
MEMOIRS O F TH E COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A
Vol. XXIX, Mathematics No. 1, 1955.

Basic theorems on general commutative rings

By

Masayoshi NAGATA

(Received August 10, 1954)

We want to group up some basic theorems in  th e  general
theory of com m utative rings in  the present n o te . Though most
of results contained in  th e  present n o te  a re  not new , many of
them will be sharpened, some o f  them will have simpler proofs
and  some o f  them will have more elementary proofs, than those
which are  already known.

Though the notions of local rings and of valuation rings are
also basic  fo r the  theory of commutative rings, we will not ob-
se rv e  them. Further, t h e  normalization theorem ( fo r  finitely
generated rings) is a basic  theorem. But we will not discuss it.
We concern mainly with the notion of rings of quotients, proper-
ties of integral dependence and the notion of rank of ideals.

In  §1, we observe the notion of prime ideals. In  §2, we study
the notion of rings of quotients. In §3 , we define the notion of
prime divisors o f  ideals. I n  §§4-5 , we study some properties of
integral dependence. In §6 we observe some properties of J-radicals
o f  r in g s .  I n  § 8 , we study the notion of rank of ideals. In  § 9,
we observe some properties of normal Noetherian rings.

Terminology. I f  o  is  a  r in g  without identity, then we can
imbed o  in  a  r in g  o ' which has identity so that every ideal of o
is an  ideal of o'. Therefore the existence of the identity does not
play  essential rô le  in  general theory o f rin gs, except fo r  some
extreme c a se s . Therefore we will assum e the existence of the
identity in  any r in g  o f  consideration, unless th e  contrary is ex-
plicitly stated. Since we want to treat commutative rings, we
assume also com m utativ ity . A  su b rin g  o f  a  r in g  is assumed to
have the same identity.

R esults assum ed to be w ell know n. Besides some elementary
notions and results on rings and fields, we need to know elemen-
tary properties of ideals and of Noetherian rings, which are con-
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tamed i n  Waerden [11] Chapter 12.
§ 1 .  Prime ideals. (Cf. Krull [6], § I ,  No. 3)
We opserve first that the following conditions for ideals p of

a  r in g  o are  equivalent to each other :
1 ) p  is a  p rim e  ideal o f  o .  2 ) I f  ab  is in  p  (a, b(o), then

either aE p o r bEp. 3) If  a  and  b are  ideals o f  o such that ab c
then either ac  p  o r  13.çp. 4 )  I f  two ideals a and  b contains p
properly, then ab is not contained in p.

Let o be a  rin g  and  le t S  be a  multiplicatively closed subset
o f  o  which does not contain z e ro . A n  ideal p  o f  o  is called a
maximal ideal with respect to S if  p does not meet S  and if every
ideal of o properly containing p meets S.

Proposition 1. Let o be a ring and let S be a  multiplicatively
closed subset of  o. If  an  ideal a  o f  o  does not meet S , then there
exists a maximal ideal p  o f  o  with respect to  S  which contains ch
Such p is necessarily prime.

Proof . Existence follows from Zorn's lemma. Primeness of p
follows from 4 ) above.

If  a  is a n  ideal of a  ring  o, then the intersection of all prime
ideals of o containing a  is called the radical of a ;  the radical of
o is the radical of the zero ideal of o.

Proposition 2 .  The radical a ' of  an ideal a  of a ring o is the
set of  all elements of  o which are nilpoient modulo a.

Proof . Assume that an element b is nilpotent m odulo a. Then
a  po w er o f b  is in  every prime ideal containing a ,  whence b  is
in  every prim e ideal containing a. Conversely, assume that an
element b  is not nilpotent modulo (1. Then th e  multiplicatively
closed s e t  {b'; n=1,— ,m ,••-}  does not meet a, whence there exists
a prim e ideal p  containing a  which does not contain b  by Pro-
position 1.

Corollary. A n ideal a  of  a ring o  is semi-prime if  and  only
if  o/a has no nilpotent element. (We call a n  ideal a  semi-prime
ideal if  it is an intersection of prime ideals.)

When a is an ideal of a  ring o, a prim e ideal p of o is called
a  minimal prime divisor o f  a  if  it is minimal among prim e ideals
containing a.

Proposition 3 .  I f  an  ideal a  o f  a rin g  o  is contained in  a
prime ideal p, then p contains a m inimal prime divisor of  a.

The proof is easy by virtue of Zorn's lemma.
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Corollary. T he radical o f  an ideal a is  the intersection of all
m inim al prim e divisors of  a.

