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C. B. Allendoerfer [13] defined the type number 7 of Riemann
space, which is imbedded in a flat space, and proved that, if »>3
and there exist HY; satisfying the Gauss equation, then we have
H?, satisfying the Codazzi and Ricci equations. Hence, in this case,
imbedding problem in flat space reduces merely to algebraic one,
that is, to solving the Gauss equation. But we were not given by him
any intrinsic method to determine the type number of the space.

The second section of the present paper gives a necessary
condition that a Riemann #n-space be imbedded in an Euclidean
(n+p)-space. A development of the discussion in this section leads
us to the intrinsic definition of the even type number of a Riemann
space, as will be shown in the third section.

The fourth and subsequent sections concern with the imbed-
ding of Riemann space in space of constant curvature. The Riemann
curvature K of an enveloping space will be determined by a
system of equations of first degree with respect to K. The system
of equations is obfained as a consequence of the necessary con-
dition found in the second section. Thus we shall show that the
imbedding problem of Riemann space in space of constant curvature
is generally reducible to one in flat space.

§1. Preliminaries and historical notes
Let V, be a Riemann n-space with the metric form
gudx'dy’ Gy j=1,++, 1),
imbedded in a Riemann m (> n)-space V,, with the metric form
Z.dy*dy’ (o, B=1,---,m,),
V. being defined by equations of the form
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yuzspa(xl’ Tty xn) (a=1,---,m),

where the rank of the functional matrix [|3y®/3x']| is ». In this
place, we suppose that these metric forms are not necessarily posi-
tive-definite. For displacement in V, we have

Zuady*dy’ = gi,dx'dy’,
and it follows that
(1-1) gﬂBBiB; =&,

where we put Bf = 3y*/dx’. Let Bf (P=n+1,--,m) beorthogonal unit
vectors normal to V,, so that we have

ngB;Bg = 0 (P#Q)x =¢€p (P=Q):
8:BiBf =0,

whnere the quantities e, = +1. Differentiations (1-1) and (1-2)
give the following equations :

(1-2)

(1-3) B:,+ 1'% BiB} = %‘H{} %,
(1-4) B+ 1'% B.B} = Hi;Bi+> e, HE, By,
)

where commas denote the covariant differentiations with respect
to g; and I'% is the Christoffel's symbol formed with respect to
Z.s. Three systems of functions HYf;, Hf; and Hf; in (1-3) and
(1-4) satisfy the equations

, . _ o TT P _ »
Hfl; = Hj;, H,‘,, = —g*Hj, HI")j = —Hj;.

We call usually HY, the second fundamental tensors of V,. As the
conditions of integrabilities of (1-3) and (1-4), we get the Gauss
equation

(1-5) B#B}B!B/R..;s = Ryu—3les (Hi{Hj{—H# H),
the Codazzi equation
(1-6)  BIB!BfB!Ru.s = —H/ix+Hyg,
+ 3 eu(HY Hi—~HEHE),
and finally the Ricci equation
(1:7) BiBiBfB{R.ws = H¥; —Hf .+ HiHS— Hi H
+3lew(HryHit— HiHiy).
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When enveloping space V,, is flat, above equations become respec-
tively

(1-8) Rijkl = 12 eP(H{i ij—fo H),
1-9) Hi;,k_'Hii.j = %} €, (Hi?HQIIZ—HigH(;;)’
(1-10) H—HE.,; = g"(Hj Hi—Hj; HY)

——% ek(H;;HgL—H;ELHI%)'

It is well known that V, is imbedded in a flat m-space, if and
only if there exist two systems of functions H;j (=Hjf) and H},
(=—Hg), (P,Q=n+1,-,m), satisfying the equations (1-8), (1-9)
and (1-10).

If we take another set of normal B¢ defined by

B; = 2 I?»E(f,
«Q

where the matrix [[/¢]l of coefficients is to be orthogonal, it follows
easily that the functions H;j and Hf,; subject to the transformations

(1-11) Hj = 3I2Hg,
@
(1-12) H{ = SUMGHy+ 3180
S R

Now, any Riemann #»-space can be imbedded locally and iso-
metrically in a flat space of dimension n(nz+1)/2. This result
was enunciated by L. Schlaefli [1] and was first proved by M.
Janet [7]. E. Cartan also proved this fact by means of theorems
on Pfaff's form [8]. If V, has some particular properties, V, may
be imbedded in a flat space of a lower dimension. When the lowest
dimension is equal to n+p, we say that V, is of class p. This
term ““ class ”’ originated with G. Ricci [2]. The imbedding problem,
so called, is the intrinsic characterization of this particular pro-
perties.

The imbedding of V, of non-vanishing constant curvature is
satisfactorily studied. Such a space V, is a fundamental hyper-
quadrics in flat (#+1)-space [16, p. 203] and hence V, is of class
one. But it is impossible that V, of negative constant curvature
is really imbedded im Euclidean (n+1)-space [3, p. 485]*.

* We call a flat space a space, the metric form being written in the form
e (dxi)? (eg=1). If all e; are positive, we call it an Fuclidean space.
7
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On the other hand, only partial results have been obtained as
to imbedding of Einstein spaces, but we have many interesting
theories on this. If V, is an Einstein n-space of vanishing scalar
curvature, it is impossible that V, is imbedded in a flat (#+1)-
space. This theorem was proved by E. Kasner for dimension four
[4] and his method is easily generalized to the case of higher di-
mension [16, p. 199]. But, for the proof of this theorem, we use
a supposition that the elementary divisors of the matrix ||pH;;—
gl are all simple, and hence, if the supposition on the matrix is
omitted, we have the problem to find the condition that an Einstein
V., of vanishing scalar curvature be imbedded in a flat (#+1)-space.
On this problem we will note in the end of the fifth section. Be-
sides, C. B. Allendoerfer gave the condition that an Einstein space
of non-vanishing scalar curvature be of class one [10].

For the case of V, being conformally flat, all of circumstances
of imbedding have become clear. Such a space is a fundamental
hypercone in a flat (# +2)-space, and hence V, is of class at most
two, which was proved by H. W. Brinkmann [5]. In addition we
have already the condition that V, be of class one [19].

Now, in 1936, we were given by T. Y. Thomas the general
theory on V, being of class one [9]. In his paper, the problem on
space of class one was perfectiy discussed, except when V, is of
type two. His paper [9] threw a fresh ligl}t on the problem, and
the algebraic characterization in a true sense has arised from him.
Allendoerfer’s paper concerning with an Einstein space of class
one [10] as well as the paper on a conformally flat space of class
one by the present author [19] are residual products of [9]. But
Thomas omitted the case of type two, because the general theory
on V, of type greater than two can not be applied to the case of
type two. The latter case was studied afterwards by the present
author [21], though satisfactory result did not be obtained. Further,
A. Kawaguchi got the simple expression of the condition (8-4) in
[9].

