $H_{i j}$ of (4.14) is uniquely determined to within algebraic sign. If $\tau \geqq 4$, the Codazzi equation (4•15) is a consequence of (4•14). Further, the condition that $(4 \cdot 14)$ has a real solution is that

$$
\left|\begin{array}{ccc}
S_{b c j k} & S_{b c k i} & S_{b c i i} \\
S_{c a j k} & S_{c a k i} & S_{c a i j} \\
S_{a b j k} & S_{a b k i} & S_{a b i j}
\end{array}\right| \equiv S_{a b c i j k} \geq 0 .
$$

Finally, if V_{n} is of type more than two, there exists $H_{i j}$ satisfying (4•14), if and only if $S_{a b c i j k} \geq 0, \sum S_{a b c i j k}>0$ and the system of equations $R_{n}(S)=0$ be satisfied, where $R_{n}(S)$ is the resultant system of equation (4-14) and

$$
H_{a b} S_{i j c l}+H_{a l} S_{i i b k}+H_{t k} S_{j a b l}+H_{j k} S_{i a l b}=0 .
$$

However, if V_{n} is of type three, the further condition $H_{n}(S)=0$ must be subjoined, which is obtained by substituting $H_{i, j}$, as above determined, in the Codazzi equation. Consequently we establish the

Theorem 5. Let $V_{n}(n \geqq 4)$ be a Riemann n-space not to be conformally flat. If there exists an $(n+1)$-space S_{n+1} of constant curvature, the curvature is determined by the equations (4.8) under the condition (4.11) and (4•13). If V_{n} is of type more than three, farther condition that there exists an enveloping space S_{n+1}, is that $S_{a b u c i j k} \geqq 0, \sum S_{a b c i j k}>0$ and $R_{n}(S)=0$. If V_{n} is of type three, the condition $H_{n}(S)=0$ is subjoined.

On the other hand, if $V_{"}$ is of type two, the problem to find $H_{i j}$ satisfying not only (4-14) but also (4-15) does not yet be solved, so far as the author knows. However, it is shown as in [21] that in this case $S_{n i j k}$ satisfies the following equation

$$
\left\lvert\, \begin{array}{ll}
S_{a b i j} & S_{a b k l}=0 \quad(a, b, c, d, i, j, k, l=1, \cdots, n) \\
S_{c c i i j} & S_{c l l k l}
\end{array}\right.
$$

and these are necessary and sufficient condition that (4-14) has a solution, which is not be unique. Substituting (4.4), the above equation is written in the form

$$
\begin{align*}
& \left(g_{a b i j} g_{c k k l}-g_{a b k i l} g_{c l u t g}\right) K^{2}-\left(R_{a b i j} g_{c l k l}-R_{a b k l} g_{c a k j}\right. \\
& \left.+g_{a i k i} R_{c i l k l}-g_{a b k l} R_{c t i j i}\right) K+\left(R_{a n i j} R_{c l d k l}\right. \\
& \left.-R_{a n k l} R_{c t i t j}\right)=0,
\end{align*}
$$

where we put

$$
g_{a b i j}=g_{a i} g_{b j}-g_{a j} g_{b i} .
$$

Hence there is not any possibility for V_{n} being of type two, if ($4 \cdot 16$) is not consistent to (4.8).

In any case, the problem reduce finally to the consideration of V_{n} to be of class one.

II. The case of dimension three

If the dimension of the space is three, we are in special
circumstances ; there exists always $H_{i j}$ satisfying the Gauss equation

$$
S_{i j k l}=H_{i k} H_{j l}-H_{i l} H_{j k}
$$

From the theorems of determinants we have

$$
\left|\begin{array}{lll}
H_{a p} & H_{a q} & H_{a r} \\
H_{b p} & H_{b q} & H_{b r} \\
H_{c p} & H_{c q} & H_{c r}
\end{array}{ }^{2}=\left|\begin{array}{lll}
S_{b c q r} & S_{b c r p} & S_{b c p q} \\
S_{c a q r} & S_{c a r p} & S_{c a p \eta} \\
S_{a b q r} & S_{a b r p} & S_{a b p q}
\end{array}\right| \equiv \sigma\right.
$$

where $(a, b, c),(p, q, r)$ are even permutations of (1,2,3), and then we get

$$
H_{u p}=\sigma^{-1 / 2},\left|\begin{array}{ll}
S_{a u r p} & S_{c a p q} \\
S_{a b p p} & S_{a b p}
\end{array}\right|,
$$

as a unique solution of the Gauss equation. Thus the Riemann curvature K of the enveloping space S_{4} is not determined only by the Gauss equation, and hence we must consider the Codazzi equation, by which K will be determined.

In the first time, we substitute (4-17) from (4.4) and obtain

$$
H_{a p}=\frac{X_{n p} K^{2}+Y_{a p} K+Z_{a p}}{\sqrt{A K^{3}+B K^{2}+C K+D}}
$$

where we put for brevity,$^{(a p}=R_{b c o r r}$ and

$$
\begin{align*}
& X_{a p}=g \cdot g_{a p} \quad\left(g=\left|g_{i j}\right|\right), \\
& Y_{a p}=-g \cdot R_{a p}, \quad Z_{a p}=r^{b \eta} \rho^{c r}-r^{b r} r^{b \tau}, \\
& A=-g^{2}, \quad B=\frac{1}{2} g^{2} \cdot R, \\
& C=-g R_{i j} f^{\prime i j}, \quad D=\left|\gamma^{i j}\right| .
\end{align*}
$$

