ERRATA, VOLUME XXVII

Yoshiro Mori, "On the integral closure of an integral domain", pp. 249—256.

It was wrong that $\tilde{v}^* \subseteq \tilde{v}^*$. But since $\tilde{v}^* \subseteq \tilde{v}^* \subseteq \tilde{v}^*$, by the following Lemma 7, if we take \tilde{v}^* instead of \Re^* in the proof of Theorem 1, we can correct the proof of Theorem 1 as follows:

Lemma 7. Let the ring \Re be mapped onto $\widetilde{\Re}$ by the ring homomorphism of \Re^* onto $\Re^*/l^*=\mathfrak{o}^*$ and \widetilde{K} be the quotient field of $\widetilde{\Re}$, then $\widetilde{K} \cap \bar{\mathfrak{o}}^* = \widetilde{\Re}$ where $\widetilde{\Re}$ is the integral closure of the local domain $\widetilde{\Re}$ in \widetilde{K} .

Since any element of \tilde{K} is expressed as \tilde{a}/\tilde{b} where \tilde{a} and $\tilde{b}(\neq 0) \in \tilde{\mathbb{N}}$, if $\tilde{a}/\tilde{b} \in \bar{v}^*$, then $(\tilde{a}/\tilde{b})^m + \tilde{c}_1^* (\tilde{a}/\tilde{b})^{m-1} + \cdots + \tilde{c}_i^* (\tilde{a}/\tilde{b})^{m-i} + \cdots + \tilde{c}_i^* \tilde{a}^{m-i} \tilde{b}^i + \cdots + \tilde{c}_m^* \tilde{b}^m \in l^*$. Hence $(a^m + c_1^* a^{m-1} b + \cdots + c_i^* a^{m-i} b^i + \cdots + c_m^* b^m)^p = 0$, provided $l^{*p} = (0)$, and also $a^M + d_1^* a^{M-1} b + \cdots + d_i^* a^{M-i} b^i + \cdots + d_M^* b^M = 0$ where $d_i^* \in \mathbb{N}^*$. This shows that a^M is in $(a^{M-1}b, \cdots, a^{M-i}b^i, \cdots, b^M) \Re^*$ and therefore in $(a^{M-1}b, a^{M-2}b^2, \cdots, a^{M-i}b^i, \cdots, b^M) \Re^* \cap \Re = (a^{M-1}b, \cdots, a^{M-i}b^i, \cdots, b^M) \Re$. Thus we can write $a^M + d_1 a^{M-1} b + d_2 a^{M-2} b^2 + \cdots + d_i a^{M-i} b^i + \cdots + d_M b^M = 0$ where d_i are the residue classes of d_i modulo l^* . Hence $\tilde{a}/\tilde{b} \in \tilde{\Re}$ and $\tilde{\Re} \subset \tilde{v}^*$ because every element of \Re is a non-zero-divisor in \Re^* . This completes the proof of our Lemma 7.

Proof of Theorem 7.

If α is an element of \mathfrak{R} , α is a non-zero-divisor in \mathfrak{R}^* . Let α denote the residue class of $\alpha \in \mathfrak{R}^*$ modulo I^* . Then $\widetilde{\alpha}\widetilde{v}^*$ can be expressed as a finite intersection of symbolic powers of minimal prime ideals by Proposition 3. If $\widetilde{\alpha}\widetilde{v}^* = \cap Q_{ij}^*$ is an irredundant intersection of symbolic powers of minimal prime ideals, we put $Q_{ij}^* \cap \widetilde{\mathfrak{R}} = \widetilde{\mathfrak{q}}_{ij}$. Then $\widetilde{\alpha}\widetilde{\mathfrak{R}} = \cap \overline{\mathfrak{q}}_{ij}$ by Lemma 7. As we may assume that $\widetilde{\alpha}\widetilde{\mathfrak{R}} = \cap \overline{\widetilde{\mathfrak{q}}}_{i}$ is an irredundant intersection of primary ideals $\overline{\widetilde{\mathfrak{q}}}_{i}$, $\overline{\widetilde{\mathfrak{q}}}_{2}$, \cdots , $\overline{\widetilde{\mathfrak{q}}}_{r}$, the prime ideals $\widetilde{\mathfrak{p}}_{i}$ belonging to the primary ideals $\overline{\widetilde{\mathfrak{q}}}_{i}$ is a minimal prime ideal in $\widetilde{\mathfrak{R}}$. For, if we assume that $\widetilde{\widetilde{\mathfrak{p}}}_{i}$ is not minimal in $\widetilde{\mathfrak{R}}$, similarly to the proof of Prop 3, $(\widetilde{\widetilde{\mathfrak{p}}}_{i})^{-1} \supset \widetilde{\mathfrak{R}}$, and $(\widetilde{\mathfrak{p}}_{i})^{-1} (\widetilde{\mathfrak{p}}_{i}) = \widetilde{\mathfrak{p}}_{i}$. Hence, if $\widetilde{\mathfrak{X}} \in (\widetilde{\widetilde{\mathfrak{p}}}_{i})^{-1}$ and $\widetilde{\mathfrak{X}} \notin \widetilde{\mathfrak{R}}$, then $\widetilde{\mathfrak{X}} \widetilde{\mathfrak{p}}_{i} \in \widetilde{\mathfrak{p}}_{i}$ and also $\widetilde{\mathfrak{X}} \circ \widetilde{\mathfrak{p}}_{i} \in \widetilde{\mathfrak{p}}_{i}$ $(N=1, 2, \cdots, n, \cdots)$.

Therefore, there is an element $\tilde{\rho}$ in $\tilde{\mathbb{R}}$ such that $\tilde{\rho}\tilde{x}''\epsilon\tilde{\tilde{\mathbb{R}}}$ ($N=1,2,3,\cdots$). Hence $\tilde{\rho}\tilde{x}''\epsilon\tilde{v}^*$ and also $\tilde{x}\epsilon\tilde{v}^*$ by Prop. 3. Therefore, $\tilde{x}\epsilon\tilde{\tilde{\mathbb{R}}}$ by Lemma 7. This is a contradiction. Hence $\tilde{\tilde{\nu}}_i$ is a minimal prime ideal in $\tilde{\mathbb{R}}$. It follows that $\tilde{\mathbb{R}}$ is an "Endliche diskrete Hauptordnung." On the other hand, \Re is clearly isomorphic to $\tilde{\Re}$ and also $\tilde{\Re}$ is isomorphic to $\tilde{\tilde{\mathbb{R}}}$. This implies that $\tilde{\Re}$ is an "Endliche diskrete Hauptordnung". This completes the proof of our Theorem 1.