The work of Thomas was immediately followed by C. B.
Allendoerfer. He got the generalized Frenet equations for V, in
a flat space and discussed the imbedding of an open simply con-
nected domain of V, [11]. Further, in his paper [13], the notion
of type number defined by Thomas in the case of class one was
generalized to the case of class greater than one and, making use
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of this notion, many beautiful theorems were obtained as to the
rigidity of sub-space and the independences of the Gauss, Codazzi
and Ricci equations. But the type number of these general cases
was not defined by the intrinsic property and also he gave not a
condition for the Gauss equation to have a solution.

The present author gave the condition for V, being of class
two [18]. It is an natural development of theories by Thomas and
Allendoerfer. The type number, which is not the same one as
defined by Allendoerfer, is determined by the intrinsic property.
In this case also, V, of type one and two are exceptional cases.
As an example of this special case, he offered such a simple
space [20].

§2. An necessary condition for V, of class p

We shall limit our investigations in this section to the case
when an enveloping space V,,, is Euclidean. This restriction will
abbreviate following equations. However, by a little modification,
most of the results are perhaps satisfied in the case of V,,, being
flat but not Euclidean.

The Gauss equation (1-8) is written in the form

(2'1) Rl'ilc ke ”(; o Hi Hjh ”/.1 kg

where 05 are the Kronecker’s deltas and we use hereafter the sum-
mation convention for indices P,@=1,--,p and further 4%; are
their generalizations. In order to generalize (2-1) we put in the
first time

(2:2)  R.. ... = o G HD HE: HS H: ofioehibe

(..)1112 | drdo! vk 714y " " deQs Joba kl ...... ky

This tensor {?) is expressible in terms of the components of the
curvature tensor. In fact, the right-hand number of (2-2) is written
as foliows:

7(\P| Ql ‘albl R \Po HPo HQu \aobn

1,(11 J,b, cd oo obn cotio

‘PI Qrp \ﬂlbn. \Pn Po Ql \a,b \CL'nd dﬂ
“Qonlal jﬂbw’ﬁ([ﬂ HzoaoH 2 (‘od:) ey

Substituting from (2-1) we obtain
(2-3)

gini‘z [ Jrgal by kg
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u Na,asb b
R uab R e, Ok
— _ anb bn
- 2 (Rh j;ﬂ]bl er_v ].gagbg Rll ]nd,bo Rln ],a«»b.) kl *

Further, if we put
(2-4)

{«gini&!iﬁ [ 71 o ga! Ry ks

\P Pan P Pn P'c Q'! l\tl ana-;b bnb-;
QO HEy HE: HE HS) H% HS snicstsbibels

018, " Tisas " Visas ]nb» 7ab Y by

and proceed in similar manner as above shown, we establish then

25 R ol ok
1 wwp R . a2, (el bobs
22 . 4! ®) D] ]ualbu (v_))i‘li.’K []vjmlﬂﬂaabnbw kl "'kﬁ

1

2.41 (Ril haby gieisljefsfﬂuasbebs +R

i faﬂlbsgfeisf Jajiasasbsby

\(Iltlgtlsblbgbg
i ]':tanbngieis!j:je?ﬂeﬂsblbz) x [ TR N

1
- ?’[Riljl ab; (Riejeasbe Rin]'n asbs

+R

—R

ia j3 @sbs Ris Jo asbz)

+R, (R —R

iy jaa,ba \ ia jaashy Ri:xj]ﬂnb] ig j1aeb, Rinjsﬂabs)

+R. (R

iy sy by NV fiaoh, Risjeﬂnbz - Rizjeaabe Ri;;j,agb,) '

x ,}Z:aellsbnbzbs

kh .
If we generalize above processes and put

(2:6) Ry ik e,

_ APy-P, 1P, P, Q, ~a,---a,.b,--b,
"Q] [-[l . H H],b|'"H'rb<”kl lk,-’

iy
then it follows that R is written in the mtlmsw form

)
@7 Rk,

1 _wew ~ay-@,. by b,
—= = ¢ .. R. . Y oLy 1
2" (1 iy juthby ™ injuaab, iyt bu
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- E—(Z—T)'Z( D zlj,.a,b,

=nieiy [ jorgpl @g-apby by

- 1 l“ o
B 4'_(21—4)'_5v1%|<t)( 1) " 1R117°|]J¢[(1100b b¢

x(1,~Rf)i34--i,.?j,~-j,~-]"\,~-~j,.;’a3~--a,.b,~-3,-»-b,~-~b,. oy e ko

In these calculations we made use of the following identities satisfied
by generalized Kronecker’s deltas*.

NGByl 30 Cr o ), 36 CCe e s
2-8) Opyevinnn: b, %ay-a, t! Op, v by

APy--P, _ _uv--w P, \Pa ~P,

0 =¢ 0n Op2ei0n” .

Ql Qs (5) Qu Qn Qu'

Observe that components of R (2<2r<#) are expressed intrinsically

Q]
as homogeneous polynomials of 7-th degree in terms of components
of the curvature tensor.
We can write the Bianchi's identity as follows :

wk foks
Rl]klkn kﬂ; l lnl'q 0 ’

and, making use of mathematical induction and the second expres-
sion of R in (2-7), we establish
(]

kl k“; ) I—
(2:9) Ry islivolbe koo 01 10y =0
If V, is of class p, the indices P’s and @'s in (2-6) take the
different p values, so that we have evidently from (2-6) and the
definition of the generalized Kronecker’'s delta

(2-10) ggin“'iﬂjx"'.ivfkl“‘qu =0 @p<29=m
Therefore

THEOREM 1. It is necessary for V, of class p @2p <) that the

tensor R vanishes.
@+1)

We remark that, from (2-7), R 0 (g>p+1), if R=0.

(®»+1)

Though this theorem seems not to play a role in the case of
class one [9] and two [18], we see in the fourth and seventh sections

* We use throughout this paper the generalized Kronecker’s deltas. See O.
Veblen: Invariants of quadratic differential forms, Cambridge, 1927.
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sections that this is fundamental for the imbedding problem of V,
in an (» +p)-space of constant curvature.

§ 3. Allendoerfer’s type numbers
If V, is of class p, we put

. = Py . P>
(3 1) Hi["'iplll]"'ll;r _(:)P]"'PﬂHilal Hi;xﬂp

= |H' H: .-H? |,

1ay " ua 34,

H' H: ...H?

