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Previously some interesting results concerning prime ideals in
rings of formal power series were proved by C. Chevalley [1]. In
the present paper, we want to offer a new treatment on the similar
assertions. W e see  on the w ay a  new  resu lt tha t w hen  o  is  a
complete (Noetherian) local integrity domain with a basic field k,
o is separably generated' )  over k if and only if there exists a system
of parameters x „ • •, x„ of o such that o is separable over the ring
k {x„ •-•, x„} (formal power series).

Throughout the present paper, a local ring means a Noetherian
local ring which contains a field.

S l .  Kroneckerian products.
Let o, and o, be complete local rings with basic fields k, and

k, respectively. If K  is a field containing both k , and k„ we can
define the Kroneckerian product of (k-algebra) o, and (k,-algebra)
o, over K , as w as defined by C. Chevalley [2]. W e denote this
Kroneckerian product by o,/k,x K o2/k2

2 ) . (For the detail, see Cheval-
ley  [2 ]). W hen  k,-=k 2 =-K, we denote this by 0, x

W e define further Kroneckerian products o f complete local
rings with discrete rings :

Let o, be a complete local ring with basic field k, and let o„
be  a discrete ring w hich contains a field k . Assume that K  is
a field which contain both k, and k „  We define the Kroneckerian
product o f k,-algebra o, and discrete k,-algebra  o ,  o v e r  K  as
follows

1) For the definition, see Chevalley [1] or §2 in the present paper.
2) Though Chevalley [2] denotes this ring by o, x 1032 , we dare use a more

complicated notation because the product depends on the choice of basic fields.
3) 0 2 may be a topological ring which is not discrete; we only regard it as an

abstract ring (or a discrete topological ring).
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Let B , be a strong base of 0, over k , and let B ' be a linearly
independent base of o, over k .  W e set o =  {12(>2,a,„v A )u„ ; (7 ) .„;K,
vA EB', un E B „ a ,v ,  is  a finite sum} . We introduce in o operations
of sum and product by the followings ;

( ( EaA0A ) u„ ) + (EbA,vi) u„ ) > 2 (  ((ix. + bAn) vA)u„,

(E ( Eax„vi)u„) ( bx„ vA)1(n) (Yi
where v o p =E c x 1 ,-„vz (c„,„ E k„) and u.u„,= Y'd„„,,,u„(d,,„,„,6.k,). (Ob-
serve that E a ),„14,„,c) ) ,,,d„„,„, is  a finite sum).

It is easy  to  see  that though th is depends on the choice of
strong  base  B , and linearly independent base B ' o f o , and 02
respectively, the structure of o  does not depend on the choice of
th e m . This ring o is called the Kroneckerian product of (complete
local) k ra lg e b ra  o , and (discrete) k,-a lgebra  o . over K  and we
denote this by oik, x fe(02/k,),,. When k ,= k 2 = K , w e donote this
by o x R(o„),,. If o2 = k  is  a field, we denote this by 0, x H F:.

Next we explain an easy, but, important lemma :
Lemma 1. Let o, and o„ be complete local rings with the same

basic field K .  Then o, x 0 2 = n, x
P roo f. Let B , and B , be  strong  bases of o , and 02 o v e r  K

respectively and let B' be a linearly independent base of 02 over K.
Set o' =0, x K (0 0 , and 0 = 0 , x  0 „ . Then

o'= IE (Ea,„v ,)u n ; a,„EK, v,EB', u„EB„ Eth„v, is a finite sum} ,

o=  lEb,„woc„; bEK , w E B ,  u.(Bil •

Let 0  be a mapping from o ' into o  as follows:

(E (EaA,,v,1/4)tin) =>.;1),„w„u„,

where EaA„v,.----Eb,„tv, may be infinite sum).
Similarly, let 4;6* be a mapping from o  into o ' as follows :

;3*(Eb,„tvor,„) (Ea ,„14)un ,

where Ek„w ,,--- y ,a,„v„,(Ea,„v , must be a finite sum).
T hen  w e  s e e  easily that 0  and 0* are hoinomorphisms and

that 0°0* is the identity mapping. Therefore 0  is an isomorphism.
§ 2 .  Separably generated extensions.
W e denote hereafter by p  the characteristic of the field of

reference when it is not zero or the number 1  for the other case.
Definition. W e say that a complete local integrity domain I)
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is separably generated over its basic field k if o x hie  is  an integrity
domain.