Observe that $X_{a p}$ and A are covariant constants. From (4-18) the Codazzi equation (4.15) is written in the form

$$
L_{i j k} \cdot K^{4}+M_{i j k} \cdot K^{3}+N_{i j k} \cdot K^{2}+P_{i j k} \cdot K+Q_{i j k}=0
$$

where we made use of K being constant and put

$$
\begin{aligned}
L_{i j k} & =2 A Y_{i[j, k]}-X_{i[j} B_{. k]}, \\
M_{i j k} & =2 B Y_{i[j, k]}+2 A Z_{i[j, k]}-X_{i[j} C_{, k]}-Y_{i[j} B_{, k]}, \\
N_{i j k} & =2 C Y_{i[j, k]}+2 B Z_{i[j, k]}-X_{i[j} D_{, k]}-Y_{i[j} C_{, k]}-Z_{i[j} B_{, k]}, \\
P_{i, j k} & =2 D Y_{i[j, k]}+2 C Z_{i[j, k]}-Y_{i[j} D_{. k]}-Z_{i[j} C_{. k]}, \\
Q_{i j k} & =2 D Z_{i[j, k]}-Z_{i[j} D_{, k]} .
\end{aligned}
$$

Therefore, if V_{3} can be imbedded in a 4 -space of constant curvature, nine equations (4.20) must have a common real solution K, which is constant and does not satify

$$
A K^{3}+B K^{2}+C K+D=0
$$

Then the Riemann curvature K of enveloping space S_{4} is given by a solution as above mentioned and further the second fundamental tensor $H_{a p}$ of V_{3} is given uniquely by (4•18). As a result we have the

Theorem 6. A space V_{3} can be imbedded in a space S_{4} of constant curvature, if and only if (4.20) have a common real solution, which is constant and does not satisfy (4-21). Then the curvature K of S_{3} is given by the above solution and the second fundamental tensor $H_{a p}$ of V_{3} is given by (4.18).

If (4.20) has many solution K_{1}, K_{2}, \cdots, as above mentioned, every $K_{\mathrm{t}}, K_{2}, \cdots$, defines a enveloping space of constant curvature and thus there exist at most four spaces enveloping a given V_{3}, if exists.

As in general cases of $V_{n}(n>3)$ being conformally flat, for the case of conformally flat V_{3}, we have also special circumstances. For such a V_{3}, we have

$$
R_{i j, k}-R_{i j, k}-\frac{1}{4}\left(g_{i j} R_{, k}-g_{i k} R_{, j}\right)=0,
$$

and it is easily verified that $L_{i j k}$ is identically zero and converse. Thus (4.20) is of three degree in terms of K and there exist at most three spaces enveloping V_{3}.

§5. Imbedding an Einstein n-space in an ($n+1$)-space of constant curvature

We can evidently apply the general discussion in the last section to an Einstein n-space, which is not conformally flat. An Einstein space, which is conformally flat, is of constant curvature [16, p. 93] and hence such a space may be excepted from our discussion. However, following the Allendoerfer's treatment on an 'Einstein space of class one [10], we give the simpler discussion for such a space. The condition for this case is more briefly expressed and so we are interesting about it. On the other hand, A. Fialkow already investigated the similar problem [12]. But he
thought of as an enveloping space S_{n+1} being previously given and so his discussion is exactly similar to Allendoerfer's one, while our purpose is to find S_{n+1}, in which a given space V_{n} is imbedded.

In the general case of the last section, we paid attention to a necessary condition (2-10) ($q=2$) for V_{n} being of class one, and replaced the curvature tensor by $S_{h i j k}$ defined by (4-4). Also, in this case we are going to use the similar process. Allendoerfer deduce the equation

$$
\begin{align*}
& H_{l i} H_{j k}=D_{l i \mid j k} \\
\equiv & \frac{e R}{n(n-2)} g_{h i} g_{j k}+\frac{e n}{2 R(n-2)}\left(R_{a \cdot h j}^{b} R_{b \cdot i k}^{a}-2 R_{h \cdot i b}^{a} R_{j \cdot k a}^{b}\right),
\end{align*}
$$

from the Gauss equation and hence the matrix $\left\|D_{h_{i \mid j k} \|}\right\|$ being necessarily of rank one and semi-definite. Further, from (5.1) and the Gauss equation we must have the equation

$$
\begin{gather*}
\frac{(n-2) R}{n}\left\{R_{h i j k i}-\frac{R}{n(n-2)} g_{l i j j k}\right\}-R_{a \cdot k t}^{b} R_{b \cdot j k}^{a} \\
+R_{l \cdot j b b}^{a} R_{i \cdot k t}^{b}-R_{h \cdot k b}^{a} R_{i \cdot j a}^{b}=0,
\end{gather*}
$$

Thus the above matrix condition and (5.2) is the necessary and sufficient condition that an Einstein space V_{n} be of class one [10]. In order to obtain (5•1) and (5•2), it is not necessary but the fact that $R_{n i, i k}$ is written in the form ($1 \cdot 8$) $(P=1)$ and the Ricci tensor satisfies the characteristic equation $R_{i j}=(R / n) g_{i j}$ of Einstein space. In our case $S_{h i j k}$ is also written in the form (4.5) ($P=1$) and that we have

$$
S_{i j}=\frac{S}{n} g_{i j}\left(=g^{a b} S_{i a j b}\right), \quad S=R-n(n-1) K\left(=g^{a b} S_{a b}\right)
$$

by means of $(4 \cdot 4)$. Hence, from ($4 \cdot 5$) we have in like manner the equation

$$
\begin{gather*}
\frac{(n-2) S}{n}\left\{S_{h i j k}-\frac{S}{n(n-2)} g_{l i j k k}\right\}-S_{a \cdot h i}^{b} S_{l \cdot j k}^{a} \\
+S_{h \cdot j b}^{a} S_{l \cdot k a}^{b}-S_{l \cdot k b}^{a} S_{i \cdot j b}^{b}=0 .
\end{gather*}
$$