Proposition 4 .  I f  p „ - - , p „  are prim e ideals o f  a ring o and if
a is an  ideal of  o  w hich is not contained in  any  of  p„ •••, p . ,  then
there ex ists an  element a of  ci w hich  is no t contained  in  any  of
p l  •  •  •

Pro o f . If one o f p „  say p,„ is contained in some other p i ,

then we may omit p„ without loss of generality. Therefore we
may assume that there is no inclusion relation among p i, •••, pn.
Then there exists an element a ,  o f p, • • • p,_ •  •  p . a  which is not
in p , for each i  (see 3) above). Then a=a 1 + •••+ a  is in a and
is in none of p,.

R em ark . I f  q  is a primary ideal of a ring o and if o' is a
subring of o, then q n o' is a primary ideal o f o '. If q  is a prime
ideal, then q n o' is prime.

§ 2. Rings of quotients. (Cf. Krull [6], Chevalley [3], Uzkov
[10])

Let o be a ring and let U  be the set of non-zero-divisors in
o. In  th e  s e t  P. {(a , u ); aft), uEU} we introduce a  equivalent
relation, namely, (a, u ) is equivalent to (b, v) if and only if av=
b u .  We denote the class o f  (a, u )  by a / u. The set Q  of the
equivalent classes becomes a ring under operations (a/u)+ (b/v)
=(ao+bu)/uv, (a/u)(b/v),=ab/uv. Q  is called the total quotient
ring  of o; here a/1  is identified with a  in o. Q  contains o as a
subring by this identification and Q  is generated by o and inverses
of elements of U  (every element of U  has inverse in Q) .

Now let S be a multiplicatively closed subset of o which does
not contain zero. When S  contains n o  zero-divisor, then the
subring of Q  generated by o and inverses of elements o f S  is
called the ring of  quotients of  o w ith respect to S .  In general case,
set n= la ; aEo, as = 0  for some sES} . T h en  n  is  an ideal of o.
Let l be the natural homomorphism from o onto o/n. Then 0(S)
is multiplicatively closed ; this set does not contain any zero-
divisors. F o r ,  i f  (s)(6 (a) = 0  (sE S, aE o) , then saE n and therefore
there exists an s ' o f S  such that ass'=0. Since ss' is in S, we
see that a  is in n and therefore 0(a )=0 , which proves that no
element o f 0 (S ) is a zero-divisor.*' Therefore we can construct

*  Observe that if a  c  U  then 0 (a )  is not a zero-divisor, as is easily seen by the
same proof as here.
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the ring of quotients of 0 (o) with respect to 0 (S ); this ring will
be called the ring of  quotients o f  o  with respect to  S  and will be
denoted by os . (Observe that if S contains no zero-divisor, then
n = 0 , whence 0 is the identity mapping. Therefore the previous
definition is contained in this case.)

When S  is the complementary set of a prime ideal o f o,
then os is called the ring of quotients of o with respect to  p and is
denoted by op .

A ring o ' is called a ring of quotients of the ring o  if there
exists a multiplicatively closed subset S  of o which does not con-
tain zero such that o'=o s .

We use the following notations :
1) When a is a subset of the ring o, we denote by aos the

ideal 0 (a) os .
2) When a ' is an ideal of o ,  we denote by a' no the ideal

(a' n OM ).
R em ark . If a ' an d  b '  are ideals o f  os ,  then (a' n b') n o —

(a' n o) n (13' n o) .
Assume that there exists a  ring o '  as follows : 1 )  There

exists a homomorphism n. from o into o ' and 2 )  every element of
n.(S ) has inverse in o'. Then from r (S ) iT  (a) = 0  (sES, aEo) it follows
that 7(a) = 0 .  Therefore the kernel of 0 is contained in that of n.
Therefore there exists a homomorphism from os  onto the subring
o f o ' generated by 7 (o ) and the inverses of elements o f 7r (S).
Thus we see that os  is the most " universal "  ring in which every
element o f S  is mapped (under homomorphism) to unit. There-
fore

Proposition 1 .  Let a be an ideal of  o which does not meet S.
Let O be the natural homomorphism f rom  o onto o / a .  T hen 0(os)
=os/aos.

Next we observe correspondence between ideals o f  o  and
those of os .

Proposition 2 .  If  a' is  an  ideal of  os, then (a' n o) os = a'.
Proo f . We have (a' n o) o ( 0 - ' (a' n (o) ) o s =  (a' n (o) ) os ç a'.

Assume that 0 (a) / (s) Ea' (a E o, sES) . Then $(a) = (s) (0 (a) / (s))
is  in  a' n ç3 (o) . Since 1/0 (s ) is in  os ,  w e have 0 (a)/0 (s ) is in
(a' n o) vs .

