Note on intersection multiplicity of proper components of algebraic or algebroid varieties

By
Masayoshi Nagata

(Received Dec. 1, 1953)

Let \mathfrak{v} be the ring of polynomials or the ring of formal power series in indeterminates x_{1}, \cdots, x_{n} over a field k. Let \mathfrak{p} and \mathfrak{q} be prime ideals in \mathfrak{o} and let n be a minimal prime divisor of $(\mathfrak{p}, \mathfrak{q}) \mathfrak{v}$. It is easy to see that rank $n \leq$ rank $\mathfrak{p}+$ rank $q^{1{ }^{1)}}$ When rank $\mathfrak{n}=$ rank $p+\operatorname{rank} \mathfrak{q}$, we say that \mathfrak{n} is a proper component of $p \cup \mathfrak{q}$. On the other hand, the multiplicity $i(n ; p \cup q)$ of a minimal prime divisor \mathfrak{n} of $(p, q) \mathfrak{o}$ with respect to $\mathfrak{p \cup q}$ is defined as follows: Let \mathfrak{v}^{\prime} be a copy of \mathfrak{v} and we construct $\mathfrak{v}^{*}=\mathfrak{v} \times{ }_{k^{\prime}} \mathfrak{v}^{\prime}$.) We denote by \mathfrak{d} the set $\left\{x_{1}-x_{1}{ }^{\prime}, \cdots, x_{n}-x_{n}{ }^{\prime}\right\}$, where $x_{i}{ }^{\prime}$ is the copy of x_{i} (in v^{\prime}). Let \mathfrak{q}^{\prime} be the copy of \mathfrak{q}. Set $\mathfrak{n}^{*}=(\mathfrak{n}, \mathfrak{b}) \mathfrak{v}$. It is evident that \mathfrak{n}^{*} is a prime ideal of \mathfrak{v}^{*}. Set $\hat{\mathfrak{v}}=\mathfrak{v}^{*} \mathfrak{n}^{*}$. Then we define

$$
i(\mathfrak{n} ; \mathfrak{p} \cup \mathfrak{q})=e\left(\left(\mathfrak{d}, \mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}} /\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}\right) .^{344}
$$

The purpose of the present paper is to show the following
Theorem. Assume that $\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{v}$ is a prime ideal of \hat{v} and that u is a proper component of $p \cup q$. Then we have
(1) $i(n ; \mathfrak{p} \cup \mathfrak{q}) \leqq e\left((p, q) \mathfrak{o n}_{n} / q \mathfrak{p}_{n}\right)$, and the equality holds if and only if $p \mathfrak{o}_{n}$ is generated by elements of number rank p;
(2) $i(n ; p \cup q) \leq e\left((f, q) \mathfrak{o n n}_{n}\right)$, and the equality holds if and only

[^0]if $\mathfrak{p} \mathfrak{v}_{n}$ and $\eta \mathfrak{o}_{n}$ are generated by elements of numbers rank \mathfrak{p} and rank \mathfrak{q} respectively.

In §2 we translate this theorem into geometric language.

§1. Proof of the theorem.