19G2 ~ " 19Qs 10ae

H' H: ..-H?

ipap” " 1pap tpdp

and it follows immediately that

3PP Py gP» O .. g9

Q- Q»ia, ipap "~ b Jrbyp
=H; _iaap - jolby by -
Combining this and (2-6) we get
(B-2) By init o
_ ~a,---apby--bp
= H; iyarap ooy Oy = ks,

Further we put
(3-3)

Coir il gn by g

- Hil'“il'!al"'ai’Hjl"'il':bl”'bl'”.
i)l(r—l)-H"‘i;n-lap(r-l)ﬂ“'ayn' j;:(r-l)-ﬂ"'jpr!bp(r—l)ﬂ"'bl”'
x oDy
177 F2p,

Making use of (2-8) and (3-2) we obtain
(3-4) C

(,,,,)il . “ipr |]I . 'jpr !kl o 'k‘lpr

1

{(ZP)!} »” (}Igil“'ipijl"'jp'lh“'apbl“'bp.“

(p)ip(r—l)ﬂ . 'i}‘nn| ip(r—])ﬂ o ‘j;n-;!('p(r—l)ﬂ o ‘aﬂrb;n(r-l)ﬂ “ 'bpr

oy --b
X 03! r
kl'“ 2pr ’
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and further we have

(3.5) (’,C;)il”'ipr!jl“'jpr:kl"'k‘.!pr
= 1 C. ... .
(@p)!- 12p(r— 1)l inliinllylay

x C "ll"'l‘.!]:r

. . . . 0 .
(pyr=1) lp-H""lpr!]]ﬂ-l”'Jpr]lﬁpﬂ"'l?.pr k\ p
’

We observe that components of C are expressible as the homo-

geneous polynomials of p#th degr(gg in terms of components of the
curvature tensor.

C. B. Allendoerfer defined type number of V, imbedded in a
flat space [13]. The quantities Ca‘”_aqm,“ﬁq defined by (2-3) of
(13] are equal to H; ;4 ..., Of (3-1) in the present paper, so that
C of (3-3) is equivalent to C, in (2-4) of [1.-3]. We observe
fiom (3-5) that, if C=0, then C=0 (s>r+D. Now, Allendo-

@,r+1

erfer’s type numbers are )deﬁned a(sp'sf)ollows. If C.5#0 and C,,,=0
in a point P of V,, we say that V, is of type » at P. Therefore
we can define (even) type number by means of the intrinsic pro-
perties of V, as follows. _
DEFINITION. Let V, be a Riemann n-space. If C#0 and C =0

(por+1)

(»,7)
@pr<n) at a point P, we say that V, is of type’ 2r at P, where
C)are defined by (3-4).

(p,7

If V, is of type 27, there exists such a coordinate system that
Ci 133 2r—1.-2r—112 24 4227 by, 0. This quantity is a

)
determinant of 2pr-th order and hence we construct the normalized
cofactors Hj* of H/, satisfying the equations

2 [ ja siap | BOTR R
Hia HQ = 0; ()Q i 9
1, ]=1, -, &r
Hl’ [ — (‘;h ’
ia I a P,Qzl,"',p

Making use of these quantities, Allendoerfer proved remarkable
theorems (see [13] in details). If V, is of type 27, V, is of type
2y or 2r+1 in the sense of Allendoerfer, so that those theorems
are stated as follows.

THEOREM 2. (1) If V, is of type =4 at a point P, the solu-
tion HI; of the Gauss equation (1-8) at P, if exists, is uniquely
deteymined to within orthogonal transformations (1-11).
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(2) If V, is of type >4 in an neighborhood and therve exist
Junctions H; satisfying the Gauss equation (1-8), we have the func-
tions H}; satisfying the Codazzi and Ricci equations (1-9) and (1-10).

) If V.is of type >2 at P and there exist functions HY, satis-
Sying the Gauss equation (1-8), the solution HE; of the Codazzi
equation (1-9), if exists, is unique.

§4. Imbedding a Riemann s-space in an (a+1)-
space of constant curvature

The imbedding problem of Riemann space of dimension # in
a flat (n+p)-space may be generalized to the case when the en-
veloping space V,., is not necessarily flat. But those are very
hard to study in general, because quantities B arise in the Gauss
equation (1-5). J. E. Campbell seems to the first to have tried this
kind of problem. He proved the interesting theorem that any
Riemann #-space can be imbedded in an Einstein (%+1)-space of
vanishing scalar curvature [6, pp. 212-219], the method being very
complicated. Also, it is worthy of our notice that K. Yano and
Y. Muto considered the imbedding in conformaily flat space [15).

In the following we concern with the case when the envelop-
ing space V.., is of constant curvature#0. Tt is to be accentuated
in this place that we do not think of enveloping space as previously
given, but it is our purpose to find an enveloping space of the given
space, and hence the constant Riemann curvature K of enveloping
space is to be found. The necessary and sufficient condition that
a Riemann #n-space be imbedded in an (#+p)-space S.., of con-
stant curvature K, whose fundamental metric form is positive
definite, is that there exist two systems of functions H;; (=Hj
and HY; (=—H;) satisfying the Gauss, Codazzi and Ricci equations
as follows [16, p. 211]:

4-1) Rijkl = K(g,-kgﬁ—gugjk) + 71;( III:Hf;— 7 Hjll)c)a
(4-2)  Hi,—Hi, = SH{HG—HLHE),
(4'3) Hl?j,lc“Hl?k,j = gu(Hz‘l;Hz(l)c" :’;:Hz(;)
“‘%_‘.( f‘j I:’)k— /"‘lc I{e,i)-
On putting
(4-4) Sijee = Rfju"K(gtkgﬂ—gng}k),
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we have from (4-1)

(4'5) Sijlcl = E(H,f ﬁ)— zI;H]lI:)
It is clear that S, possesses similar properties as the curvature
tensor for interchange of indices. Hence the process, by means of

which from (2-1) - we obtained Theorem 1, is applied equally well
when Ry, is replaced by Si. Thus from the theorem we have

. L = 2
(4 6> (1,+‘)ll"'”;4-1?.71"".7111-1‘kl"k‘l]b}?. 0 @p+2sm,

for V. being imbedded in an (n+p)-space of constant cuavature.

In this section we treat the simplest case of p=1. The case
is typical and we have interesting special type. But the general
theory of the case #->4 can not be applicable to the case of n=
3, because of 2p+2<# in (4-6), and hence we consider first the
former.

I. The case of dimension n=>4
In this case we have from (4.6) L?:(), so that (2-3) gives
(2

2 (lgl) bg _
(4-7) (Sixjxalbl Sisjzﬂzbz - Sfl Joaba Sizj1aeb1) "k: "'lks = 0.