Corollary. I f  o is Noetherian, then o , is Noetherian.
Proposition 3 .  A ssume that q  is a prim ary  ideal of  o belong-
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ing to a prim e ideal p. Then : 1) if  p meets S, then pos = gos =o, ;
2 )  if  p does not meet S, then g  contains n, po s is  a prim e ideal, go,
is a primary ideal belonging to po,, po, n o = p and gos  n o = q.

Proof . I f  p  meets S , then q  meets S  because any power of
an element o f S  is in  S .  Therefore in this case w e have POs=
gos =o s . Assume that p  does not meet S .  I f  a  i s  in  n ,  then
there exists an s  in S  such that as= O. S in c e  s  is not in p , we
have a is in q, which proves that q contains rt. Let b be an element
of go, n o. Then 0 (b) = (q) / (s) with q E q, sE S .  Therefore 0 (bs) is
in 0 (g) . Since g contains n, bs is in  g . Since s  is not in  p, b  is
in  g , which shows that g D go, n  o .  Since the converse inclusion
is evident, we have g = go„ n o. Since p  is also  a  primary ideal,
we see also that p= pos  n o. Next we assume that 0 (a) / (s) is not
in go, and that 0 (ab ) /(s t)  is  in  gos ,  where a, bEo and s, tES.
Then by above observation, a  is not in g  and ab is in g .  There-
fore there exists a natural number r  such that b ' is in g, whence
(0 (b) /0 Mr i s  in  gos . Therefore go, is  a primary ideal ;  for p
the same holds with r=1  a n d  therefore pOs i s  a prime ideal.
Since every element of p is nilpotent modulo g, every element of
pOs is nilpotent modulo gos ,  whence gos  is  a primary ideal belong-
ing to pos . Thus the proof is completed.

C oro llary  1 .  L et p be  a  prim e ideal o f  o .  T hen po, is  a
maximal ideal of o, if and only if p is a maximal ideal with respect to S.

C oro llary 2 .  If  an  ideal of  o does not meet S, then bo o .
Proposition 4 .  L e t g1, •••, q. be Prim ary  ideals o f  o .  Then

(g, n • • • n g„) o,= g ios  n • • • n qu o,. I f  g, n gi a n d  i f  q o s o s ,  then
a>2

(1103 n  gi p,.
Proof . Set a = g, n n  g „ .  We renumber g , so that g n S  is

empty if and only if i < r. Since g,o, contains co s , aos  is contained
in g,o, n • • • n q.os (= qios n • • • n g,o,) . Let 0 (a) /0 (s) (aEo, SE S) be an
element of g,o, n • • • n g„o„. Since g,o, n o = g, for i <  r, a is in gi n • • • n
gr. Take elements s„+ „ • • • , s„ of S so that i s  in Then a'=
as„,- • • s„ is in  a . Therefore 0 (0)/0 (s) =0 (a') /0(ss„,• • s„) is in aos ,
which proves the converse inclusion. Thus we see that no,— clips
n • • • n g,os . Now we assume that g, p n g, and that r> 1. Take
an element a o f  n  g , which is not in  g ,. Then since g ,o, n o = g,,
0 (a ) is not in chos ,  which shows that g p n g,os .

C o ro lla r y . A ssume that the zero ideal o f  o  can be expressed
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as the intersection of  prim ary  ideals q,, •••, q. of  o, w here q, nS  is
empty if  an d  only  i f  1< r .  Then the ideal n (= 9S - 1 ( 0 ) )  coincides
with qi n • • • nq,..

Proo f . n = 0 - 1 ( 0 )  and therefore n = (0)o, n o. By our assump-
tion, (0) os =q,os n • • • n q,z s  and therefore n=q, n • • • n q,.

Proposition 5 .  Let' o be a ring and let S  be a  multiplicatively
closed subset o f  o  which does not contain z ero . L e t S ' be a  multi-
plicatively closed subset o f  os  which does not contain z ero . L e t S"
be the  multiplicatively closed subset o f  o  generated by  S  an d  all
elements s" of  o such that with a suitable element s of S, 0(s") /0(s)
is in  S ', where 0 is the natural homomorphism from o into o. Then
o,, = (o

Proo f . Let 0  and ir b e  the natural homomorphisms from o
into os ,  and from os  into (Os ), respectively. Then every element
o f 7r9i (S" )  has inverse in (Os ) ,  and (o,,), is generated by nqi (o)
and inverses of elements o f 7 0 (S "). Therefore there exists a
homomorphism from Nu onto (os ) , .  Let n" be the kernel of n.0.
Then for every element a  of n", there exists an element $(s") /0(s)
(s E S , s" ES") o f S ' such that 0 (a) 0 (s") / (s) = 0. T h e n  as "  i s  in
the kernel o f 0, whence there exists an element s ' of S  such that
as"s' = 0 .  Since s"s' is  in S ", a  is  in the kernel o f O. Therefore
0= 7r0, whence (os),.