Substitution for $S_{h i t j k}$ and S the form (4.4) and $R-n(n-1) K$ respectively gives the following equation of first degree in terms of K :

$$
A_{h i j k} \cdot K-B_{k i j k}=0
$$

where we put

$$
\begin{align*}
A_{h i j k}= & (n-1)(n-2)\left\{R_{n i j k}-\frac{R}{n(n-1)} g_{l i j k k}\right\}, \\
B_{l i j 3 k}= & \frac{(n-2) R}{n}\left\{R_{l i j k}-\frac{R}{n(n-2)} g_{h i j k}\right\} \\
& -R_{a \cdot k i}^{b} R_{b \cdot j k}^{a}+R_{h \cdot j b}^{a} R_{i \cdot k n}^{b}-R_{l \cdot k b}^{a} R_{i \cdot j a}^{b} .
\end{align*}
$$

We may naturally assume that V_{n} itself is not of constant curvature and hence the tensor $A_{h i j k}$, the coefficient of K in (5•3), is not zero. Accordingly we have clearly unique solution K of (5.3) if and only if the equation

$$
\begin{gather*}
\left|\begin{array}{cc}
A_{a b c d} & B_{a b c d} \\
A_{h i j k} & B_{l i j k}
\end{array}\right|=0 \\
(a, b, c, d, h, i, j, k=1, \cdots, n),
\end{gather*}
$$

be satified. Further it will be unavoidable that the equation

$$
\begin{cases}A_{a b c l l} & B_{a b c i l}=0 \quad(a, \cdots, k, l=1, \cdots, n), \\ A_{l i j j k, l} & B_{l i j k k, l}\end{cases}
$$

must satisfy as the condition that K determined as the solution of (5.3) is constant, similar to (4.13).

Now $S_{h i j k}$ has been intrinsically determined and the second fundamental tensor $H_{i j}$ satisfying (4.5) is found from the equation

$$
H_{h i} H_{j k}=e D_{h i j j k}^{\prime},
$$

where $D_{h i j k}^{\prime}$ is obtained from $D_{k i j j_{k}}$ by replacing $R_{k i j k}$ and R by $S_{h i j k}$ and S respectively. The fact, that matrix $\left\|D_{k i j k k}^{\prime}\right\|$ is of rank one and semi-definite, is the condition that there exists $H_{i j}$ satisfying (5.7). But we must exclude the special case of $S=0$, this case be characterized by

$$
T_{n i j k} \equiv A_{k i j k} \cdot R-n(n-1) B_{n i j k}=0
$$

which follows from (4-4) and (5•3). Thus defined $H_{i j}$ satisfies the Gauss equation, because the condition for this is given by $\left(5 \cdot 2^{\prime}\right)$, which is same as $(5 \cdot 3)$. It is to be noted that the Codazzi equation is a consequence of the Gauss equation, if S does not vanish. In fact, contracting the Gauss equation, namely

$$
R_{l i j k}-K \cdot g_{h i j k}=e\left(H_{h j} H_{i k}-H_{l i k} H_{i j}\right),
$$

by $g^{i k}$, we have

$$
\frac{S}{n} g_{h j}=e\left(g^{i k} H_{h j} H_{i k}-g^{i k} H_{l k} H_{i j}\right) .
$$

From this it follows by the same process as in [10] that the determinant $\left|H_{i j}\right|$ does not vanish for $S \neq 0$. Consequently

Theorem 7. Let $V_{n}(n>3)$ be an Einstein n-space, such that it is not of constant curvature and the tensor $T_{\text {hijk }}$ does not be zero. In order that V_{n} is imbedded in an ($n+1$)-space of constant curvature, it is necessary and sufficient that the equation (5.5) and (5.6) are satisfied and the matrix $\left\|D_{\| i i j k}^{\prime}\right\|$ is of rank one and semi-definite. The constant curvature K of the enveloping space is determined by the equation (5.3).

Next we consider the special case of $S=0$. Then the constant curvature of the enveloping space must be equal to $R / n(n-1)$. It should be remarked that the scalar curvature of any Einstein space is constant [16, p. 93], and accordingly $K=R / n(n-1)$ is constant. We have from the Gauss equation

$$
H_{a b} S_{i j k l}+H_{a l} S_{i j b k}+H_{i k} S_{j a b l}+H_{j k} S_{i a l b}=0^{*}
$$

Contracting by $g^{a b}$ we have by means of $S_{i j}=0$

$$
H S_{i j k l}=H_{a l} S_{k \cdot i j}^{a} \quad\left(H=g^{a b} H_{a b}\right) .
$$

If we multiply this by $H_{b h}$ and subtract from it the equation obtained by interchanging h and l, we have in virture of the Gauss equation

$$
H\left(H_{b l} S_{i j k l}-H_{b l} S_{i j k l k}\right)=e S_{a b l l} S_{k \cdot i j}^{a} .
$$

From this and similar expressions for the other terms in the righthand member of the following equation it foilows that

$$
\begin{equation*}
H H_{b k} S_{i j h l}=\frac{e}{2}\left(S_{a b l h} S_{k \cdot i j}^{a}+S_{a b k l h} S_{l \cdot i j}^{a}+S_{a b l k} S_{h \cdot i j}^{a}\right) \tag{5.9}
\end{equation*}
$$

Eliminating $H H_{b k}$ we have

$$
\begin{array}{ll}
S_{i j l l} & P_{b k i j i j h l} \\
S_{\text {acdm }} & P_{b k i a c a m}
\end{array}
$$

where $P_{b k \mid i j l l}$ is the right-hand member in (5.9) divided by e. From

