ERRATA, VOLUME XXVII

Yoshiro Mori, "On the integral closure of an integral domain", pp. 249-256.

It was wrong that $\mathfrak{o}^{*} \subseteq \tilde{0}^{*}$. But since $\mathfrak{v}^{*} \subseteq \tilde{\overline{\mathfrak{D}}}^{*} \cong \tilde{0}^{*}$, by the following Lemma 7, if we take $\overline{0}^{*}$ instead of $\overline{\mathfrak{R}}^{*}$ in the proof of Theorem 1 , we can correct the proof of Theorem 1 as follows:

Lemma 7. Let the ring \mathfrak{R} be mapped onto \tilde{R} by the ring homomorphism of \mathfrak{R}^{*} onto $\mathfrak{R}^{*} / l^{*}=0^{*}$ and \tilde{K} be the quotient field of $\tilde{\mathfrak{R}}$, then $\tilde{K} \cap \tilde{v}^{*}=\tilde{\mathfrak{R}}$ where $\tilde{\mathfrak{R}}$ is the integral closure of the local domain $\tilde{\mathfrak{R}}$ in \tilde{K}.

Since any element of \tilde{K} is expressed as \tilde{a} / \tilde{b} where \tilde{a} and $\tilde{b}(\neq 0) \in \tilde{\mathfrak{R}}$, if $\tilde{a} / \tilde{b} \in \tilde{\mathfrak{D}}^{*}$, then $(\tilde{a} / \tilde{b})^{m}+\tilde{c}_{1}^{*}(\tilde{a} / \tilde{b})^{m-1}+\cdots+\tilde{c}_{i}{ }^{*}(\tilde{a} / \tilde{b})^{m-i}+\cdots$ $+\tilde{c}_{m}^{*}=0$ where $\tilde{c}_{i}^{*} \in \mathfrak{0}^{*}$. Hence $\tilde{a}^{m}+\tilde{c}_{1}^{*} \tilde{a}^{m-1} \tilde{b}+\cdots+\tilde{c}_{i}^{*} \tilde{a}^{m-i} \tilde{b}^{i}+\cdots$ $+\tilde{c}_{m}^{*} \tilde{b}^{m}=0$. Let c_{i}^{*}, a, b respectively representatives in \mathfrak{R}^{*} of the residue classes $\tilde{c}_{i}{ }^{*}, \tilde{a}, \tilde{b}$ where we choose a, b from \mathfrak{H}, then $a^{m}+c_{1}^{*} a^{m-1} b+\cdots+c_{i}^{*} a^{m-i} b^{i}+\cdots+c_{m}{ }^{*} b^{m} \in \boldsymbol{l}^{*}$. Hence $\left(a^{m}+c_{1}^{*} a^{m-1} b+\cdots\right.$ $\left.+c_{i}^{*} a^{m-i} b^{i}+\cdots+c_{m}{ }^{*} b^{m}\right)^{\mu}=0$, provided $\boldsymbol{l}^{* \rho}=(0)$, and also $a^{3 P}+d_{1}{ }^{*} a^{M-1} b$ $+\cdots+d_{i}{ }^{*} a^{M-i} b^{i}+\cdots+d_{M}{ }^{*} b^{M}=0$ where $d_{i}^{*} \in \mathfrak{R}^{*}$. This shows that a^{M} is in ($a^{M-1} b, \cdots, a^{M-1} b^{i}, \cdots, b^{M}$) \mathfrak{R}^{*} and therefore in ($a^{M-1} b, a^{M-2} b^{2}, \cdots$, $\left.a^{12-i} b^{i}, \cdots, b^{M 1}\right) \mathfrak{R}^{*} \cap \mathfrak{R}=\left(a^{M-1} b, \cdots, a^{1 /-i} b^{i}, \cdots, b^{14}\right) \mathfrak{R}$. Thus we can write $a^{M}+d_{1} a^{M-1} b+d_{i} a_{\tilde{M-2}} b_{\tilde{d}}^{2}+\cdots+d_{i} a^{M-i} b^{i}+\cdots+d_{M} b^{M i}=0$ where $d_{i} \in \mathfrak{R}$ and also $\tilde{a}^{M}+\tilde{d}_{1} \tilde{a}^{13-1} \tilde{b} \cdots+\tilde{d}_{i} \tilde{a}^{M-i} \tilde{b}^{i}+\cdots+\tilde{d}_{M} \tilde{b}^{M}=0$ where \tilde{d}_{i} are the residue classes of d_{i} modulo \boldsymbol{l}^{*}. Hence $\tilde{a} / \tilde{b} \in \tilde{\tilde{R}}$ and $\overline{\tilde{\mathfrak{R}}} \subset \mathscr{0}^{*}$ because every element of \mathfrak{R} is a non-zero-divisor in \mathfrak{R}^{*}. This completes the proof of our Lemma 7.