Proposition 6 .  L et S  be a  multiplicatively closed subset of  a
rin g  o  w hich does not contain z e ro . L e t {.0),; 2E A I  be the set of
m axim al ideals o f  o w ih respect to  S  and let S ' be the intersection
o f  th e  complementary se ts o f  ideals p, w ith respect to o ( f o r all
A E A ). Then o s = vs ,

Proo f . Let 0  b e  the natural homomorphism from o •into os .
Then every element o f 0 (S ')  is  a unit in Os  by Corollary 1 to
Proposition 3. Therefore our assertion follows from Proposition 1.

Proposition 7 .  Let o be a ring  and  le t S  be a  multiplicatively
closed subset o f  o  which contains n o  zero-divisor. I f  a  r i n g  o'
contains o and is contained in  os ,  then os =o's .

The proof is easy by the definition of rings of quotients.
§  3 . Prime divisors.
Let a be an ideal of a ring o and let S  be the set of elements

of o which are not zero-divisors modulo a. T h e n  S  is multiplica-
tively closed and does not m eet a. A prime ideal p is called a
m axim al prim e divisor of a if it is maximal with respect to S  and
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if  it contains a. A  p r im e  ideal q of o is called a  prime divisor of
a  i f  there exists a  multiplicatively closed subset S ' o f  o which
dois not meet a  such that (vs , is a maximal prime divisor of aos ,.
(By Proposition 3 in  §2, such q contains a.)

The followings can be proved easily :
(1) Any maximal prime divisor is a prim e divisor. Further

any prime divisor, is contained in a maximal prime divisor.
(2) A minimal prime divisor is a prime divisor ; it is minimal

among prime divisors. Further, i f  p  is a minimal prime divisor
of an  ideal a  o f  a  r in g  o, then 0 0 p  is a  primary ideal belonging
to pop. A n d  therefore COp n o is a  primary ideal belonging to p;
this ideal is called the  primary component of a  belonging to p.

(3) A n  ideal is primary i f  a n d  only i f  it has only one
prime divisor.

(4) Assume that a n  ideal a  o f  a  r in g  o is the intersection
of primary ideals q„ q„ o f  o. If  the  intersection q, n •-• n q„ is
irredundant (that is, each q ,  does not contain the intersection of
other q i ), then the set of prim e divisors o f  a  is the set of prime
divisors of q,, •-•, q„.

A  prim e divisor which is not minimal is called a n  imbedded
Prime divisor.

§ 4. Integral dependence.
We say that a n  element a  o f  a  r in g  o ' is integral over its

subring o if  there exist elements c„ •••, c4  o f  o such that an+ c,a"'
+•••+a=0, j .  e., a  is a  root of a  monic polynomial over o. We
say that o' is integral over o if every element of o' is integral over o.

L e m m a  1 . I f  a  r in g  o' is integral over its subring o and if
0 is a  homomorphism (from o' into some r in g ), then 0(o') is
integral over 0(o).

T h is  follows immediately from t h e  definition o f  integral
dependence.

L e m m a  2 . Assume that a  ring  o' is integral over its subring
o. I f  S  is a  multiplicatively closed subset o f  o  which does not
contain zero, then o's  is integral over os .

Proof . L et 0 be the  natural homomorphism from o' into o' s .
Then since S  is a subset of o, 0 is the natural homomorphism from
o into os  i f  it is restricted to o. L et 0(a)/0(s) (ado', SES) b e  an
element o f  o's . Then ç ( a )  is integral over 0 (o )  a n d  9i(s) is unit
in  os . Therefore 0 (a )/0 (s) is integral over os.
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Lemma 3 .  If a field K  is integral over its subring /, then /
is  a field. (Krull [7] ; cf. [4])

Proo f . L et a  b e a n  element o f  I  which is not z e ro . Since
a - '  i s  in  K, a '  is integral over /, whence there exist elements
c„ •••,c„ o f  I  such that (a - ')"+c,(a - ') " 1 +••• +c„--0. Then a - ' —
— (ci +c,a+ .• • +ca" - ') ,  which is in  I. Therefore I  is a field.

Lemma 4 .  If an integrity domain o is integral over its subfield
K , then o is a field.

Proo f . L et a  be a n  element o f  o  which is not z e ro . Then
there exist elements c„ • • • , c of K  such that a"+c,a" - 1  + • • • + =O.
Since o is  an  integrity domain, we may assume that T h e n
a - '= —c,T' (an - 1 + c,a' 2 + •-• +c ) , which is i n  o .  Therefore o is  a
field.