1) Proof of (1). We choose a subset $\mathfrak{b}=\left(b_{1}, \cdots, b_{r}\right)(r=\operatorname{rank} \mathfrak{p})$ of \mathfrak{p} so that $\mathfrak{b} \bmod q \mathfrak{o}_{\mathfrak{n}}$ is a system of parameters in $\mathfrak{o}_{\mathfrak{n}} / q \mathfrak{v}_{\mathfrak{n}}$ and that $e\left((\mathfrak{b}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q} \mathfrak{o}_{\mathfrak{n}}\right)=e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q} \mathfrak{p}_{\mathfrak{n}}\right) .{ }^{\mathfrak{q})} \quad$ Then $e\left(\left(\mathfrak{b}, \mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}} / \mathfrak{q}^{\prime} \hat{\mathfrak{v}}\right)=$ $\boldsymbol{e}\left(\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{o}} / \mathfrak{q}^{\prime} \hat{\mathfrak{v}}\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}\right) \boldsymbol{e}\left(\left(\mathfrak{b}, \mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}} /\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}\right)^{\mathfrak{s}}=\boldsymbol{e}\left(\left(\mathfrak{b}, \mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}} /\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}\right)$ $=e\left(\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q} \mathfrak{v}_{\mathfrak{n}}\right)=e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q} \mathfrak{o}_{\mathfrak{n}}\right)$. On the other hand, $e\left(\left(\mathfrak{b}, \mathfrak{b}, \mathfrak{q}^{\prime}\right)\right.$ $\left.\mathfrak{v} / \mathfrak{q}^{\prime} \hat{\mathfrak{v}}\right)=\sum e\left(\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{p}}_{\mathfrak{i}} / \mathfrak{q}_{\mathfrak{q}}\right) e((\mathfrak{b}, \hat{\mathfrak{q}}) \hat{\mathfrak{o}} / \hat{\mathfrak{q}}),{ }^{\mathfrak{k}}$ where $\hat{\hat{p}_{i}}$ runs over all minimal prime divisors of $\left(\mathfrak{q}^{\prime}, \mathfrak{b}\right) \hat{\mathfrak{v}}$. Since $\mathfrak{b} \subseteq p$ and since rank $\mathfrak{b} \hat{\mathfrak{v}}=$ rank \mathfrak{p}, we see that $\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ must appear among \hat{p}_{i}. Therefore we have $e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q} \mathfrak{o}_{\mathfrak{n}}\right) \geq e\left(\left(\mathfrak{D}, \mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{o}} /\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{o}}\right)=i(\mathfrak{n} ; \mathfrak{p} \cup \mathfrak{q})$. This proves the inequality in (1). Now that $e\left((\mathfrak{b}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q}_{\mathfrak{n}}\right)=i(\mathfrak{n} ; \mathfrak{p} \cup \mathfrak{q})$ is equivalent to the following two conditions: a) $e\left(\left(\mathfrak{b}, q^{\prime}\right) \hat{\mathfrak{v}}\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{o}} /\right.$ $\mathfrak{q}^{\prime} \hat{\mathfrak{v}}\left(\mathfrak{p}, \mathfrak{q}^{\prime} \hat{\mathfrak{v}}\right)=1$ and $\left.b\right)\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ is the unique minimal prime divisor of $\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$. a) is equivalent to that the primary component of $\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ belonging to $\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ coincides with $\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$. Therefore, together with b), they are equivalent to the condition that $\left(\mathfrak{b}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ $=\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$, that is, $\mathfrak{b}_{\mathfrak{n}}=\mathfrak{p} \mathfrak{o}_{\mathfrak{n}}$. Thus (1) is proved completely.
2) Proof of (2). We choose a subset $\overline{\mathfrak{a}}=\left(\bar{a}_{1}, \cdots, \bar{a}_{s}\right)$ ($s=$ rank $\mathfrak{p}+\operatorname{rank} \mathfrak{q})$ of $(\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}}$ so that $\overline{\mathfrak{a}}$ is a system of parameters in $\mathfrak{o}_{\mathfrak{n}}$ and that $e\left(\overline{\bar{a}} \mathfrak{o}_{\mathfrak{n}}\right)=e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}}\right)$. Further we choose elements a_{1}, \cdots, a_{s} of $\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ so that $a_{i} \equiv \bar{a}_{i} \bmod \mathfrak{b} \hat{\mathbf{v}}$. Set $\mathfrak{a}=\left(a_{1}, \cdots, a_{s}\right)$. Then
 other hand, $e((a, \mathfrak{D}) \hat{\mathfrak{b}})=\sum e\left(a 0_{\hat{p}_{i}}\right) e\left(\left(0, \hat{p}_{i}\right) \hat{\mathfrak{b}} / \hat{p}_{i}\right),{ }^{\text {r) }}$ where $\hat{\mathfrak{p}}_{i}$ runs over all minimal prime divisors of $\mathfrak{a} \hat{\mathbf{v}}$. Since $a \subseteq\left(p, q^{\prime}\right) \hat{\mathfrak{v}}$, we see that $\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ appears among $\hat{\mathfrak{p}}_{i}$. Therefore we have $e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{v}_{\mathfrak{n}}\right) \geq e((\mathfrak{b}, \mathfrak{p}$, $\left.\left.\mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}} /\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}\right)=i(\mathfrak{n} ; \mathfrak{p} \cup \mathfrak{q})$. Now that $e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}}\right)=i(\mathfrak{n} ; \mathfrak{p} \cup \mathfrak{q})$ is equivalent to the following two conditions: a) $e\left(\mathfrak{a} \hat{\mathcal{v}}\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{p}}\right)=1$ and b) $\left(\mathfrak{p}, \mathfrak{q}^{\prime}\right) \hat{\mathfrak{v}}$ is the unique minimal prime divisor of â0. And therefore it is equivalent to the following: c) $\mathfrak{a i}=\left(p, q^{\prime}\right) \hat{0}$. This shows our assertion.
[^1]
§2. Translation into geometric language.