Substituting from (4-4) we have a system of equations of second
degree in terms of K. But it is easily verified that coefficients of
K* in these equations are identically zero and resulting equations
become then

(4-8) A

A jujetl—by K= 2 =0,

bzl gy jolky - ke
where we put

.Q — —
(4-9) f%illnfjll"szl" ky T (Ri1]101b1 isas Ejoby Rinjsalbﬁ 8iza, Ejib,

N /5] agbl bg

+Ri2j2a2bz 8ia, gjlbl _Ri2f1a2b1 gilal gjabz) by kg
which satisfies the identities

. byks
(4-10) Aty kb 01 = 0

as easily shown. Therefore if V, can be imbedded in S,., of con-

stant curvature K340, this K must satisfy (4-8). Elimination of
K from (4-8) gives

Ri)aIaelbnb-:lC)“'Cq = 0.

a,a0|byboicy - -c4 @

@)
(4-11) R
@ rial gy jel by kg yhie fujelky - ky

(a, b, ¢, 1, j, k=1, ---, n)
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If we suppose that A, the coefficients of K in (4-8), is zero tensor,
) . .
then we obtain, contracting (4-9) by g's g’”k*

Ci)jlknkc = R’l]lklk" (g’lkl Jnkﬂ glnk"R]1k1+Rllk1g71k°

R
—R; 1.80) + =) (n=2) (& 1,8y~ 8ikoBi) =
This implies that the conformal curvature tensor of V, vamshes
and hence, if V, (n=4) does not be conformally flat, there exists
at least one components of A not to vanish. Conversely we can

easily show that, if C,,=0, A vamshes Hereafter we suppose that

V., =4 is not conformally flat. Then the equation (4-8) is
thought of as one, from which the constant curvature of envelop-
ing space S,,: and hence S,,, itself is to be determined. The
necessary and sufficient condition that (4-8) has a common solu-
tion K is clearly (4-11) and then K is uniquely determined.

It is easily seen that K vanishes, if and only if R is a zero
tensor, so that we have the @

THEOREM 3. Let V., =% be a Riemann n-space not to be
conformally flat. If there exists an (n+1)-space S,.. of constant
curvature K, in which V, is imbedded, then K is equal to zevo, if
and only if the tensor R of V, vanishes.

The solution K of (4 -8), under the condition (4-11), will not
necessarily be constant, and hence we must find further condition
that as thus determined K be constant. Differentiating (4:8) cova-
riantly with respect to &', we get in virture of K ,=0

(4-12) ;_‘_,1),:1[2; drialley g, 1" K= 2§i‘fgulfzzk.---k4.1 = 0.

Equations (4-8) and (4-12) must be consistent and the condition
arising from this is clearly given by

w1 Aacbbieo Raapibdo- o | =0
: i

Atk t R gk

(arbycyirj)k9 l=1;"'vn)
Consequently the constant curvature K of enveloping space is
determined from (4-8) and the necessary and sufficient condition

for possibility of determination is the equations (4-11) and (4-13),
T hergforg:
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THEOREM 4. Let V, be a Riemann n-space not to be conformally
flat. If theve exists an (n+1)-space S... of constant curvature en-
veloping V,, the constant curvature K is given by the equation (4-8)
under the condition (4-11) and (4-13).

It is possible that the solution K of (4-8), if exists, is uncon-
ditionally constant, similar to the case of Theorem given by F.
Schur [16, p. 83]. Differentiating (4-8) and making use of (2-9)
and (4-10) we have

éilizijtje:kl"'ka ’ Kkaai‘”'llzs =
But the author has no hope to deduce from above equation K ;=
0, and so the condition (4-13) is unavoidable.

Now we define Sy by (4-4), where the intrinsic expression
of K as above found is substituted and then our problem reduce
to finding the condition that there exists H;; satisfying the following
equation :

(4-14) Siju = HikHjl—H»‘lij y
(415) Htj,lc—HUc,j = 0.

We remark that (4-14) is formally same as the Gauss equation
in the case of space being of class one and (4-15) is the Codazzi
equation ; and hence, from now on, the similar process in [9] can
be applicable to (4:14) and (4:15). Namely, in the first time, we
define the type number = of V,. If the matrix

' Salru! Sabcﬂ e Srzhcn
| H
[ e

1l i
H Sijlﬂ Sijhﬂ Sij/cn i
! Spr/?'l Spqr? o quru ‘

is of rank one or zero, we say that V, is of type one. If the rank
is © (22, we say that V, is of type . Then the rank of matrix
I|H,Il is equal to the type number of V,. If r>>3, the solution
H,;; of (4-14) is uniquely determined to within algebraic sign. If
=>4, the Codazzi equation (4-15) is a consequence of (4-14).
Further, the condition that (4-14) has a real solution is that

| J—

| Shcjlc Sbckf Sbcm = Sabcijlc 2_ 0.
1 Scajlc Scaki St'aij

| S(fhjlc Sabkb' Sghij
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Finally, if V, is of type more than two, there exists H,; satisfying
(414), if and Only if thm:jk_z__o, ES,.M@-;,>0 and the system of -
equations R, (S) =0 be satisfied, where R,(S) is the resultant system
of equation (4-14) and

H,,Sijus+ HySiini+ Hy Sjabl +H; S = 0.

However, if V, is of type three, the further condition H,(S)=0
must be subjoined, which is obtained by substituting H;,, as above
determined, in the Codazzi equation. Consequently we establish the

THEOREM 5. Let V, (n=4) be a Riemann n-space not to be
conformally flat. If theve exists an (n+1)-space S,., of constant
curvature, the curvature is determined by the equations (4-8) under
the condition (4-11) and (4-13). If V, is of type more than three,
Jarther condition that therve exists an enveloping space S,.., is that
Suveize =20, 23 Supeize>0 and R,(S)=0. If V, is of type three, the
condition H,(S)=0 is subjoined.