Proposition 1. A ssum e th at  a  r i n g  o ' is integral ov er its
su b rin g  o . L et p be  a prim e ideal o f  o  an d  le t  S  be the compl-
ementary set of  p  w ith respect to o. T hen a prim e ideal p' of  o'
lies over p (that is, p' n o=p) if  an d  only  i f  p' is a m ax im al ideal
w ith respect to S. (Krull [7] and Cohen-Seidenberg [4])

Pro o f . Assume first that a prim e ideal p' o f  o ' lies over p.
Then since p' n o=p, p' does not meet S .  Therefore p'o' s  is diffe-
rent from o's  a n d  p'o's  n os = pos. By Lemmas 1 and 2, O 's / P 'O 's  is
integral over os /po,s (w h ich  is  a  f ie ld ) .  Therefore o's /Vo',, is  a
field by Lemma 4, which shows that p'o's  is  m axim al. Therefore
p' is a maximal ideal with respect to  S  by Corollary 1 to Pro-
position 3 in 2. Conversely, assume that p ' is  a maximal ideal
with respect to S .  Then P'O's is m axim al. Therefore by Lemma
3, p'o's  n cis  is  maximal, whence it is po s . T hus w e see that p' n
=p.

Corollary 1. F o r  any  prim e ideal p o f  o , there ex ist prime
ideals of  o' w hich lie over p; th ere  is  no inclusion relation among
prim e ideals of  o ' which lie over the same prim e ideal of o.

Corollary 2 .  I f  p, c c  p „  i s  a n  ascending chain of  prim e
ideals p, of  o, then there ex ist prim e ideals p'„ • •• , p'„ o f  o ' such
that 1) p', n 0=p, f o r each 1 and 2) p', c • • • c p',,; here, if  there is
no prim e ideal p such that pi c pc p i  f „  then there is no prime ideal
p' of  o' such that p', c p'

Pro o f . Existence is easy by induction on n , while the latter
follows from Corollary 1.

Proposition 2 .  I f  a ring  o ' is a f inite module over its subring
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o , then o ' is integral over o. (Nagata [9])
Proof. Take elements u 1 =1, u 2 , • • • , u„ of o' such that o '=1,1 j 0ui .

Then for every element a  o f  o', we can write that au,—E l a,,u,
(a o ) .  Then we see that the determinant I ( a—a,1 )1 = 0  (where
ô  Kronecker's a) because u ,= 1 .  Therefore a  is integral
over o.

R em ark . Observe, conversely, that if an element a  is integral
over o, then o[a] is a  finite o-module, because a  satisfies a monic
equation.

C o ro lla ry  1, L et o  be a  subring of  a ring o'. •T hen the set o"
of  elements of  o ' which are integral over o f orm  a  subrin g of  o'.

This o" is called the integral closure o f  o  in  o '. I f  o = o " , then
we say that o is integrally closed in  o'.

Proof. L e t  a  a n d  b  be elements o f  o " .  Then o[a, b] is a
finite o-module and  is a  r in g .  Therefore o[a , b ] is integral over
o; in  particular, a—b and ab a re  in  o " . Therefore o" is a ring.

C o ro lla ry  2 .  If  an  element a  is integral over a rin g  o' and if
o ' is integral over its su b rin g o , then a  is integral over o.

C o ro lla ry  3 .  L et o  be a  Noetherian ring which is a subring of
a ring  o ' and let b  be an  element o f  o'. I f  there exists an  element
a o f  o  which is not a  zero-divisor i n  o '  such that ab ' is in  o for
any natural number n , then b  is integral over o.

Proof . The ring o[b] is contained in a finite o-module o + oa - '
Since o  is  Noetherian, o [b ]  is  a  finite o-module, whence b  is
integral over o.

§ 5 .  In teg ra l ex ten sio n s .
Let o be a n  integrity dom ain. A n over-ring o ' of o is called

an  integral extension of o if  o ' is a n  integrity domain a n d  if  o ' is
integral over o. Here, if the field of quotients of o' is finite over
that of o, then we say that o ' is almost finite over o.

A n integrity domain which is integrally closed in  its field of
quotients is called a  norm al rin g .  When o  is a normal ring, an
integral extension o' of o is called a  norm al extension of o  if o ' is
th e  integral closure of o  in  a  norm al ex tension  of the  fie ld  of
q u o tien ts  o f  o  ( in  th e  sense of G alois theory (need not to be
separable)).