[^2](5•10) we have the equation of second degree in terms of K and sustitution for K the expression $R / n(n-1)$ gives
\[

$$
\begin{align*}
& R^{2}\left(g_{i j h l} Q_{b k \mid a c r l m}-g_{a c i l m} Q_{b k \mid i j h l}\right) \\
& \quad+n(n-1) R\left(R_{i j j l l} Q_{b k \mid a c i l m}-R_{a c i l m} Q_{b k \mid i j h l}\right. \\
& \left.\quad-g_{i j b l} P_{b k \mid a c i m m}^{\prime}+g_{a c i m m} P_{b k \mid i j l l}^{\prime}\right) \\
& \quad+n^{2}(n-1)^{2}\left(R_{i j l l} P_{b k| | a c i m}^{\prime}-R_{a c i m m} P_{b k \mid i j l l}^{\prime}\right)=0,
\end{align*}
$$
\]

where we put

$$
\begin{aligned}
& Q_{b i k \mid a c i m}=g_{a k} R_{b c i l m}-g_{c k} R_{b a i m}+g_{a m} R_{b c d k} \\
& -g_{c m} R_{b a n k}+g_{a l l} R_{b c k n n}-g_{c i l} R_{b a k m}, \\
& P_{b k \mid a c i l n}^{\prime}=R_{i b m i l} R_{k \cdot a c}^{i}+R_{i b k i l} R_{m, a c}^{i}+R_{i b m k} R_{d \cdot a c}^{i} .
\end{aligned}
$$

Contracting (5.9) by $g^{b k}$ we have

$$
H^{2} \cdot S_{i j h l}=e P_{i j l l l} \quad\left(=e g^{n k} P_{b k \mid\{j h l}\right)
$$

where K in $S_{i j l l}$ and $P_{i j n l}$ is replaced by $R / n(n-1)$. Elimination H^{2} from (5-12) gives

$$
\begin{cases}S_{a b c l l} & P_{a b c d}=0 \\ S_{i j h l} & P_{i j h l}\end{cases}
$$

which is a consequence of (5•10). Hence, if (5.11) is satisfied, then (5.10) is satisfied and so we obtain from $(5 \cdot 12) H^{2}$, because $S_{i j n l}$ does not be zero for V_{n}, which is assumed not to be of constant curvature. In this case e must be chosen so that H is real. Then from (5.9) we have $H_{b k}$, because the condition that (5.9) has solution $H_{b k}$ is given by (5.10), which is equivalent to (5.11). But we must suppose $H \neq 0$, that is to say, $P_{i j h} \neq 0$ from (5.12). Therefore $H_{i j}$ is thus determined under the condition (5.11) and $P_{i j h l} \neq 0$.

Further we must get the condition that as above determined $H_{i j}$ satisfy the Gauss equation. From (5.9) and (5.12) we obtain

$$
H^{2} S_{v s t u} \cdot H_{b k} S_{i j n l} \cdot H_{c m t} S_{a \mid j p q}=\frac{1}{4} P_{b k \mid i j l l} P_{c m \mid a t p q} S_{v s t u}
$$

Interchanging k and m we have from the Gauss equation

$$
\begin{align*}
& P_{r s s t h} S_{b c k i n} S_{i j n l} S_{a i p \eta} \\
& \quad=\frac{1}{4} S_{s ; t u}\left(P_{b k \mid i j l l l} P_{c m \mid a i t p q}-P_{b m \mid i j h l} P_{c k \mid a i t p q}\right)
\end{align*}
$$

Conversely if (5.13) is satisfied, as above determined $H_{i j}$ satisfies the Gauss equation, as easily seen.

Finally we give the condition that these $H_{i j}$ satisfy the Codazzi equation. In this case, the Codazzi equation is perhaps independent from the Gauss equation. Since $H_{i j}$ is expressed in terms of curvature tensor, the Codazzi equation itself is also expressible in terms of the curvature tensor and its derivatives. But we can explicitly write this condition. In fact, multiplying (5.9) by H and substituting from $(5 \cdot 12)$, we get

$$
H_{b k} P_{i j h l}=H P_{b k \mid i j h l} .
$$

Covariant differentiation of this equation with respect to x^{m} and multiplication by $H S_{p p p s} S_{\text {uced }}$ gives

$$
\begin{aligned}
& H \cdot H_{b k, m} P_{i j l l} S_{p \eta m s} S_{n c i t}=-H H_{b k} S_{p p r s} S_{a c t i} P_{i j h l, m}
\end{aligned}
$$

Substituting from $(5 \cdot 9),(5 \cdot 12)$ and the equation obtained from $(5 \cdot 12)$ by covariant differentiation with respect to x^{m}, we get
where we put

The equation (5.14) is satisfied by $H_{i j}$ above determined, so that the equation

$$
Q_{p \eta r s|a c a l| i j h l \mid \Delta k m m}-Q_{\eta \eta r s|a c r l| t|j h l| \mid m \mathrm{mk}}=0,
$$

is equivalent to the Codazzi equation. Consequently
Theorem 8. Let $V_{u}(n>3)$ be an Einstein n-space such that it is not of constant curvature and the tensor $T_{\text {hijk }}$ vanishes, but not $P_{\text {nijk }}$. In order that V_{n} is imbedded in S_{n+1} of constant curvature, it is necessary and sufficient that the equations (5.11), (5.13) and (5•15) are satisfied. The curvature K of S_{n+1} is equal to $R / n(n-1)$, where R is scalar curvature of V_{n}.

This theorem can be applied well when we discuss the problem for an Einstein n-space of vanishing scalar curvature to be of class one. Namely, we replace merely $S_{l i j i k}$ by $R_{l i j j_{k}}$ in the above discus-
sion. But, in this case, it must be required that elementary divisors of matrix $\left\|\rho H_{i j}-g_{i j}\right\|$ are not all simple [16, p. 199].

§6. Imbedding a conformally flat $n(>3)$-space in an $(n+1)$-space of constant curvature

In this section we consider an n-space V_{n}, whose conformal curvature tensor vanishes. Such a space is the only case excepted from the general discussion of the fourth section, because all of coefficients of K in (4.8) are equal to zero, and hence a particular circumstance will be anticipated. If $n>3, V_{n}$ is conformally flat and we have already the condition that V_{n} be of class one [18] and so we go along the similar process as shown in the last two sections.