On the other hand, if V, is of type two, the problem to find
H,; satisfying not only (4-14) but also (4-15) does not yet be
solved, so far as the author knows. However, it is shown as in
[21] that in this case S; satisfies the following equation

Snbij Sal:kl = 0 (a: b: ¢, d, i, Js k: =1, n
St.'flij Smlkl
and these are necessary and sufficient condition that (4-14) has a
solution, which is not be unique. Substituting (4-4), the above
equation is written in the form
(4-16) (gabijgum“gabugm.,) K*— (Ram, Beawr— Lapri Leasj
+gabinclI‘kZ“gubkchllij) K+ (_Rahincrlkl
’—Rahkchrlij) = 0)
where we put
‘ Barti = Zai8pi—Zai8bi -

Hence there is not any possibility for V, being of type two, if
(4-16) is not consistent to (4-8).
In any case, the problem reduce finally to the consideration
of V, to be of class one.
II. The case of dimension three
If the dimension of the space is three, we are in special
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circumstances ; there exists always H,; satisfying the Gauss equation
Sfjlcl = kaHjt—Hilij .
From the theorems of determinants we have
; Hap Haq Hm' : = i Shcqr Sln;rp Shcpq =0
l pr Hbq Hbr ; St.'aqr Scarp Scn;:q
i Hcp fqu H cr | Sabqr Sahrp Sab]lq
where (4 b, ¢), (b, ¢ » are even permutations of (1, 2, 3), and then
we get
(4'17) Hqu = ”—,/2': Sf,’urp chzpq ’
: th/11 Sabw[
as a unique solution of the Gauss equation. Thus the Riemann
curvature K of the enveloping space S, is not determined only by
the Gauss equation, and hence we must consider the Codazzi equa-

tion, by which K will be determined. . .
In the first time, we substitute (4-17) from (4-4) and obtain

where we put for brevity =R, and
Xo=88» (g=lgil),
(4-19) Y, = —gR,, Z,, = "7 — " ",
A=-g. B=_gR,
C=—gRy" D=y

Observe that X,, and A are covariant constants. From (4:18) the
Codazzi equation (4-15) is written in the form

(4-20) Ly K'+ M- K+ Nijy K*+ Py K+ Q5. = 0,
where we made use of K being constant and put
Ly =2AY:yn—XuBa,s
M., = 2BY ;094 2AZ;c5,0— Xit,C iv— Yar;B as
Ny = 2CY3:m+2BZit; 00— XD is— Yir,Cn— ZipB.ay »
Py =2DYiyn+2CZ 50— YiiDun—ZCus
Qi = 2DZii; 60— ZigiD s
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Therefore, if V, can be imbedded in a 4-space of constant
curvature, nine equations (4-20) must have a common real solu-
tion K, which is constant and does not satify

(4-21) AK*+BK'+CK+D = 0.

Then the Riemann curvature K of enveloping space S, is given by
a solution as above mentioned and further the second fundamen-
tal tensor H,, of V; is given uniquely by (4-18). As a result we
have the

THEOREM 6. A space V; can be imbedded in a space S, of
constant curvature, if and only if (4:20) have a common real solu-
tion, which is constant and does not satisfy (4-21). Then the
curvature K of S, is given by the above solution and the second
fundamenial tensor H,, of V, is given by (4-18).

If (4-20) has many solution K, K,, ---, as above mentioned,
every K, K,, -+, defines a enveloping space of constant curvature
-and thus there exist at most four spaces enveloping a given Vi,
if exists.

As in general cases of V, (:>3) being conformally flat, for the
case of conformally flat V,, we have also special circumstances.
For such a V,, we have

Rij.k—Rij,lc"% (g{jR,k_-gikR,j) =0,

and it is easily verified that L., is identically zero and converse.
Thus (4-20) is of three degree in terms of K and there exist at
most three spaces enveloping V.

§5. Imbedding an Einstein n-space in an (n+1)-space
of constant curvature

We can evidently apply the general discussion in the last
section to an Einstein #-space, which is not conformally flat. An
Einstein space, which is conformally flat, is of constant curvature

" {16, p. 93] and hence such a space may be excepted from our dis-
cussion. However, following the Allendoerfer’s treatment on an
*Einstein space of class one [10], we give the simpler discussion
for such a space. The condition for this case is more briefly ex-
pressed and so we are interesting about it. On the other hand,
A. Fialkow already investigated the similar problem [12]. But he
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thought of as an enveloping space S,.: being previously given and
so his discussion is exactly similar to Allendoerfer’s one, while our
purpose is to find S,.;, in which a given space V, is imbedded.
In the general case of the last section, we paid attention to a
necessary condition (2-10) (=2 for V, being of class one, and
replaced the curvature tensor by S, defined by (4-4). Also, in

this case we are going to use the similar process. Allendoerfer
deduce the equation

(5-1) Hhiij = DM]M‘
eR en
=_ oo+
n(n—2)gh e 2R(n—2)

from the Gauss equation and hence the matrix || D, ;.|| being neces-
sarily of rank one and semi-definite. Further, from (5-1) and the
Gauss equation we must have the equation
(5-2) n—-2)R { R
n

hijh—

(Rab-hj Rl?u’k'— 2R’ﬁfb R;ka) ’

R }
— e Gunt — R RE s
n(n—z)gltjk nt pugr
+RlﬁjbR£ka—ngkbRﬁja = 0,

Thus the above matrix condition and (5-2) is the necessary and
sufficient condition that an Einstein space V, be of class one
[10]. In order to obtain (5-1) and (5-2), it is not necessary but
the fact that R, is written in the form (1-8) (P=1) and the Ricci
tensor satisfies the characteristic equation R,;=(R/n)g;, of Einstein

space. In our case S, is also written in the form (4:5) (P=1)
and that we have

S{J = _j—gij (:‘gabsmjb)y S == R—n(ﬂ—'l)K (:gab “b)’

by means of (4-4). Hence, from (4-5) we have in like manner
the equation

5-2) (71_—2)_§ { g/ruk} — S Slﬁjk
n

S
hijk n(n_z)
+ SI:Z-JI: Sl’-,lca— S/ﬂkh Sslfja = 0.

Substitution for S,; and S the form (4:4) and R—u(n—1)K
respectively gives the following equation of first degree in terms

of K:

(5-3) Ahuk'K“‘BMﬂu =0,
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where we put

Ahijk = (ﬂ - 1) (72 —2) {th’jk_WR_'l)—ghijk} ’
(5-4) -

Buy=""2Rlp R _
ik n { hidk n(n—2)
- :.thb{fjk'*‘Rn‘fjb Rilfka—Rh'fl.-b Ri?ja .

We may naturally assume that V, itself is not of constant curvature
and hence the tensor A, the coefficient of K in (5-3), is not
zero. Accordingly we have clearly unique solution K of (5-3) if
and only if the equation

(5'5) Aubmi Balu'd = 0

‘} Ahm- Bln'jk
(a,b,¢,d, b i, j, k=1, -, n),

ghrjk}

be satified. Further it will be unavoidable that the equation
(5-6) i Awet Baex =0 (a, - kI=1,,m),

|

i Aln'jlc,l Bhijk,z‘

must satisfy as the condition that K determined as the solution of
(5-3) is constant, similar to (4-13).