P r o p o s i t i o n  I .  L et o  be a norm al ring and let o' be a norm al
extension of o. Then f o r any prim e ideal p  o f  o , the prime ideals
of  o ' which lie over p  are conjugate to each other (that is, if prime
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ideals p ', and  p ',  lie over p , then there exists an automorphism of
o' over o which mapps p ', to p',). (Cf. [4] or [7])

Proof . W e first assume that o' is almost finite over o .  Assume
that prime ideals and p ', lie over p  and that p ',  is not con-
jugate to p',. Let p',, •••, p'„ be the set of all prime ideals o f o'
which are conjugate to p',. Then V, lies over p  fo r each i.
Therefore there is no inclusion relation among p'„ •••, p'„ by
Corollary 1  to Proposition 1  in  § 4 .  Therefore there exists an
element a  o f p ',  which is in none of p',, •• • , p'„ by Proposition 4
in § 1 .  Then every conjugate of a is not in whence the norm
o f a  in  o  is not in  p ', and therefore it is not in  p . This is a
contradiction because p', n 0 — p. Thus we have proved our asser-
tion in this case. Now the general case can be proved easily by
Zorn's lemma.

C o ro lla ry . L et o  be a norm al ring and let o' be an  integral
ex tension of  o. L et p, D  p, D  •• •  D  p,. be a  descending chain of prime
ideals p, of  o and let p', be a prim e ideal o f  o ' which lies over p„
Then there exists a descending chain of prime ideals V, V, 3  • • • 3

of  o ' such that each p ' lies over p. (Krull [7 ],  cf. [4])
Proof . Let o" be a normal extension of o  containing o ' and

let p", be a prime ideal o f o "  which lies over p',. On the other
hand let q", D  q", D ••• q",. be a descending chain of prime ideals
o f o "  such that LI", n  o = p , fo r each i ;  existence follows from
Corollary 2  to Proposition 1  in § 4 .  Take an automorphism 0 -  o f
o "  over o  which m apps q", to p", and set p", q", o '  for
each 1. Then each 1.1', lies over p, and p', 3  V2 3 ••• 3 p',..

Proposition 2 .  L et o be a normal ring and lei f(x) be a monic
polynomial ov er o in  an  indeterm inate x . S et b = o[x]/ (f(x)) and
let d be the discriminant o f  f (1 ). I f  b ' is the integral closure o f  b
in  its total quotient ring, then db' is contained in  b. (Zariski [12])

Proof . If d =0 , our assertion is trivial. Therefore we assume
th a t d  O . Let a  be the residue class o f x  in b. Let k  be the
field of quotients of o  and let L  be a field containing k  and all
roots of f (x) . For each root a, of f (x) , there exists a - homomorp-
hism 4, from  b '  into L  which m apps a  to a,. Now let b be an
arbitrary element o f  b ' .  Then b =E .,: (1u,ai (u,Ek, n = d e g re e  of
f ( x ) ) .  Then 01 (b )=E l u

5
ai  and we consider these equalities as

linear equations in the unknown u j 's. The determinant D  of
these equations is ± //, < i (ai —ai ). Therefore D =d. S in ce 0,(b)
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and a, are integral overo, d u ls  a re  integral over o. Since du,'s
are  in  k  and since o is normal, we have d u d's a r e  in  o. There-
fore db is in  b, whence db' is contained in  b.

Corollary 1. L e t  o , f (x )  an d  d  b e  the  sam e a s  in  above
Proposition. A ssume that a  is an  ideal of o[x] which contains f(x)
and whose prime div isors m eet o only  w ith zero. S e t =o /a an d
let be the integral closure of i n  its total quotient ring. Then
clV  is eontained in ".*)

P ro o f  If  d =0 , our assertion is trivial. Therefore we assume
that ri O. Then the  ideal f (x )o[x] is semi-prime, hence the same
is true of a  by our assumption. Therefore W is a direct summand
of b' in the proposition. Therefore we have cA ' is contained in

Corollary 2. A n almost f inite separable integral extension of
a Noetherian normal ring is a finite extension.

§  6 .  The J - radical of a ring.
The intersection of all maximal ideals of a  ring  o  is called

the [rad ical o f  o. If  an  element a  o f  o  is congruent 1 modulo
its [radical, then a  is a  un it in  o.

Proposition 1. L e t M  be a  f in ite  m odule ov er a rin g  o .
A ssume that a n  ideal a  o f  o  has the following properties: 1)
aM =M  an d  2) if  am =0 (aEo,m EM ) and if  a - 1  i s  in  a, then
m =0. T hen w e have M =0.

Proof . L et u„ •••,u„ be elements o f  M  such that M=N -1 ,ou,.
Since aM =M , there exist elements a o o f  a such that u,=E,a,,u,.
L et d  be the determinant I (8,„— a)1 (where a,, are  Kronecker's
8 ).  Then dui =0 fo r all i. Since d -1  is  in  a, we have 144 =0 for
all i, which shows that M =0.

