On the existence of a curve connecting given points on an abstract variety

By
Hajime Nishimura and Yoshikazu Nakai

(Received Feb. 21, 1954)

In the course of study in algebraic geometry, we are frequently encountered to treat the following problem. Let V be an abstract variety, and P, Q be two points on V, then does there exist an irreducible curve connecting these two points? It may seem to be almost self-evident, but it seems to us that there is no any proof in the literature. In this note we shall answer the above in the following generalized form.

Theorem. Let V^{n} be an abstract variety, and $U_{i}^{s_{i}}(i=1, \cdots, m)$ be finite number of subvarieties of dimensions s_{i} respectively, such that $s=\max \left(s_{i}\right)<n-1$. Then there exists an irreducible subvariety of V containing all $U_{\boldsymbol{s}}$, of any dimension r such that $s+1 \leqq r \leqq n-1$. Moreover there exists such one which is algebraic over any common field of definition for V and $U_{i}(i=1, \cdots, m)$.

First we shall prove the theorem in the case when V is a projective model, and then go into the general case.

Lemma 1. Let V^{n} be a projective model, and $P_{i}(i=1, \cdots, m)$ be arbitrary points on V. Then there exists an irreducible subvariety of V, containing all P_{i}, of any dimension r such that $1 \leqq r \leqq n-1$. Moreover let k be a field of definition for V, then there exists such one which is algebraic over $k\left(P_{1}, \cdots, P_{m}\right)$.

Proof. It is sufficient to treat the case $r=n-1$. First we shall assume that V is normal. Let t be an integer satisfying the following condition. Let Q be an arbitrary point of V, different from any of P_{i}, there exists a hypersurface of order $t-1$, containing all P_{i}, but not Q. Such integer surely exists, e.g., $t=m+1$. Put $\mathfrak{V}=\Sigma P_{\mathfrak{i}}$ then the linear system $\Sigma \mathfrak{A}$ which consists of the intersections of V with all hypersurfaces of order t containing all points in \mathfrak{I}, will be shown to be noncomposite with the pencils. In fact,
let C be a hyperplane section of V, then there exists the linear system $\Sigma_{\mathfrak{1}}-C$ on V. Moreover from the choice of an integer t, $\sum_{\mathfrak{A}}$ cannot have any fixed component. Hence by the theorem of Bertini on the linear system ${ }^{11}$ the generic member of $\Sigma_{\mathfrak{A}}$ is irreducible. When V is not normal, we construct a normal projective model \bar{V}^{3}. Since the correspondence T between V and \bar{V} has no fundamental point, the transform of \mathfrak{U} in \bar{V} is also a set of finite number of points. Let them be $\overline{\mathfrak{V}}$. Then we can construct a subvariety \bar{U} of \bar{V} containing all points in $\overline{\mathfrak{T}}$. Then $T^{-1}(\bar{U})$ also contains all P_{i} and irreducible. To prove the last part of the lemma, it will be sufficient to remark that the linear system $\Sigma_{\mathfrak{A}}$ is defined over $k(: \mathscr{l})$ and the correspondence can be defined over the algebraic closure of k. Then the remaining part follow from Prop. 1 of Matsusaka (3). q.e.d.

Lemma 2. Theorem holds for a projective model V in L^{N}.
Proof. Without any restriction we can assume that $s=s_{i}$ $(i=1, \cdots, m)$. Let k be a common field of definition for V and U_{i}, and H^{N-s} be a generic hinear variety over k defined by the equations