The conformally flat n-space $V_{n}(n>3)$ is characterized by the equation

$$
R_{h i j k}=g_{h k} l_{i k}-g_{k i k} l_{i j}+l_{k j} g_{i k}-l_{1 k} g_{i j}
$$

where we put

$$
l_{i j}=\frac{1}{n-2}\left(R_{i j}-\frac{R}{2(n-1)} g_{i j}\right) .
$$

Making use of (6.1) and the equation

$$
H_{a b} R_{i j k l}+H_{a l} R_{i j b k}+H_{i k} R_{j a b l}+H_{j k} R_{i a l l}=0
$$

which is deduced from the Gauss equation

$$
R_{i j k l}=e\left(H_{i k} H_{j l}-H_{i l} H_{j k}\right),
$$

we obtain in [18] the equation

$$
H_{i j}=a g_{i j}+b l_{i j} .
$$

Now $S_{l i j_{k}}$ in (4.4) is also written in the form

$$
S_{h i j k}=g_{h j} l_{i k}^{\prime}-g_{h k} l_{i j}^{\prime}+l_{j^{\prime}}^{\prime} g_{i k}-l_{h k}^{\prime} g_{i j},
$$

where $l_{i j}^{\prime}$ is defined by

$$
l_{i j}^{\prime}=l_{i j}-\frac{K}{2} g_{i j} .
$$

Thus the similar process used in [18] leads us to

$$
H_{i j}=a g_{t j}+b l_{i j}^{\prime},
$$

where a and b are scalar.

We remark here that the rank of the matrix $\left\|H_{i j}\right\|$ is n. Because the Ricci's directions coincide with principal directions [12] and so it is easily proved that at least $n-1$ principal curvature are equal, so that the process used in [18] is not limited to our case for the proof of $\left|H_{i j}\right| \neq 0$. Accordingly the Codazzi equation is a consequence of the Gauss equation and then we consider only the Gauss equation in the following.

Substitution from (6.3) in the Gauss equation

$$
R_{k i j k}-K g_{h i j k}=e\left(H_{h j} H_{t k}-H_{h k} H_{i j}\right),
$$

gives

$$
\begin{align*}
\left(e-a b+\frac{K}{2} b^{2}\right) R_{h i j k}= & \left(a^{2}+\frac{K^{2}}{4} b^{2}+(e-a b) K\right) g_{h i j k} \\
& +b^{2}\left(l_{h j} l_{i k}-l_{h k} l_{l_{j}}\right) .
\end{align*}
$$

In the first place we consider the particular case when the matrix $\left\|l_{i j}\right\|_{i}$ is of rank less than two. Since V_{n} may be assumed not to be of constant curvature, it follows that the rank is one, and from (6.5) we have

$$
e-a b+\frac{K}{2} b^{2}=0, \quad a^{2}+\frac{K^{2}}{4} b^{2}+(e-a b) K=0,
$$

from which we get immediately

$$
a^{2}=-\frac{c}{4} K, \quad b^{2}=-\frac{c}{K}, \quad a=-\frac{K}{2} b
$$

Conversely if $\left\|l_{i j}\right\|$ is of rank one, we take an arbitrary constant $K \neq 0$ and choose e plus or minus one, according as K is negative or positive, and then we define a, b by (6.7). Moreover $H_{i j}$ is defined by $(6 \cdot 3)$, then we obtain $(6 \cdot 4)$ by substitution. Consequently V_{n} can be imbedded in any $(n+1)$-space of constant curvature $\neq 0$. On the other hand, V_{n} can not be imbedded in flat space ; since otherwise we show easily $l_{i j}=0$.

Thus, from our stand-point, we obtain the special type of conformally flat space, in which $\left\|l_{i j}\right\|$ is of rank one. In the following, we treat such spaces for a while. We get in the first place

$$
l_{i j}=l_{t} l_{j} \quad(i, j=1, \cdots, n)
$$

since $l_{i j}$ is symmetric and $\left\|l_{i j}\right\|$ is of rank one. We see that l_{i}, defined by the above equations, is unique to within algebraic sign.

Multiplying (6.1) by l_{m} and subtracting from this the equation obtained by interchanging k and m, we have

$$
R_{j k k i} l_{m}+R_{j k i m} l_{l}+R_{j k m h} l_{i}=0
$$

by means of (6-1). Contracting (6.8) by $g^{h j} g^{m k}$ we have

$$
\left(R_{i n}-\frac{R}{2} g_{i n}\right) l^{a}=0 \quad\left(l^{a}=g^{a i} l_{i}\right)
$$

from which we get

$$
\frac{R_{i j} l^{i} l^{j}}{g_{i j} l^{i} l^{j}}=\frac{R}{2}
$$

which is called the mean curvature of the space for the direction l^{i} and, from (6.9), l^{i} is the Ricci principal direction [16, p. 113]. Therefore l^{i} is the Ricci principal direction and the mean curvature for this direction is $R / 2$.

We return to the general case when $\left\|l_{i j}\right\|$ is of rank greater than one. Then we can easily show that ($6 \cdot 5$) must have nontrivial solutions $e-a b+(K / 2) b^{2}, \quad a^{2}+\left(K^{2} / 4\right) b+(e-a b) K$ and b^{2}; so that we have as the condition

$$
\begin{gather*}
\left|\begin{array}{lll}
R_{a b c i l} & g_{a b c t} & l_{n b c t} \\
R_{h i j k k} & g_{u i j k} & l_{h i j k} \\
R_{p p r s} & g_{\nu \eta r s} & l_{p r r s}
\end{array}\right|=0 \\
\quad(a, \cdots, s=1, \cdots, n)
\end{gather*}
$$