Corollary 1 .  L et M  be a finite module over a ring o and let
ni be the J-radical of  o. If  niM =M , then M =0.

Corollary 2 .  L et M  be a finite module over a ring o and let
ni be the J-radical of  o. I f  N  i s  a subm odule of  M  such that
M =m M +N , then  M =N . (Azumaya's lemma ; see [8])

Proof . S e t M '=M /N . Then M ' is  a  finite o-module and
inM i= M '. Therefore M'=0, whence M= N.

Proposition 2 .  L et o  be a N oetherian ring and let a  be its
ideal. T hen n - a"=0 if  and only if every element a of  o such that

n = 1

*  It will be easy to see that ,a  is generated by a  monic polynomial which is a
factor of f (x ).
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a - 1  is  in  a  is not a zero-divisor. (Chevalley [3], Krull [5], [7])
Proof. A ssu m e  that an  element a  of o such that a- 1  is  in a

is a zero-divisor. Let b be an element of o such that ab =0 (b 0).
Then b=b(a —1)4 f o r  a n y  n ,  whence b  i s  i n  n an. Therefore
n an 0. Conversely, assume that there is no such a .  Set n= n

Then by Proposition 1, we have only to show th a t  a n  n .  Take
primary ideals q„ •••, q  o f  o  such that an= q, n ••• nq a n d  l e t  p„
• • • , p, be prime divisors of q„•••, q, respectively. F o r  p, such that

p„ since an CA, and since qi  is  a  primary ideal belonging to pi,
w e  h av e  n ç qi ; f o r  p , such that a.ç p „  since qi  i s  a  strongly
primary ideal belonging to p„ a power of p, is in  q„ whence n
Therefore every qi contains n, which shows that n can.

Corollary. I f  in i s  the J-radical o f  a  N oetherian ring, then
n mn=0.

Proposition 3 .  L et a be a non-unit of  a Noetherian ring o .  If
either a  is in the J-radical of  o or o is an integrity domain, then ao
cannot contain properly any prime ideal other than zero.

Proof . Assume that ao  contains a  p r im e  ideal p  properly.
Then for any element c of p, there exists an  element c ' of o such
that c =a c '.  Since a  is not in  p , we have c ' is  in  p. Therefore
p = a p . Then we see our assertion by Proposition 1.

§ 7. The minimum condition.
Proposition 1. L et a be an ideal of  a rin g  o. A ssume that

1 ) a  is contained in the radical of  o and 2) the minimum condition
holds f o r ideals contained in  a. Then a  is nilpotent. (Asano [2])

Proof . It is sufficient to show  t h a t  a '  a  i f  a 0. Assume
that a'= a  (a 4  0 ) .  L e t b  be an  ideal of o contained i n  a  which
is minimal among ideals whose product with a  a re  different from
0. Let p  be the set of elements x  of o such that bxa=0. Then p
is a  p rim e  ideal ;  f o r  i f  cdEp, c f p , then by the minimality o f  b,
we have bc=b, whence bda=0 and therefore d  is  in  p. Since a
is  in the radical of 1.), p contains a , whence ba2 =ba=0, which is a
contradiction.

Lemma 1. Let o,, •••, o„ be rings and let o be the direct sum
o f  them. Then the m inim um  condition for ideals holds in  o  if
and only if  it holds in  every o,.

The proof is easy.
1.amma 2. Let k  be a field and let M  be a  k-module. Then
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the minimum condition for submodulei holds in  M  if  an d  only
i f  M  is  a  finite k-module ; in  th is  case, M  h a s  a  decomposition
series.

The proof is easy.
Proposition 2 .  L et o be a  rin g .  T hen the minimum condition

f o r ideals holds in  o  if  and  only if  1 )  o  is Noetherian and 2) every
prim e ideal of  o is m ax im al. (Akizuki [1])