Theorem 1. L et o be a  complete local integrity domain with a
basic f ield k .  T hen the following three conditions are  equivalent to
each other :

(1) o is separably generated over k.
(2) For any  strongly  linearly  independent subset B  of  o over

k  B 7,=  {le ;  uEB} is also strongly linearly Independent over k.
- ( 3 )  For any  integer m, o  x „M r' is  an  integrity domain.
Proof. Assume that B  is a  strongly linearly independent set

of o over k and assume that B1' is not strongly linearly independent
over k : There exist u„EB such that _..]a„/4,', =0 (u ,--'-7u;  i f  i-17j,
a„Ek), a n d  therefore in o x  ,.k , , ( E a 1 u„)'' =0 and
Therefore o x ,,.I"  not an integrity dom ain. This proves that (2)
follows from ( 1 ) .  Next we prove th e  converse : Assume that

x contains a  divisor c of zero (ck - 0 ). Since cPE o, we see that
c5  = O . We write c--=>f,a„u„( lu„.; is strongly linearly independent
over k  (u„Eo), a„Ele7r 1 ). Then {te,} is not strongly , linearly indepen-
dent over k. These being settled, the eqivalence with ( 3 )  is
evident.

Corollary. If a complete local integrity domain o  is separably
generated over its basic field k, then for any integer m, ox k k" - '  is
separably generated over , •

Remark 1 .  It is evident that i f  o  is a  complete local ring
with a basic field k  a n d  if  K  is a  f ie ld  which contains k, then
o x k K  is a  complete semi-local ring ;  we have the identity

o x 1,.K =  / k  x K /e/k=0/frx „K/K.

Remark 2 .  By Lemma 1 , we see that when [k : œ,,  a
complete local integrity domain o with a basic field Ie is separably
generated over k  if and only if the quotient field of o  is separably
generated over k .4 ) I n  general case, we see easily that the  tensor
product 00,./el' - '  is a  subring o x IA "  and therefore we see that if
o  is separably generated over k, then th e  quotient field of o  is

4 )  W e say, according to C. Chevalley [lb that a field K  is separably generated
over its subfield k if the tensor product is  an integrity domain. This is
equivalent to that every finitely generated extension field of k contained in K has
separating transcendence base over 4,,
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separably generated over k. The converse is not true as is easily
seen.

§ 3 .  Derivations.
Definition. Let o  b e  a  complete local integrity domain. A

derivation D  of o is  a linear operator to the quotient field L  of o
which satisfies the following conditions:

i) D(xy) = xDy+ yDx (for any x, yEL),
ii) There exists an element d( 0) of o  such that dDxEo for

any v o  and if --1 7,e„ is  a convergent series in o then '5- 'dDu„ is also
convergent (therefore >_.]Du„ has a meaning in L )  and D(>2u4)
E Du,,.

A  derivation D , for w hich  it ho lds tha t D a=0  i f  a  i s  in  a
subring o ' of o, is called a derivation of o  over o'.

It is evident that the totality of derivations of o (over a subring)
form an o-m odule. Linear dependency of derivations is defined in
this sense.

Lemma 2. Let o be the ring of formal power series in x 1 ,
 a field k .  Then the partial dervations (i=1, •••, n)

form a maximal linearly independent set of derivations of o over
Proof is easy.
Lemma 3. Let o be a complete local integrity domain with a

basic field k .  Let L  b e  the quotient field of o. Assume that the
characteristic p o f o  is  n o t  z e ro . Let M  b e  the subfield o f L
generated by LP and I.. T a k e  an integer r  such that [L: m]-4.
Then any maximal set of linearly independent derivations of o over
Je consists of r  derivations.

P roo f. If a  is  in D a=0  for any derivation D  o f o . There-
fore, for any derivation D  of o  over k  and for any element a  of
M , w e  have D a = 0 .  W e  take elements, a,, •••, a, of L  such that
L =M (a„ •••, a,.) . Then we can find derivations D,, ••-, D,. of o  over
k  such that D ,a,=8 15 (K roneckerian  i3). T h a t th is  is  a maximal
set of linearly independent derivations can be proved easily.