Now S, has been intrinsically determined and the second
fundamental tensor H, satisfying (4-5) is found from the equation

. (57) H; ij = eD/’:iuk ,

where D, ; is obtained from D, ; by replacing R.; and R by
Suix and S respectively. The fact, that matrix [[Djull is of rank
one and semi-definite, is the condition that there exists H; satis-
fying (5-7). But we must exclude the special case of S=0, this
case be characterized by

(5-8) T;.;ﬂ- = A R—n(n—1)Busu = 0,

which follows from (4-4) and (5-3). Thus defined H,; satisfies
the Gauss equation, because the condition for this is given by
(5-2"), which is same as (5-3). It is to be noted that the Codazzi
equation is a consequence of the Gauss equation, if S does not
vanish. In fact, contracting the Gauss equation, namely

Ruiyi— K- guige = e(H, Hy.—H.Hy),
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by g, we have
%g,, = e(g""thHm—g“H;,kHu).

From this it follows by the same process as in [10] that the
determinant |H;;| does not vanish for S#0. Consequently

THEOREM 7. Let V, (n>3) be an Einstein n-space, such that
it is not of constant curvature and the tensor Ty, does not be zero.
In order that V, is imbedded in an (n+1)-space of constant curva-
ture, it is necessary and sufficient that the equation (5-5) and (5-6)
ave satisfied and the matrix ||D}, .l is of rank one and semi-definite.
The constant curvature K of the enveloping space is determined by
the equation (5-3).

Next we consider the special case of S=0. Then the constant
curvature of the enveloping space must be equal to R/n(n—1).
It should be remarked that the scalar curvature of any Einstein
space is constant [16, p. 93], and accordingly K=R/n(n—1) is
constant. We have from the Gauss equation

H, S«'jkl +H, Sijbk +H,, Sjahl + ij Siann = 0%,
Contracting by g" we have by means of S,;=0
HS;;u = Hy, Sitis (H = g"Hy,).

If we multiply this by H,, and subtract from it the equation ob-
tained by interchanging # and I, we have in virture of the Gauss
equation

H(H,, Si;u.-z— H, Sijl.-h) = eSuu S/f-tj .

From this and similar expressions for the other terms in the right-
hand member of the following equation it foilows that

v

(5-9) HH,, Sism = g (S S/?-q + Sarii Stf'ij + Sanz S/ffzj) .

Eliminating HH,, we have
(5-10) S Poyen =0 @ - m=1,,m),
| Sucim Prtiacan |
where P i, is the right-hand member in (5-9) divided by e. From

* Cf. (8-2) in [9].
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(5-10) we have the equation of second degree in terms of K and
sustitution for K the expression R/n(n—1) gives

(5-11) R? (gijhl Qs tacan— Gacam C@ri, z'j/:z)
+n(n—1 )R(‘Rum Q»u acim— Racin Qbmmz
— 8isu Py ccann+ Gacam Por 14301)
+ 0 (11— 1)* (R Pkt acam— Racam P[;,klijhl) =0,
where we put

Qs yacan = Lar Ruvam—Ger Roain + Gam Rycar
— Zem Roain + 8o Ricton — Zew Roton
Poitacin = RimiRiuet Ripta R\ no + Riy,i R .
Contracting (5-9) by g® we have
(5-12) H*.S,, = ePy, (= eg"“P,,k,fj,,,),
where K in S,;, and P, is replaced by R/n(n—1). Elimination
H*? from (5-12) gives
Subc:l P abea | = 0,
S P |

which is a consequence of (5-10). Hence, if (5-11) is satisfied,
then (5-10) is satisfied and so we obtain from (5-12) H® because
Siy. does not be zero for V,, which is assumed not to be of con-
stant curvature. In this case e must be chosen so that H is real.
- Then from (5-9) we have H,., because the condition that (5-9)
has solution H,, is given by (5-10), which is equivalent to (5-11).
But we must suppose H#0, that is to say, Pyu#0 from (5-12).
Therefore H,; is thus determined under the condition (5-11) and
thz#o. a

Further we must get the condition that as above determined
H,, satisfy the Gauss equation. From (5-9) and (5-12) we obtain

H2 Smlu * Hhk Sijl:l ) HCm Swlpq = ‘]i Phkl ight R‘m \adpg Srﬂhl .
Interchanging 2 and m we have from the Gauss equation

(5 M 13) Pml-u Sbckm S{ Jhl SIIIIM
1
= I Srflu (Phk\{jhl Pz‘m \adpg ™ th Vight R’klrulpq) .
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Conversely if (5-13) is satisfied, as above determined H,; satisfies
the Gauss equation, as easily seen.

Finally we give the condition that these H,; satisfy the Codazzi
equation. In this case, the Codazzi equation is perhaps independent
from the Gauss equation. Since H,, is expressed in terms of
curvature tensor, the Codazzi equation itself is also expressible in
terms of the curvature tensor and its derivatives. But we can
explicitly write this condition. In fact, multiplying (5-9) by H
and substituting from (5-12), we get

kupqm = HPbkthl .

Covariant differentiation of this equation with respect to 2™ and
multiplication by HS,,.S... gives

H ° Hhk,m Pijhl Spqm chrlt - - HHM' Spm-r Sacrit Pijhl,rn
+ HH,711 Spqrs Stwrll Pb,('lijhl + H‘.’ Spqm Sczmlt Bpkl ght,m o

Substituting from (5-9), (5-12) and the equation obtained from
(5-12) by covariant differentiation with respect to x*, we get

(5 . 14) HHM-,,,. S;;qrc Sanlt })ljhl = qurs!acvltli:}hl\bkm ’
where we put

1
5 (R)qrs.m Suc:lt - Spr/rs, m Pacru) Pbki ijld

+ (Poriagutm Poors— Pt pgrs Pisnaim ) Seavie «

The equation (5-14) is satisfied by H, above determined, so that
the equation

(5 ‘ 15) Qplp-s \acdt \¢jhd bk ™ qurs | acat 1 t5h | bmk = 0 ’

is equivalent to the Codazzi equation. Consequently

THEOREM 8. Let V, #>3) be an Einstein n-space such that
it is not of constant curvatuve and the tensor T vanishes, but not
Piy. In ovder that V, is imbedded in S.., of constant curvature,
it is necessary and sufficient that the equations (5-11), (5-13) and
(5-15) ave satisfied. The curvature K of S.,, is equal to R/n(n—1),
where R is scalar curvature of V,.

This theorem can be applied well when we discuss the problem
for an Einstein #-space of vanishing scalar curvature to be of class
one. Namely, we replace merely S, by R,y in the above discus-

qurs Vaeat \ijhl\okm =
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sion. But, in this case, it must be required that elementary divisors
of matrix ||pH;;—gyll are not all simple [16, p. 199].