$$
\sum_{j=0}^{N} u_{i j} X_{j}=0 \quad(i=1, \cdots, s)
$$

where $\left(u_{i j}\right)$ are $s(N+1)$-independent variables over k. Put $H . V$ $=\bar{V}^{n-s}$ and $H . U_{i}=\sum_{j} P_{i j}$. Without loss of generalities we can suppose that all U_{i} have representatives in the affine representative S of L where $X_{0}=1$. Put $K=k\left(u_{i j}, i=1, \cdots, s ; j=1, \cdots, N\right)$ and $K_{1}=K\left(u_{i 0}\right.$, $i=1, \cdots, s)$. Then $P_{i j}$ are generic points of U_{i} over K and \bar{V} is defined over K_{1}. Let \bar{U}^{r-s} be a subvariety of \bar{V} algebraic over K_{1} containing all $\left\{P_{i j}\right\}$, and P a generic point of \bar{U} over \bar{K}_{1}. Then since \bar{U} is on \bar{H} we have

$$
\operatorname{dim}_{K}(P)=\operatorname{dim}_{K}\left(K_{1}\right)+\operatorname{dim}_{\kappa_{1}}(P)=s+(r-s)=r
$$

Let U^{\prime} be the locus of P over \bar{K}. We shall show that U contains all U_{i} as its subvarieties. Let Q be any point in U_{i}. Then $P_{i j} \rightarrow Q$ is a specialization over \bar{K}. Moreover $P \rightarrow P_{i j}$ is a specialization over \bar{K}_{1}, hence a fortiori, over \bar{K}. Thus any point of U_{i} is get be the specialization of P over \bar{K}, and Q is on U. Let M be the locus

[^0]of $c(U)$ of \bar{k}, where $c(U)$ is the Chow-point of $U^{3)}$ and w be the point of \mathscr{M}_{i}, rational over \bar{k}, such that the corresponding cycle W in L is an irreducible variety ${ }^{41}$. Then W will be seen to satisfy all the requirements in the lemma, since the inclusion relation are preserved by the specialization of cycles ${ }^{\mathrm{E}}$. Thus the lemma is proved.
q.e.d.

As is well known the variety in a multiply projective space can be transformed by a biregular birational correspondence into a projective model, hence we have

Lemma 3. Theorem holds for a variety embedded in a multiply projective space.

The Proof of the Theorem. Let \boldsymbol{V} be an abstract variety given by $\boldsymbol{J}=\left[\mathrm{V}_{\alpha}, \tilde{F}_{\alpha} ; \mathrm{T}_{s \alpha}\right], \mathrm{V}_{\alpha}(\alpha=1, \cdots, s)$ be the representatives of $\boldsymbol{V}, \mathrm{S}_{\alpha}$ the ambiant affine spaces of V_{α}, and M_{α} the representatives of a generic point \boldsymbol{V} of \boldsymbol{V} over a field of definition k for \boldsymbol{V} and \boldsymbol{U}_{i}. Then since $k\left(\mathrm{M}_{1} \times \cdots \times \mathrm{M}_{v}\right)=k(\boldsymbol{\boldsymbol { V }})$ is a regular extension of k, $\mathrm{M}_{1} \times \cdots \times \mathrm{M}_{s}$ has a locus T over k. Now taking S_{α} as a representative of a projective space L_{α}, we have a projective model \bar{V}_{α} in L_{s}, having V_{α} as a representative in S_{α}. Similarly we have \tilde{T} in $\|_{\alpha} / L_{a}$, which has the representative T in the representative ${ }_{\alpha} / \mathrm{S}_{\alpha}$ of ${ }_{\alpha} / L_{\alpha}$. Suppose that V_{i} has the representative $\mathrm{U}_{t a}$ in V_{α}, and $\bar{U}_{i \alpha}$ be the subvariety of \bar{V}_{α} such that $\bar{U}_{i \alpha}$ has the representative $\mathrm{U}_{i \alpha}$ in V_{α}. Since \tilde{T} is complete there exists a subvariety \tilde{U}_{s} of \tilde{T} with the projection $\bar{U}_{i \alpha}$ in \bar{V}_{α}. Moreover we can find such one among those which is algebraic and $\operatorname{dim}\left(\tilde{U}_{i}\right)=\operatorname{dim}\left(\boldsymbol{U}_{i}\right)$. Then by Lemma 3, there exists a subvariety \tilde{U}^{r} of \tilde{T} containing all \tilde{U}_{i} and algebraic over k. Let U be a representative of \tilde{U} in $I I S_{\alpha}$. Then we see that the projection U_{α} of U on V_{α} is not contained in \mathfrak{F}_{α}, since U_{α} contains $\mathrm{U}_{i \alpha}$. Thus U determines a subvariety \boldsymbol{U} of \boldsymbol{V} algebraic over k, which will be seen to satisfy all the conditions in the theorem.