Theorem 2 .  L e t o  be  a  com plete local integrity  dom ain of
dimension n  and w ith a basic field k .  Then the number of menbers
of a  maximal set of  linearly  independent derivations of  o over k  is
at least n .  It is n  if  and  only  if  o  is separably generated over le,

P roo f. Let x„ •••, x„ b e  a 'system of parameters o f o and set
T . k  i x ,, •••, x,}. L e t  o '  b e  the totality o f  separably algebraic
(integral) elements of o over T.
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1) We first show that a maximal set of linearly independent
derivations of o' over k  consists of just n numbers : It is true for.
I by Lemma 2; since o' is separable over r, we see that this is
also true for o ' (similarly to the case of the theory of fields).

2) Next we show that o' is separably generated over /0: Let
c  be an element of o' such that o' is contained in the quotient field
of o [c ] and let f ( x )  be the irreducible monic polynomial over o
satisfied, by c. If o' x „Jo' is not an integrity domain, we see that
f ( x )  is reducible over kv- ' {x„ •••, x}, which is impossible because
f ( x )  is separable and k" - - ' Ix„ •••, x„; is purely inseparable over
klx

•  ,  XIII •

3) We prove the general case by induction on Lo : o'r )  ( p>  2):
Let c„ •••,c,. be elements of o such that c{'Eoic„ •••, ci _,], and [o/c7, • • •.

: o l=p '([o  :1 .1=y ). We set {x,, • • • , x} ,P,• ,

o'[c„ •••, •-•, • , Then [ ,,s :
[0 : ..)"] = p  and [o "  :  " ]> p  (by induction assumption), which shows
[o : ç;[=[o : e]/[t7 : 5.-4"]=[o : o"][o" : :.7"12_> p " .  Thus we see
that there exists a system of n  linearly independent derivations of
o over le.

4) We assume that o  is separably generated oven k .  We
use the same notations as in 3 ) .  Since our assertion is true for o',
we prove our assertion by induction on [o : 4  Since o "  is  a
subspace of o, we see that o" is also separably generated. There-
fore by our induction assumption we see that [o": z" ]= p" . There-
fore we have only to show that [is' : Let B  be a strong base
of o" over k .  Then {B, Bc,., •••, Bcf - 1 }  form a strong base of 0"[C]

v - -

over k .  If [ : e ] . - --1, we must have a relation Ebe--=---0 (bi Ee,b 0 0).
Then we must have a relation >̀ tt,E/3, o<i<p —1,
1- ,a) ,1u = b , ) ,  which is a contradiction to our assumption that o is
separably generated over k  (because o " [c ]  is a subspace of o).

5) Conversely, we assume that a maximal set of linearly
independent derivations over k  consists o f just n  members. We
can take a set of linearly independent derivations D,, •••, D 4  over
k  and a system of elements c,, •••,c„ of o such that D 1cj -=a 0  (Kro-
neckerian d). We may assume that these c, are unit in o, because
if c , is not a unit, we may take 1+c, instead of c,. It is evident
that x{', •-•, xi,: is a  system o f parameters o f o. W e set y i —c i x,".

5) :  0 1  m e a n s  the index o f  the q u o t ie n t fie ld o f  p  o v e r  th a t  o f  01,
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Then y i ; •••, y ,, form a  system o f parameters o f  o .  Then by our
construction, we see easily that every derivations o f  k {y„ y „ }
over k  can be uniquely extended to a derivation of o  over k .  This
shows that o  is separable over k {y„ -• •, y ,}. N ow  w e see that o
is separably generated over h by virtue of 2 )  above.

W e have proved in the same time (in  2 )  and 5 ) )  the following
Theorem 3 .  L et o be a complete local integrity domain with a

basic field k .  T hen o  is separably generated over At if  an d  only if
there exists a system of Parameters x,, • •- X„ of o such that o is separable
over k{x„, • x } .

Now we prove
Theorem 4 .  A ssum e that a  complete local integrity  domain o

is separably generably generated over its basic f ield k .  I f  K  i s  an
extension f ield of  k  such that k  is separably algebraically closed in
K , then o x k K  is  an  integrity domain.