§ 6. Imbedding a conformally flat n(> 3)-space
in an (n+1)-space of constant curvature

~ In this section we consider an n-space V,, whose conformal
curvature tensor vanishes. Such a space is the only case excepted
from the general discussion of the fourth section, because all of
coefficients of K in (4-8) are equal to zero, and hence a particular
circumstance will be anticipated. If >3, V, is conformally flat
and we have already the condition that V, be of class one [18]
and so we go along the similar process as shown in the last two
sections.
The conformally flat n-space V, »>3) is characterized by the
equation

6-1) Rhijk = Li; lrk—ghklfj"' lhjg}k"'lmcgij s
where we put

-1 (p._ R,
o= g (Rem gy )

Making use of (6-1) and the equation
HRyu+HuR o+ Hi Ry + HyRin, = 0,
which is deduced from the Gauss equation
Ryw=e(HH,—H;H,),
we obtain in [18] the equation
Hy;=ag;+bly.
Now S,y in (4:4) is also written in the form
(6-2) Siize = Gl — Gl + Uy Gu— iy
where [;; is defined by

, K
l,, = l;— ?g:; .
Thus the similar process used in [18] leads us to

where ¢ and b are scalar.
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We remark here that the rank of the matrix [[Hll is #». Be-
cause the Ricci’s directions coincide with principal directions [12]
and so it is easily proved that at least »—1 principal curvature
are equal, so that the process used in [18] is not limited to our
case for the proof of |H,|#0. Accordingly the Codazzi equation
is a consequence of the Gauss equation and then we consider only
the Gauss equation in the following.

Substitution from (6-3) in the Gauss equation
(6-4) Rlcljk_thx‘jk = e(H), H{k'—'FIthij))
gives

(6:5)  (emabt 5 0)Rup = (@4 50+ = a) K)o

+0b* (]Izj ik — ]hklly)

In the first place we consider the particular case when the matrix
[il4ll is of rank less than two. Since V, may be assumed not to
be of constant curvature, it follows that the rank is one, and from
(6-5) we have

(6-6) e—ab + ;{b =10, a"'+1§2b2+(e—ab)K=0,

from which we get immediately

. e K
6-7) a = ZK, b = I_{— a= ——b

Conversely if [il;l| is of rank one, we take an arbitrary constant
K50 and choose ¢ plus or minus one, according as K is negative
or positive, and then we define ¢, b by (6-7). Moreover H;; is
defined by (6-3), then we obtain (6-4) by substitution. Con-
sequently V, can be imbedded in any (»+1)-space of constant
curvature #0. On the other hand, V, can not be imbedded in flat
space ; since otherwise we show easily [;;=0.

Thus, from our stand-point, we obtain the special type of
conformally flat space, in which ll/;!l is of rank one. In the fol-
lowing, we treat such spaces for a while. We get in the first place

Iy =1Ll Gj=1 -,

since I;; is symmetric and ||/, is of rank one. We see that [,
defined by the above equations, is unique to within algebraic sign.
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Multiplying (6-1) by /, and subtracting from this_the equation
obtained by interchanging % and »:, we have

(6'8) Rjkhilm"-Rjkn'm. lh+Rjkmhli =0 y
by means of (6-1). Contracting (6-8) by g"g”* we have
(6-9) (Ro—Bgyir=0 a= =g,
from which we get
R,V _R
Zij l‘l" 2 ’

which is called the mean curvature of the space for the direction
I' and, from (6-9), I’ is the Ricci principal direction [16, p. 113].
Therefore I’ is the Ricci principal divection and the mean curvature for
this direction is R/2.

We return to the general case when [|l;[| is of rank greater
than one. Then we can easily show that (6:5) must have non-
trivial solutions e—ab+ (K/2)0°, @+ (K*/4)b+ (e—ab)K and b*;
so that we have as the condition

(6-10) Rousci Gasca lunen
R rise  Snijk l higk
R pyrs gpqrs ’ Pars l

(a, -, s=1,--, )

=0

where we put
l)n‘jk = lhjlilc'_lhklij .

However we have in [18] that a conformally flat #-space (n>3) is
of class one, if and only if the matrix ||/;|| is of rank greater than
one and (6-10) is satisfied. Thus such a space can be imbedded
in flat space. Namely, the equation

tRhijk = Aghulc+Blhij'; y

has a non-trivial solution A, B, and ¢ (5£0) and hence we have

(6-11) Rhijk = Cghm-'f'Dlmk .
In the case of class one, we define @ and b as follows:
o= C. s D

\_2'" A\ 9

]
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On the other hand, compairing this with (6-5) we put

e ab+§bﬂ =p (#0)
(6-12) a2+_4ib2+(e—ab>K=,nc,
bi‘ = IO‘D ’
and from this we get
= !,Atthii \ b = »‘\/71D = .__Ae,, -
a e,,\_,‘;((, K+TD\). e f G 5 KD ’

where ¢,, e,, and ¢ are plus or minus one and satisfy the condition

7—%?5> 0, e.ene >0,

Conversely, if we choose @, b as above mentioned, where K is
arbitrary constant such that KD#2, then (6-12) is satisfied and
hence, if we define H;, by (6-3), these H,; satisfy the Gauss
equation. Therefore our space V, can be imbedded in any (n+1)-
space of constant curvature K=0 or 0. But we must except
the special case when K is taken =2/D. If D is constant and K
=2/D, we see easily e=0, and hence V, can not be imbedded in
an (n+1)-space of constant curvature 2/D. Therefore

THEOREM 9. Let V, (=>3) be a conformally flat n-space not of
constant curvature.

(1) If the matvix |l is of rank one, V, is imbedded in any
(n+1)-space of constant curvature but not in flat space.

(2) If the rank is greater than one, V, is imbedded in an
(n+1)-space of constant curvature, if and anly if (6-10) is satisfied.
Such a space V, can be imbedded in any (n+1)-space of constant
curvature #2/D, wheve D is defined by (6-11).

In addition. we consider #n-space V,, which is imbedded in a
conformally flat (s +1)-space C,,,. The conformal curvature tensor
of V, is expressed in the form [15]

Cm-z = M, M;— M, M.+ n‘_l_—z (M M/Z‘g,-;— M. M g

+ g Mja My —&a M1’a 1”1.?) — U_—f%’g% Gijre s

where we put
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M — H 1 o-nh .
ij = r‘j—;ngb ab .

from which we have
(6-13) Ry, = Mkol—Milek +8uAu—gu Ap+ Augi— Augin s
where A;; is defined by the following form

1 M;M!+R
Ay=—— - (Ry+ M;. M}) — b .
T (n-2) Ry 7) 2(n—1) (n—2) &us
Now we shall generalize (6-13) and consider V,, the curvature
tensor of which is expressed in the form

(6-14) Riju= Nikal—Nllek+Gilcajt‘_‘Gilajk+a£kGjl_al'lG‘i/r'
It is easily verified that the tensor R defined by (2-3) vanishes.