where we put

$$
l_{h i j k}=l_{n j} l_{i k}-l_{h k} l_{i j} .
$$

However we have in [18] that a conformally flat n-space ($n>3$) is of class one, if and only if the matrix $\left\|l_{i j}\right\|$ is of rank greater than one and $(6 \cdot 10)$ is satisfied. Thus such a space can be imbedded in flat space. Namely, the equation

$$
t R_{h i j_{k}}=A g_{n i j k}+B l_{h i j:}
$$

has a non-trivial solution A, B, and $t(\neq 0)$ and hence we have

$$
R_{h i j k}=C g_{h i j k}+D l_{h i j k k}
$$

In the case of class one, we define a and b as follows:

$$
a=\frac{\overline{e C}}{2}, \quad b=\frac{e D}{2}
$$

On the other hand, compairing this with (6.5) we put

$$
\begin{gather*}
e-a b+\frac{K}{2} b^{2}=\rho \quad(\neq 0), \\
a^{2}+\frac{K^{2}}{4} b^{2}+(e-a b) K=\rho C, \\
b^{2}=\rho D
\end{gather*}
$$

and from this we get

$$
a=e_{a} \left\lvert\, \prime\left(C-K+\frac{K^{2}}{4} D\right)\right., \quad b=e_{b} \sqrt{ }{ }^{\prime} \bar{D}, \quad \rho=\frac{e^{\prime}}{2-K D},
$$

where e_{1}, e_{l}, and e^{\prime} are plus or minus one and satisfy the condition

$$
\frac{D e^{\prime}}{2-K D}>0, \quad e_{n} e_{b} e^{\prime}>0
$$

Conversely, if we choose a, b as above mentioned, where K is arbitrary constant such that $K D \neq 2$, then (6.12) is satisfied and hence, if we define $H_{i j}$ by (6.3), these $H_{i j}$ satisfy the Gauss equation. Therefore our space V_{n} can be imbedded in any $(n+1)$ space of constant curvature $K=0$ or $\neq 0$. But we must except the special case when K is taken $=2 / D$. If D is constant and K $=2 / D$, we see easily $e=0$, and hence V_{n} can not be imbedded in an $(n+1)$-space of constant curvature $2 / D$. Therefore

Theorem 9. Let $V_{n}(n>3)$ be a conformally flat n-space not of constant curvature.
(1) If the matrix $\left\|l_{i j}\right\|$ is of rank one, V_{n} is imbedded in any $(n+1)$-space of constant curvature but not in flat space.
(2) If the rank is greater than one, V_{n} is imbedded in an $(n+1)$-space of constant curvature, if and anly if $(6 \cdot 10)$ is satisfied. Such a space V_{n} can be imbedded in any $(n+1)$-space of constant curvature $\neq 2 / D$, where D is defined by (6.11).

In addition, we consider n-space V_{n}, which is imbedded in a conformally flat $(n+1)$-space C_{n+1}. The conformal curvature tensor of V_{n} is expressed in the form [15]

$$
\begin{aligned}
& C_{i j k l}=M_{i k} M_{j l}-M_{i l} M_{j k}+\frac{1}{n-2}\left(M_{i a} M_{k}^{a} g_{j l}-M_{i n} M_{i}^{n} g_{j k}\right. \\
& \left.\quad+g_{i k} M_{j a} M_{l}^{a}-g_{i t} M_{j a} M_{k}^{a}\right)-\frac{M_{\imath}^{n} M_{a}^{b}}{(n-1)(n-2)} g_{i j k l},
\end{aligned}
$$

where we put

$$
M_{i j}=H_{i j}-\frac{1}{n} g_{i j} g^{a b} H_{n b}
$$

from which we have
(6.13) $\quad R_{i j k l}=M_{i k} M_{j l}-M_{i l} M_{j k}+g_{i k} A_{j l}-g_{i l} A_{j k}+A_{i k} g_{j l}-A_{i l} g_{j k}$,
where $A_{i j}$ is defined by the following form

$$
A_{i j}=\frac{1}{(n-2)}\left(R_{i j}+M_{i a} M_{j}^{a}\right)-\frac{M_{r}^{n} M_{a}^{\prime \prime}+R}{2(n-1)(n-2)} g_{i j} .
$$

Now we shall generalize ($6 \cdot 13$) and consider V_{n}, the curvature tensor of which is expressed in the form
(6-14) $\quad R_{i j k l}=N_{i k} N_{i l}-N_{i l} N_{i k}+G_{i k} a_{j l}-G_{i l} a_{j k}+a_{i k} G_{j l}-a_{i l} G_{i k}$.
It is easily verified that the tensor R defined by (2.3) vanishes. Therefore if this space V_{n} can be imbedded in an $(n+1)$-space of constant curvature K, we see from (4.8) that $K=0$ or the tensor A vanishes, so that V_{n} is of class one or conformally flat. Hence we have the

Theorem 10. If V_{n} can be imbedded in an $(n+1)$-space of constant curvature and the curvature tensor is expressed in the form $(6 \cdot 14)$, then V_{n} is conformally flat or of class one.

From (6.13) we have the following corollary:
Corollary. Let V_{n} be such an n-space, that is not conformally flat and not of class one, but is imbedded in a conformally flat ($n+1$)-space. Then V_{n} can not be imbedded in any $(n+1)$-space of constant curvature.

§ 7. Imbedding a Riemann n-space in an ($n+p$)space of constant curvature

In this section we show a remarkable theorem that the problem of imbedding in an $(n+p)$-space of constant curvature $\neq 0$ for $2 p=2, \cdots, n-2$ is reducible generally to one of imbedding in a flat $(n+p)$-space, as seen in the fourth section for $p=1$.