Proof of Theorem 7.
If α is an element of \mathfrak{R}, α is a non-zero-divisor in $\overline{\mathfrak{R}}^{*}$. Let $\dot{\alpha}$ denote the residue class of $\alpha \in \mathfrak{R}^{*}$ modulo \boldsymbol{l}^{*}. Then $\tilde{\alpha}_{\overline{0}}{ }^{*}$ can be expressed as a finite intersection of symbolic powers of minimal prime ideals by Proposition 3. If $\tilde{\alpha}_{0}{ }^{*}=\cap Q_{i j}^{*}$ is an irredundant intersection of symbolic powers of minimal prime ideals, we put $\bar{Q}_{1 j} * \cap \overline{\tilde{\Re}}=\overline{\tilde{q}}_{i j}$. Then $\tilde{\alpha} \tilde{\tilde{\mathfrak{F}}}=\cap \overline{\tilde{q}}_{i j}$ by Lemma 7. As we may assume that $\tilde{\alpha} \tilde{\tilde{\tilde{j}}}_{i}=\cap_{\lambda} \overline{\tilde{q}}_{\lambda}$ is an irredundant intersection of primary ideals $\overline{\tilde{\mathfrak{q}}}_{1}, \overline{\tilde{q}}_{2}, \cdots, \overline{\tilde{\mathfrak{q}}}_{\text {r }}$, the prime ideals $\overline{\tilde{p}}_{i}$ belonging to the primary ideals $\overline{\tilde{q}}_{i}$ is a minimal prime ideal in $\overline{\tilde{R}}$. For, if we assume that $\overline{\tilde{p}_{i}}$ is not minimal in $\tilde{\tilde{R}}$, similarly to the proof of Prop 3, $\left(\overline{\tilde{p}}_{i}\right)^{-1} \supset \overline{\tilde{i l}}$, and $\left(\overline{\tilde{p}}_{i}\right)^{-1}\left(\tilde{p}_{i}\right)=\tilde{\tilde{p}}_{i}$. Hence, if $\tilde{x} \in\left(\overline{\tilde{p}}_{i}\right)^{-1}$ and $\tilde{x} \notin \overline{\tilde{R}}$, then $\tilde{x}_{p} \tilde{p}_{i} \in \tilde{\tilde{p}}_{i}$ and also $\tilde{x}^{\prime} \tilde{p}_{i} \in \tilde{p}_{i}(N=1,2, \cdots, n, \cdots)$.

Therefore, there is an element $\tilde{\beta}$ in $\overline{\tilde{R}}$ such that $\tilde{\mu} \tilde{x}^{N} \in \tilde{\tilde{\mathscr{R}}}(N=1,2$, 3, ․). Hence $\tilde{\mu} \tilde{x}^{N} \in \overline{\mathfrak{D}}^{*}$ and also $\tilde{x} \in \overline{\mathcal{D}}^{*}$ by Prop. 3. Therefore, $\tilde{x} \in \tilde{\tilde{\mathcal{R}}}$ by Lemma 7. This is a contradiction. Hence $\overline{\tilde{p}}_{i}$ is a minimal prime ideal in $\overline{\tilde{R}}$. It follows that $\overline{\tilde{\mathscr{R}}}$ is an "Endliche diskrete Hauptordnung." On the other hand, \mathfrak{R} is clearly isomorphic to $\tilde{\mathfrak{R}}$ and also $\overline{\mathfrak{R}}$ is isomorphic to $\overline{\mathfrak{R}}$. This implies that $\overline{\mathfrak{R}}$ is an "Endliche diskrete Hauptordnnug". This completes the proof of our Theorem 1.

