MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1954.

Note on intersection multiplicity of proper components of algebraic or algebroid varieties

By

Masayoshi NAGATA

(Received Dec. 1, 1953)

Let v be the ring of polynomials or the ring of formal power series in indeterminates x_1, \dots, x_n over a field k. Let v and q be prime ideals in v and let u be a minimal prime divisor of (v, q)v. It is easy to see that rank $u \leq \operatorname{rank} v + \operatorname{rank} q^{(1)}$ When rank u =rank $v + \operatorname{rank} q$, we say that u is a proper component of $v \cup q$. On the other hand, the multiplicity $i(u; v \cup q)$ of a minimal prime divisor u of (v, q)v with respect to $v \cup q$ is defined as follows: Let v' be a copy of v and we construct $v^* = v \times v'$.²⁾ We denote by vthe set $\{x_1 - x_1', \dots, x_n - x_n'\}$, where x_i' is the copy of x_i (in v'). Let q' be the copy of q. Set $u^* = (u, v)v$. It is evident that u^* is a prime ideal of v^* . Set $\hat{v} = v^* u^*$. Then we define

$$i(\mathfrak{n};\mathfrak{p}\cup\mathfrak{q})=e((\mathfrak{d},\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}/(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}})^{.3/4}$$

The purpose of the present paper is to show the following

Theorem. Assume that $(\mathfrak{p}, \mathfrak{q}')\mathfrak{o}$ is a prime ideal of \mathfrak{o} and that \mathfrak{n} is a proper component of $\mathfrak{p} \cup \mathfrak{q}$. Then we have

(1) $i(\mathfrak{n}; \mathfrak{p} \cup \mathfrak{q}) \leq e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n/\mathfrak{q}\mathfrak{o}_n)$, and the equality holds if and only if $\mathfrak{p}\mathfrak{o}_n$ is generated by elements of number rank \mathfrak{p} ;

(2) $i(\mathfrak{n}; \mathfrak{p} \cup \mathfrak{q}) \leq e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_{\mathfrak{n}})$, and the equality holds if and only

¹⁾ It is easy to see that if r is a regular local ring and if \mathfrak{p} and \mathfrak{q} are prime ideals of r, then for any minimal prime divisor n of $(\mathfrak{p}, \mathfrak{q})r$ we have rank $\mathfrak{n} \leq \operatorname{rank} \mathfrak{p} + \operatorname{rank} \mathfrak{q}$.

²⁾ When \mathfrak{o} is the ring of polynomials, we mean under this notation $\mathfrak{o} \times_k \mathfrak{o}'$ the tensor product of \mathfrak{o} and \mathfrak{o}' over k (therefore $\mathfrak{o} \times_k \mathfrak{o}' = k[x_1, \dots, x_n, x_1', \dots, x_n'])$; when \mathfrak{o} is the ring of formal power series, we mean under the same notation the Kroneckerian product of \mathfrak{o} and \mathfrak{o}' over k in the sense of C. Chevelley, Intersections of algebraic and algebroid varieties, Trans. Amer. Math. Soc. 57 (1945), pp. 1-85 (in this case, $\mathfrak{o} \times_k \mathfrak{o}' = k$ $\{x_1, \dots, x_n, x_1', \dots, x_n'\}$).

³⁾ Cf. C. Chevalley, 1. c. note 2).

if \mathfrak{po}_n and \mathfrak{qo}_n are generated by elements of numbers rank \mathfrak{p} and rank \mathfrak{q} respectively.

In §2 we translate this theorem into geometric language.

$\S1$. Proof of the theorem.

1) Proof of (1). We choose a subset $\mathfrak{b} = (b_1, \dots, b_r)$ ($r = \operatorname{rank} \mathfrak{p}$) of p so that b mod qo_n is a system of parameters in o_n/qo_n and that $e((\mathfrak{b},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}}) = e((\mathfrak{p},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}}).^{4}$ Then $e((\mathfrak{d},\mathfrak{b},\mathfrak{q}')\hat{\mathfrak{o}}/\mathfrak{q}'\hat{\mathfrak{o}}) =$ $e((\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}}(\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}}/\mathfrak{q}'\hat{\mathfrak{d}}(\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}})e((\mathfrak{d},\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}}/(\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}})^{5)}=e((\mathfrak{d},\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}}/(\mathfrak{d},\mathfrak{q}')\hat{\mathfrak{d}})$ $=e((\mathfrak{b},\mathfrak{q}')\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}})=e((\mathfrak{p},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}}).$ On the other hand, $e((\mathfrak{d},\mathfrak{b},\mathfrak{q}')$ $v/q'\hat{v} = \sum e((\mathfrak{b}, q')\hat{v}_{\mathfrak{p}_i}/q_{\mathfrak{p}_i})e((\mathfrak{d}, \hat{\mathfrak{q}})\hat{v}/\hat{\mathfrak{q}})^{5}$ where $\hat{\mathfrak{p}}_i$ runs over all minimal prime divisors of $(\mathfrak{q}', \mathfrak{b})\hat{\mathfrak{o}}$. Since $\mathfrak{b} \subseteq \mathfrak{p}$ and since rank $\mathfrak{b}\hat{\mathfrak{o}}$ =rank \mathfrak{p} , we see that $(\mathfrak{p}, \mathfrak{q}')\mathfrak{\hat{o}}$ must appear among $\mathfrak{\hat{p}}_{i}$. Therefore we have $e((\mathfrak{p},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}}) \geq e((\mathfrak{d},\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}/(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}) = i(\mathfrak{n};\mathfrak{p}\cup\mathfrak{q}).$ This proves the inequality in (1). Now that $e((\mathfrak{b},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}}) = i(\mathfrak{n};\mathfrak{p}\cup\mathfrak{q})$ is equivalent to the following two conditions: a) $e((\mathfrak{b},\mathfrak{q}')\hat{\mathfrak{o}}(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}/\mathfrak{o}/\mathfrak{o})$ $\mathfrak{q}'\hat{\mathfrak{d}}_{(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{d}}} = 1$ and b) $(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{d}}$ is the unique minimal prime divisor of $(\mathfrak{b},\mathfrak{q}')\mathfrak{\hat{o}}$. a) is equivalent to that the primary component of $(\mathfrak{b},\mathfrak{q}')\hat{\mathfrak{o}}$ belonging to $(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}$ coincides with $(\mathfrak{b},\mathfrak{q}')\hat{\mathfrak{o}}$. Therefore, together with b), they are equivalent to the condition that $(\mathfrak{b},\mathfrak{q}')\hat{\mathfrak{o}}$ $=(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}$, that is, $\mathfrak{bo}_{\mathfrak{n}}=\mathfrak{po}_{\mathfrak{n}}$. Thus (1) is proved completely.