From (4.6) we have

$$
\underset{(p+1)}{S_{1} \cdots i_{p+1}} j_{1 \cdots \cdots} \cdots j_{p+1} k_{1} \cdots k_{2 p+2}=0,
$$

as a condition for V_{n} to be imbedded in an $(n+p)$-space of constant curvature. We substitute from (4.4) and then have equations of $(p+1)$-th degree in terms of K, the constant curvature of en-
veloping space. But coefficients of K^{2}, \cdots, K^{p+1} in these equations are all equal to zero. In fact we see from (2.7)

$$
\begin{align*}
& \underset{(p+1)^{i_{1} \cdots i_{p+1} \mid} j_{1} \cdots j_{p_{+1}} \mid k_{1} \cdots k_{2 p+2}}{ }=\frac{1}{4!(2 p-2)!} \sum_{s, t(s<t)}^{1 \cdots \cdots+1}(-1)^{s+t-1} \\
& \times R_{(\cdots)}^{i_{1} i_{2}\left|j_{s} j_{t}\right| a_{1} a_{2} b_{s} b_{t}} R_{(p-1)} i_{3} \cdots i_{p+1}\left|j_{1} \cdots j_{s} \cdots{\underset{v}{t}}^{j_{j}} j_{p+1}\right| a_{3} \cdots a_{p+1} b_{1} \cdots b_{s} \cdots b_{t} \cdots b_{p+1} \\
& \times o_{k_{1} \cdots a_{p+1} b_{1} \cdots b_{p_{j+1}+9}}^{a_{1}} .
\end{align*}
$$

By means of $(7 \cdot 2)$ coefficients of K^{2} are equal to the sum of terms, one of which, for example, is as follows:

$$
\begin{aligned}
& \frac{1}{4!(2 p-2)!}(-1)^{s+t-1}
\end{aligned}
$$

$$
\begin{aligned}
& \times \grave{b}_{k_{1} \cdots a_{p+1} b_{1} \cdots b_{p+1}}^{a_{1} \cdots+2}
\end{aligned}
$$

where $\bar{R}_{(2)} i_{1} i_{2}!j_{s} j_{l} \mid a_{1} a_{2} b_{s} b_{t}$ is obtained from

$$
\underset{(\Omega)}{R_{i_{1} i_{2}\left|j_{s} j_{l}\right| a_{1} a_{2} b_{s} b_{t}}=\frac{1}{2^{2}} \varepsilon_{(\Omega)}^{u v}} R_{i_{1} j_{u} c_{1} d_{n}} R_{i_{2} j_{v} c_{2} d_{v}}{ }{ }^{c_{a_{1}} a_{2} c_{2} b_{s} d_{i} d_{t}}
$$

by replacing $R_{i_{1} j_{u} c_{1} d_{u}}, \cdots$ by $g_{i_{1} c_{1}} g_{j_{u} d_{u}}-g_{i_{1} d_{u}} g_{j_{u} c_{1}}, \cdots$, and this is clearly equal to zero. Thus the coefficients of K^{2} vanish and the similar proof is applicable to the case when we show that coefficients of K^{3}, \cdots, K^{p+1} are all vanishing. Consequently from (7•1) we obtain the equations of first degree in terms of K as follows:

$$
\underset{(p+1)}{ } A_{1} \cdots i_{p+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2 p+2} \cdot K-2_{(p+1)}^{p} \cdot R i_{1} \cdots i_{p+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2 \gamma+2}=0 .
$$

The component of $\underset{(p+1)}{A}$, coefficient of K in (7.3), is easily calculated by (2.7) as follows:
(7-4) $\underset{(\mu+1)}{A} i_{1} \cdots i_{j+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2,+2}$

$$
\begin{aligned}
& =12 \sum_{s=1}^{p+1} \sum_{(\mu+1)}^{\varepsilon^{2} \cdots v x y \cdots z}\left(g_{i_{s} a_{s}} g_{j_{x} b_{x}}-g_{i_{s} b_{x}} g_{j_{x} a_{s}}\right) R_{i_{1} j_{u} a_{1} b_{u}} \cdots R_{i_{s-1} j_{n} a_{s-1} b_{v}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s=1}^{p+1} \varepsilon_{(j+1)}^{u \cdot v x y \cdots z} g_{i_{s} a_{s}} g_{j_{x} b_{x}} R_{i_{1} j_{u} a_{1} b_{u}} \cdots R_{i_{s-1} j_{v} a_{s-1} b_{v}} \\
& \times R_{i_{s+1} j_{y} a_{s+1} b_{y}} \cdots R_{i_{p+1} j_{z} a_{p+1} b_{z}} \partial_{k_{1} \cdots k_{2 p+2}}^{a_{1} \cdots b_{p+1}} .
\end{aligned}
$$

The latter is generalization of (4-9). If $\underset{(p+1)}{A}$ does not be zero, (7-3) will uniquely determine the constant curvature of enveloping space S_{n+p}, and accordingly the enveloping space S_{n+p} itself, under the condition

$$
\left|\begin{array}{cc}
A_{(p+1)} a_{1} \cdots a_{p+1}\left|b_{1} \cdots b_{p+1}\right| c_{1} \cdots c_{2 p+2} & R_{(p+i)} a_{1} \cdots a_{p+1}\left|b_{1} \cdots b_{p+1}\right| c_{1} \cdots c_{2 p+2} \\
\underset{(p+1)^{2}}{ } i_{1} \cdots i_{p+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2 p+2} & \underset{(p+1)}{R} i_{1} \cdots i_{p+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2 p+2}
\end{array}\right|=0
$$

And further condition that as thus determined K be constant is clearly given by the condition

$$
\left|\begin{array}{cc}
A_{(p+1)} a_{1} \cdots a_{p+1}\left|b_{1} \cdots b_{p+1}\right| c_{1} \cdots c_{2 p+2} & R_{(p+1)} a_{1} \cdots a_{p+1}\left|b_{1} \cdots b_{p+1}\right| c_{1} \cdots c_{2 p+2} \\
\underset{(p+1)}{A_{1} \cdots i_{p+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2 p+2}, l} & \underset{(p+1)}{R} i_{1} \cdots i_{p+1}\left|j_{1} \cdots j_{p+1}\right| k_{1} \cdots k_{2 p+2}, l
\end{array}\right|=0 .
$$

Now we have the intrinsic form of constant curvature and then $S_{i t i k}$ is intrinsically define. Hence our problem reduces to the consideration of the equations $(4 \cdot 5),(4 \cdot 2)$ and $(4 \cdot 3)$, which are formally equivalent to the Gauss, Codazzi and Ricci equations respectively in the case of V_{n} being of class p. For example, we can give the condition that V_{n} be imbedded in an ($n+2$)-space of constant curvature, if $\underset{(3)}{A}$ does not vanish; namely, we make merely use of the discussions in [18].