Let U, V be algebraic (or algebroid) varieties in n-space (or local n-space) S^{n}. Assume that a variety W is a proper component of the intersection of U and V. Take a common field k of definition for U, V and W. Let \mathfrak{o} be the ring of polynomials (or formal power series) in indeterminates x_{1}, \cdots, x_{n}. Take prime ideals n, p and q which corresonds to W, U and V respectively. Then we have
(1) $\quad i(W ; U \cdot V) \leq e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q}_{\mathfrak{n}}\right)$, and the equality holds if and only if U is locally complete intersection at W;
(2) $i(W ; U \cdot V) \leq e\left((p, q) \mathfrak{o}_{n}\right)$, and the equality holds if and only if both U and V are locally complete intersections respectively at W.

Remark. It is easy to see that the following four conditions are equivalent to each other :
(1) $e\left((p, q) \mathfrak{o}_{\mathfrak{n}} / \mathfrak{q}_{\mathfrak{n}}\right)=1$,
(2) $e\left((\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}}\right)=1$,
(3) $(\mathfrak{p}, \mathfrak{q}) \mathfrak{o}_{\mathfrak{n}}=\mathfrak{n o n}_{\mathfrak{n}}$,
(4) $i(W ; U \cdot V)=1 \quad$ (for the case of our theorem, $i(n ; p \cup q)$ $=1$).

[^0]: 1) It is easy to see that if r is a regular local ring and if p and q are prime ideals of \mathfrak{r}, then for any minimal prime divisor \mathfrak{n} of $(p, q) \mathfrak{r}$ we have rank $\mathfrak{n} \leqq r a n k$ $p+$ rank q.
 2) When v is the ring of polynomials, we mean under this notation $o \times_{k} 0^{\prime}$ the tensor product of \mathfrak{v} and \mathfrak{v}^{\prime} over k (therefore $\mathfrak{o} x_{k} \mathfrak{v}^{\prime}=k\left[x_{1}, \cdots, x_{n} x_{1}{ }^{\prime}, \cdots, x_{n}{ }^{\prime}\right]$); when \mathfrak{o} is the ring of formal power series, we mean under the same notation the Kroneckerian product of \mathfrak{o} and \mathfrak{o}^{\prime} over k in the sense of Chevelley, Intersections of algebraic and algebroid varieties, Trans. Amer. Math. Soc. 57 (1945), pp. 1-85 (in this case, $\mathfrak{o} \times{ }_{k} \mathrm{o}^{\prime}=k$ $\left.\left\{y_{1}, \cdots, x_{n}, x_{1}{ }^{\prime}, \cdots, x_{n}{ }^{\prime}\right\}\right)$.
 3) Cf. C. Chevalley, 1. c. note 2).
[^1]: 4) Cf. P. Samuel, La notion de multiplicicité en algèbre et en géométrie algébrique, J. Math. Pures Appl. (9), 30 (1951), pp. 159-274.
 5) This equality follows from the theorem of associativity formula due to C. Chevally, 1. c. note 2), which can be proved easily without assumption on basic field; see, Nagata, Local rings, Súgaku, 5 No. 4 (1954) pp. 229-238 (in Japanese).