2) Proof of (2). We choose a subset $\bar{\mathfrak{a}} = (\bar{a}_1, \dots, \bar{a}_s)$ (s=rank \mathfrak{p} +rank \mathfrak{q}) of $(\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n$ so that $\bar{\mathfrak{a}}$ is a system of parameters in \mathfrak{o}_n and that $e(\bar{\mathfrak{a}}\mathfrak{o}_n) = e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n)$. Further we choose elements a_1, \dots, a_s of $(\mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}}$ so that $a_i \equiv \bar{a}_i \mod \mathfrak{d}\hat{\mathfrak{o}}$. Set $\mathfrak{a} = (a_1, \dots, a_s)$. Then $e((\mathfrak{a}, \mathfrak{d})\hat{\mathfrak{o}}) = e(\mathfrak{d}\hat{\mathfrak{o}}\mathfrak{d}\hat{\mathfrak{o}})^{\mathfrak{h}} = e(\bar{\mathfrak{a}}\mathfrak{o}_n) = e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n)$. On the other hand, $e((\mathfrak{a}, \mathfrak{d})\hat{\mathfrak{o}}) = \sum e(\mathfrak{a}\mathfrak{o}\hat{\mathfrak{p}}_i)e((\mathfrak{d}, \hat{\mathfrak{p}}_i)\hat{\mathfrak{o}}/\hat{\mathfrak{p}}_i),^{\mathfrak{h}}$ where $\hat{\mathfrak{p}}_i$ runs over all minimal prime divisors of $\mathfrak{a}\hat{\mathfrak{o}}$. Since $\mathfrak{a}\subseteq(\mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}}$, we see that $(\mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}}$ appears among $\hat{\mathfrak{p}}_i$. Therefore we have $e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n) \ge e((\mathfrak{d}, \mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}})$ is equivalent to the following two conditions: a) $e(\mathfrak{a}\hat{\mathfrak{o}}(\mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}}) = 1$ and b) $(\mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}}$ is the unique minimal prime divisor of $\mathfrak{a}\hat{\mathfrak{o}}$. And therefore it is equivalent to the following: c) $\mathfrak{a}\hat{\mathfrak{o}} = (\mathfrak{p}, \mathfrak{q}')\hat{\mathfrak{o}}$. This shows our assertion.

280

⁴⁾ Cf. P. Samuel, La notion de multiplicicité en algèbre et en géométrie algébrique, J. Math. Pures Appl. (9), 30 (1951), pp. 159-274.

⁵⁾ This equality follows from the theorem of associativity formula due to C. Chevally, 1. c. note 2), which can be proved easily without assumption on basic field; see, Nagata, Local rings, Súgaku, 5 No. 4 (1954) pp. 229-238 (in Japanese).

§2. Translation into geometric language.

Let U, V be algebraic (or algebraid) varieties in *n*-space (or local *n*-space) S^n . Assume that a variety W is a proper component of the intersection of U and V. Take a common field k of definition for U, V and W. Let v be the ring of polynomials (or formal power series) in indeterminates x_1, \dots, x_n . Take prime ideals n, p and q which corresonds to W, U and V respectively. Then we have

(1) $i(W; U \cdot V) \leq e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n/\mathfrak{q}\mathfrak{o}_n)$, and the equality holds if and only if U is locally complete intersection at W;

(2) $i(W; U \cdot V) \leq e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n)$, and the equality holds if and only if both U and V are locally complete intersections respectively at W.

Remark. It is easy to see that the following four conditions are equivalent to each other:

(1) $e((\mathfrak{p},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}/\mathfrak{q}\mathfrak{o}_{\mathfrak{n}})=1,$

(2) $e((\mathfrak{p},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}})=1,$

(3) $(\mathfrak{p},\mathfrak{q})\mathfrak{o}_{\mathfrak{n}}=\mathfrak{n}\mathfrak{o}_{\mathfrak{n}},$

(4) $i(W; U \cdot V) = 1$ (for the case of our theorem, $i(n; p \cup q) = 1$).