&4
Therefore if this space V, can be imbedded in an (#+1)-space of
constant curvature K, we see from (4-8) that K=0 or the tensor
A vanishes, so that V, is of class one or conformally flat. Hence

'ii)re have the

THEOREM 10. If V, can be imbedded in an (n+1)-space of
constant curvature and the curvature tensor is expressed in the form
(6-14), then V, is conformally flat or of class one.

From (6-13) we have the following corollary :

COROLLARY. Letl V, be such an n-space, that is not conformal-
ly flat and not of class one, but is imbedded in a conformally flat
(n+1)-space. Then V, can nol be imbedded in any (n+1)-space
of constant curvalure.

§7. lmbedding a Riemann n-space in an (#+p)-
space of constant curvature

In this section we show a remarkable theorem that the pro-
blem of imbedding in an (s2+p)-space of constant curvature #0
for 2p=2,---,n—2 is reducible generally to one of imbedding in a
flat (4 p)-space, as seen in the fourth section for p=1.

From (4-6) we have

(7-1)
as a condition for V, to be imbedded in an (n+p)-space of con-

stant curvature. We substitute from (4-4) and then have equations
of (p+1)-th degree in terms of K, the constant curvature of en-

=0,

(,,,H)f‘“'i,,+1?]'|"'jp+|k|“ kaps
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veloping space. But coefficients of K? ---, K**' in these equations
are all equal to zero. In fact we see from (2-7)

1 Tovooptl

_ 18411
(7,§)il'”7‘.p+l|jl'”jp+lrkl"'k271+2 - 4!(2p___2)! s,t(zs<l)( 1)

(7-2)
x (]._gili‘.‘.!j.e Jt :ala‘.’bsbl(pf)iK"'ip+|!jl"js"jl "'j;;+l !”3"'ap+)b|“‘\l,’a"'!,‘1 “'bp+1

X ,)Zn“'ll,:nbl“'bpﬂ 3
| AR 2p+2

By means of (7-2) coefficients of K* are equal to the sum of terms,
one of which, for example, is as follows :

1 sti=1
41(2p—2)! (=D

gilieij.ejzlalﬂsbsbz(p{?)i:z "ipﬂ!jl"'j.y”;.jl “jp+| |ag (1;.+|b|“'\l’).-“'!’t“‘bp+|

NG| "'”]1+Ibl”‘bp+l

X
Op, .00 ot
1 D M a1 .
where gi.ig!j,j,!a,aeb,b, is obtained from

L a6 ds

R = — s 2. 0
(]._ghls!].ejz,ﬂlﬂ‘zbsb: ze(f,) iniucid, Rizj.cd, "aasb b,

by replacing R;; a.-- BY & & 4.~ & d,8&.c - and this is
clearly equal to zero. Thus the coefficients of K* vanish and the
similar proof is applicable to the case when we show that coefficients
of K, ---, K**' are all vanishing. Consequently from (7-1) we obtain
the equations of first degree in terms of K as follows:

(7-3) K—-2"-R

L
(pH)“” Lya1i J1° Ip41 k]"'kgl..w

=0.

(7‘+1)i1"'i1:+l ]jl"'jpﬂrkl "'kﬂpi‘?

The component of A), coefficient of K in (7-3), is easily calculated
(P+1
by (2-7) as follows:

- 4) (pz:l])il oAl Jr g Ry Reps
124 U VXY -2
2 s:-i (IHST) (g's“.v ghbx g’sbz g}z“.t)RlI/uﬂlbu R7.o—l]z-(1.e—lbz'
. . e A . \al”'bgn-}l
is41dy@s 1, by Rlyrl-l]za]:+lbﬁ Oky Raga?
R uoayez
= M Ay ces . .
%’l O‘f” Ei.a.Eib, Rt.j,,a.b“ Rz,g_,jq,ah.h,b,.
xR .. Sy by

. R 0 .
1417y 11by ';:H]zllpﬂl’z ke 242
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The latter is generalization of (4-9). If (A)does not be zero, (7-3)
p+1

will uniquely determine the constant curvature of enveloping space
S..», and accordingly the enveloping space S,., itself, under the
condition

(7 5) (pen@Apt1 101 -byaaler-Copas (p+,~)a|"'a;.+1fbl‘“bpn [€iCopra ! =0.

(»{1,)11"",.“!]1 < dpallrkopee (ﬂH)h'“l;mlJu dpri Ry Rapes

And further condition that as thus determined K be constant is
clearly given by the condition

(7-6) | A

@+ @G by 'b,m ley ‘Capte @+n® Ay by "‘b;m ley- ‘Capte

i:o.

(p{];)il"'ip+l|jl'“jp{-l’kl"'k'nw‘lyl (pg)il"'i;vl-l’jl"'jpfllkl"'k2p+2,l}

Now we have the intrinsic form of constant curvature and
then S, is intrinsically define. Hence our problem reduces to the
consideration of the equations (4-5), (4-2) and (4-3), which are
formally equivalent to the Gauss, Codazzi and Ricci equations re-
spectively in the case of V, being of class p. For example, we
can give the condition that V, be imbedded in an (%4 2)-space
of constant curvature, if A does not vanish; namely, we make

. (3) .
merely use of the discussions in [18].

If A does not vanish, the enveloping space of constant curva-
(p+1)

ture, if exists, is unique. While, if V, can be imbedded in (z+p)-
space S,,, and S,.,, both of which are of constant curvature K,
K’ (#), we have from (7-3) A=0. Therefore

(p+1)

THEOREM 10. If the tensor A of V, does not vanish, the en-

P+1)
veloping space of comstant curvature, if exists, is unique. If therve
exist more than one (n+ p)-space of constant curvature such that these
curvatures arve different, the tensor A of V, is necessarily equal to
(p+1)

zero.

It is very compricated to study such a space that the tensor

ani -1 e inks gjaks
(ﬁ])vamshes. For instance, we contract {%ixiglsi Jujagsl Iy DY & 3ke g
and, if we moreover contract, we have a tensor, which is identic-
ally zero. This fact is similar to the case for the conformal cur-
vature tensor. We can easily give an example of such a space
that 4 vanishes, but the problem of studying the geometrical pro-

()
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-perties of all the space, in which A vanishes, is probably very hard.

. - - 0(3) .
As in the case of p=1, it is possible that there exists such a space
that can be imbedded in more than one (z+p)-spaces of constant
«curvature.

[16]
[17]
{18]
[191]
[20]

121]
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