If A does not vanish, the enveloping space of constant curvature, if exists, is unique. While, if V_{n} can be imbedded in $(n+p)$ space S_{n+p}, and S_{n+p}^{\prime}, both of which are of constant curvature K, $K^{\prime}(\neq)$, we have from (7•3) $\underset{(p+1)}{A}=0$. Therefore

Theorem 10. If the tensor ${ }_{(p+1)}$ of V_{n} does not vanish, the enveloping space of constant curvature, if exists, is unique. If there exist more than one $(n+p)$-space of constant curvature such that these curvatures are different, the tensor $\underset{(p+1)}{A}$ of V_{n} is necessarily equal to zero.

It is very compricated to study such a space that the tensor $\underset{(p+1)}{A}$ vanishes. For instance, we contract $\underset{(: 3)}{A_{1} i_{1} i_{3} i_{j} j_{1} j_{2} j_{3} \mid k_{1} \cdots k_{6}}$ by $g^{i_{3} k_{3}} g^{j_{3} k_{i n}}$ and, if we moreover contract, we have a tensor, which is identically zero. This fact is similar to the case for the conformal curvature tensor. We can easily give an example of such a space that $\underset{(3)}{A}$ vanishes, but the problem of studying the geometrical pro-
perties of all the space, in which A vanishes, is probably very hard. As in the case of $p=1$, it is possible that there exists such a space that can be imbedded in more than one $(n+p)$-spaces of constant curvature.

REFERENCES

[1] L. Schlaefli : Nota alla memoria der Sig. Beltrami, Annali di Mat., ser. 2, t. 5, 1871-1873, pp. 170-193.
[2] G. Ricci: Principii di una teoria delle forme differenziale quadratiche, Annali di Mat. (2), vol. 12, 1883, pp. 135-168.
[3] L. Bianch: Lezioni di geometria differenziale, 2nd edition, vol. 1, Spoerri, Pisa, 1902.
[4] E. Kasner: The impossibility of Einstein fields immersed in flat space of five dimensions, Amer. J. Math., vol. 43, 1921, pp. 126-129.
[5] H. W. Brinkmann: On Riemann sfaces conformal to euclidean space, Proc. Nat. Acad. Sci. U.S.A., vol. 9, 1923, pp. 1-3.
[6] J. E. Campbell: A course of differential geometry, Oxford, 1926.
[7] M. Janet: Sur la possibilité de plonger un espace riemannion donné dans espace euclidian, Ann. de la Soc. Polonaise de Math., vol. 5, 1926, pp. 38-43.
[8] E. Cartan: Sur la possibilité de tlonger un espace riemannian donné dans un espace euclidian, ibid., vol. 6, 1927, pp. 1-7.
[9] T. Y. Thomas: Riemann spaces of class one and their algebraic characterization, Acta Math., vol. 67, 1936, pp. 169-211.
[10] C. B. Allendoerfer: Einstein spaces of class one, Bull. Amer. Math. Soc., vol. 43, 1937, pp. 265-270.
[11] C. B. Allendoerfer; The imbedding of Ricmann sfaces in the large, Duke Math. J., vol. 3, 1937, pp. 317-353.
[12] A. Fialkow: Hypersurface of a sfaces of constant curvature, Ann. of Math., vol. 39, 1938, pp. 762-785.
[13] C. B. Allendoerfer: Rigidity for spaces of class greater than one, Amer. J. Math., vol. 61, 1939, pp. 633-644.
[14] T. Y. Thomas: Imbedding theorems in differential geometry, Bull. Amer. Math. Soc., vol. 45, 1939, pp. 841-850.
[15] K. Yano and Y. Muto: Sur le théorème fondamental dans la géométrie conforme des sous-cspaces riemanniens, Proc. of the Physico-Math. Soc. Japan, vol. 24, 1942, pp. 437-449.
[16] L. P. Eisenhart: Riemannian geometry, Princeton, 1949.
[17] A. Kawagichi: On areal sfaces I. Metric tensors in n-dimensional spaces based on the notion of two-dimensional area, Tensor (New series), vol. 1, 1950. pp. 14-45.
[18] M. Matsumoto; Ricmann spaces of class two and their algebraic characterization, J. Math. Soc. Japan, vol. 2, 1950, pp. 67-92.
[19] M. Matsumoto: Conformally fat Riemann sfaces of class one, J. Math. Soc. Japan, vol. 3, 1951, pp. 306-309.
[20] M. Matsumoto: On the special Riemann spaces of class two, Memo. College of Sci., Uni. of Kyoto, ser. A, vol. 26, 1951, pp. 149-157.
121] M. Matumoto: Riemann sfaces of recurrent and sefarated curvature and their imbedding, ibid. vol. 27, 1952, pp. 175-188.

[^0]: * We call a flat space a space, the metric form being written in the form $\sum_{i} e_{i}\left(d x^{i}\right)^{2}\left(e_{i}= \pm 1\right)$. If all e_{i} are positive, we call it an Fuclidean space.

[^1]: * We use throughout this paper the generalized Kronecker's deltas. See O. Veblen: Invariants of quadratic differential forms, Cambridge, 1927.

[^2]: * Cf. (8.2) in [9].