Proof. By virtue o f  Theorem 3 ,  we can choose a  system
of parameters x„ •-•,.x„ of o  so that o  is separable over k lx ,, • - • , x„} .
We choose an  element • c  of o  so that [o : k {x„ •, x„}[c]]=-1 and let
f ( x )  be the irreducible m o n ic  polynomial over /..! • - • ,  x„} satisfied
by c. I f  o x is not a n  integrity domain, w e have that f ( x )  is
reducible over K{x„. •-•, x,„}: f(x)— g(x)h(x), where g  a n d  h  are
m onic  polynomials over If •••, x,} . T h en  every  coefficients of
g  a n d  h  a r e  integral over k  ix„  •••, x}, therefore they are • in

•••, x„} for some integer m , which shows that ox  j „kP is
not a n  integrity domain a n d  this is a contradiction to that o  is
separably generated over k.

§4. Regular extensions.
Definition. A  complete local integrity domain o  with a basic

field k  is said to be a regular extension of le if 1 )  k  is algebraically
closed in the quotient field of o  a n d  2 )  o  is separably generated
over k.

Theorem 5 . L et o be a  complete local integrity domain with a
basic field le. Then the follow ing three conditions are equivalent to
each other :

(1) o is a regular extension of  k.
(2) o is separably generated over k and for any finite separable

extension k ' of  k, o  x  L.k ' is an  integrity domain.
( 3 )  For any finite separable extension k " of  kr - 1 , o x 1,1e" is an

integrity domain,
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Proof is easy.
R e m a rk . W e  s e e  e a s ily  th a t  i f  a  com plete  local integrity

domain o w ith  a  b a sic  field k  i s  a  regular extension of k , then
the quotient fjeld of  o  is  re g u la r  extension of k." )  The converse is
tru e  if [k : k ']  ( S e e  the rem ark  a t the end of §2.)

Theorem 6 .  L et o  be a  complete local integrity  domain with a
basic f ield k .  A ssume that o  is a regular extension of k."  Then for
any  f ield K  containing k, 1,) x , K  is  a n  integrity d om ain . Further
o x is a  regular extension of  K.

P ro o f. T h a t o  x , J f  is  an integrity domain can be proved by a
sim ilar w ay as in the proof of Theorem  4. Let K '  b e  an  arbitrary
field containing K .  T h e n  (0 x 1,K )  X  i c  K ' = o x ,,.K  is  a n  integrity
domain, w hich shows th a t o x k i f  is a  regular extension of K.

§5 . An application.
Theorem 7 .  L et o ,  and  o ,  be complete local integrity domains

w ith the same basic f ield k .  A ssume that o ,  is a  regular extension
of  k .  T hen o, x ,o, is an  integrity  dom ain. In this case, if  o , is also
a  regular extension of k , then o, x h o, is a  regular extension of k.

P ro o f . L e t L  b e  the  quotient field of 0.. T hen  0, x ,L  is  an
integrity dom ain . By Lemma 1, 0, x k0  a subring of 0 x h.L, which
shows th a t 0, x h o , is  an  integrity dom ain . Now we assume that 02

is also a  regular extension of k .  Let K  be  an  arb itrary  field con-
taining k .  T hen (0, x ,„o,) x ,K = (0, x 1„K ) x  .  Since 0, x i„K
is a  regular extension of K  and since 0.2 x 1„K  is an integrity domain,
w e see that (o, x „02) x  ,K  is an integrity domain. This shows that
o, x „o„ is  a  regular extension of le,.

Corollary 1. Let 0, and 02 be complete local integrity domains
with basic fields k , and k ,  respectively. A ssum e that K  is  a field
containing both k , and k „ .  Then 0,/k, x x o//e,, is a  regular extension
of K  if  01 a n d  0,2 a r e  regular extensions of k , and A. , respectively.

C oro lla t y  2 . Let x,, • • •, x„. y,. • •-, y„, be analytically independent
elem ents over a  f ie ld  k  a n d  l e t  p, a n d  1.), b e  p rim e  idea ls  of

•••, x „ }  a n d  02 = k  •  •  •  ,  y„,} respectively. T h e n
(1)1, P2)k{x1, ••• • • .3  ” t }  is  prime if 0,/p, is  a  regular extension

6 )  We say that a field K  is a regular extension of its subfield k  if the tensor
produst KR , k k  o f K  and the algebraic closure k  of k  over A! is an integrity domain,
or equivalently, i f  K  is separably generated over A! and if k  is algebraically closed
in K
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of k .  I f  furthermore, gip, is also a  regular extension of k, then
k  {x „  •  •  •  , x„, y„ • • • , y„,} / (p„k  { x „  •  • • ,  x„, y„ •• • y„,} is  a  regular ex-
tension of k .
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