$$
q . e . d .
$$

In the case of a projective model we can say further as follows.
Let V be a projective model and $\mathfrak{Y}=\Sigma U_{i}$ is an unmixed

[^1]V-cycle ${ }^{(i)}$, then there exists a subvariety W of V such that $\mathfrak{i l}$ is also a W-cycle.

First we shall show the existence of such W when \mathfrak{H} is of dimension zero. The general case will follow immediately from it. For this purpose we must add the following condition on the choice of an integer t in Lemma 1. Let P be any point in \mathfrak{A}, then there exists a hypersurface of order $t-1$, not containing P, but contains all points in \mathfrak{H} other than P. Under this condition, the generic member of the linear system $\Sigma_{\mathscr{A}}$ contains any point P_{i} in \mathfrak{Y} as a simple point. The proof is as follows. Let H_{1} be a hypersurface of order $t-1$, containing all points $P_{\text {: }}$ for $2 \leqq i \leqq m-1$, and does not pass through P_{1}, and H_{2} be hyperplane containing P_{1} which is transversal to V at P_{1}. Put $H=H_{1}+H_{2}$. Then $H . V$ contains only one component, say C, containing P_{1}, and P_{1} is a simple point of C.) Hence the generic member of $\Sigma_{\mathfrak{\ell}}$ contains P_{1} as a simple point. Using again the similar argument in Prop. 1 of Matsusaka (3), we see that such member can be found among those which are algebraic over $k(\mathfrak{H})$.

The corresponding results for abstract varieties are still unsolved.

[^2]*

BIBLIOGRAPHY

1. Matsusaka, T. Specializations of cycles on a projective model, Mem. Col. Sc. Kyoto Univ., vol. XXVI. 1951.
2. Matsusaka, T. The theorem of Bertini on linear systems in modular field. Mem. Col. Sc. Kyoto Univ., vol. XXVI, 1951.
3. Matsusaka, T. Some theorems on abelian varieties. Natural Sc. Rep., Ochanomizu Univ., vol. 4, 1953.
4. Samuel, P. La notion de multiplicité en algèbre et en géométrie algébrique, thèse, Paris, 1951.
5. Weil, A. Foundations of algebraic geometry, Amer. Math. Colloq., vol. 29, 1946.
6. Waerden, V. D. Einführung in die algebraische geometrie, Julius Springer, Berlin, 1939.
7. Zariski, O. Pencils on algebraic varieties and a new proof of a theorem of Bertini, Trans. Math. Soc. vol. 51, 1941.
8. Zariski, O. Some results in the arithmetic theory of algebraic varieties. Amer, J. of Math., vol. 61, 1938.

[^0]: 1) Cf. Zariski (7) and Matsusaka (2).
 2) Cf. Zariski (8).
[^1]: 3) By the main theorem on associated forms, any positive cycle in a projective space can be represented as point in a suitable projective space. We call it briefly the Chow-point of the cycle. Cf. V. d. Waerden (6).
 4) Cf. Matsusaka (3), Prop. 1.
 5) For the cheory of specialization of cycles in a projective space, see Matsusaka (1), or P. Samuel (4).
[^2]: 6) This means that all U_{i} are simple subvarieties of V and all U_{i} have the same dimensions. Cf. Chap. VII of Weil (5).
 7) Cf. Chap. IV of Weil, 1. c.