Pro o f . W e first assume that o is N oetherian and that every
prime ideal is m axim al. Then every prim e ideal o f o  is a prime
divisor o f  ze ro  idea l. T here fo re  o  has on ly  a  finite number of
prim e ideals, say p „  • • • , p .  Then p, n ••• n p>. is the radical of 0.
Since o is Noetherian, there exists a  natural number n  such that
(p, n •• • n p,.)" = O . S in c e  e a c h  pi i s  m axim al, p 7 + 0 = 0  if
Therefore o is isomorphic to the direct sum of rings o/p7(i=1, •• • , r).
Therefore, by L em m a 1, w e m ay assum e th a t p ,  i s  the unique
maximal ideal o f  o .  T hen  each  p,i/p i lm  i s  a  finite o/p c module
and p = 0 .  Since o/p, is a field, each p,i/p,i 4- 1 h a s  a decomposition
se r ie s , w h e n c e  o  h a s  a  decom position  series. T herefore  the
minimum condition for ideals holds in  o  by virtue of the Jordan-
flülder-Schreier theorem. Conversely, assum e th a t  the minimum
condition holds in  o .  L e t  p  b e  a  p r im e  ideal o f  o .  T hen  the
minimum condition holds in  0 / p .  Since 0/p is an integrity domain,
p  must be a m axim al id e a l. I f  p„ •••, p„, are maximal ideals, each
of which is different from another, then p, n •-• n p„, pi n • • • n p,„_,.
T here fo re  o  has on ly  a  fin ite  num ber o f m ax im al ideals, say
p„ •••, p,. T h e n  b y  Proposition 1, (pi n •-• n p,)"=0 f o r  som e n.
Therefore o is isomorphic to the direct sum  of lings o /p7 (i=1,
•••, r). T h e re fo re  w e  m a y  assum e th a t  p = p ,  i s  the unique
maximal ideal o f  o . S e t  a i =0 : p (=ai_, : p  i f  i > 2 ) .  T hen  a , is
an o/p-module and every submodule of a , is a n  ideal of o, whence
the minimum condition for submodulei holds i n  a , .  Therefore a,
is a finite o/p-m odule. Sim ilarly, each ado, is a finite o/p-module
Therefore o has a  decomposition series, whence o is Noetherian.

R em ark . When we consider rings without identity, the same
holds under th e  assum ption that f o r  a n y  id e a l th e re  e x is ts  a
maximal prime ideal which contains the g iv e n  id e a l. (The proof
is  the  sam e.) T h is assumption is essential ; f o r  i f  w e  om it this
assumption, there exists a  r in g  which satisfies the minimum con-
dition and which does not satisfy the maximum condition. Observe
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further that when the  identity is added to a  ring  without identity,
the new  ring may not satisfy the minimum condition.

§ 8. Rank of ideals.
W e say that  a  r i n g  o  is  o f  rank  r  i f  there exists a  chain

po D p ,D • • • D p ,.  of priffie ideals p, of o  and  if  there exists no such
chain with m ore  term s.*) If there exists no such r, then we say
that o  is of rank infinite.

F o r  a  prime ideal p of a  ring o , the  rank of O p  is called the
rank  of p; f o r  an  arbitrary ideal a of o, the minimum of rank of
prim e divisors o f  a  is called the rank  o f  a .  Further the rank of
o /a  is called the co-rank of a.*)

Proposition 1. If  a ring o' is integral over its subring o, then
rank  o' =rank  o. (K rull [7] ; cf. [4])

T h is  follows immediately from Corollary 2 to Proposition 1
in §4.

Proposition 2 .  A ssume that o ' is  an  integral extension of a
norm al ring o, If  q ' is an  ideal of  o', then rank  a'=rank  (a' n o) .

Proof . W hen a '  is  a prim e ideal, our assertion follows from
the corollary to Proposition 1 in  §  5 . N ow  le t  p ' b e  a minimal
prime divisor o f a ' su ch  tha t rank  a '= rank  p'. T hen  p' no con-
tains a' n o, whence rank (a' n o) <rank a'. Conversely, le t p be
a  minimal prime divisor o f  a' no such that rank p=rank (a' n o).
Since o '/a ' is integral over o/ (a ' n  o), there exists a  prim e ideal
p' o f  o ' which lies over p  and contains a'. Then rank (a' n 0) =-
ra n k  p = ra n d  p '>  r a n k  a'. Therefore  w e h av e  rank  a '= rank
(a' n o).

Lemma 1. Let o be a Noetherian integrity domain and le t a
b e  a  n o n -u n it in  o  which is not z e r o .  I f  p  is  a minimal prime
divisor of ao, then p is  of rank 1. (K rull [5])

Proo f . Considering O p  instead of o, we m ay assume that p is
the unique m axim al ideal o f  o .  L e t  q  b e  a  p r im e  ideal of o
different from p. Set q")= qio q n o (which is called the i-th formal
Power of q) . S in c e  n  i q'oq  = 0  b y  Proposition 2 in §6, n,q =-0.
S e t q i= e )  +a o .  Then there exists a  num ber n  such that a ; = a.
for a n y  i > n ,  because in  o/ao the minimum condition for ideals

* In usual, these notions are called "dimension ". But in  connection with the
notion of dimension in algebraic geometry, it seems to the writer that we had better
to avoid the term "dimension" for these concepts.
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holds by Proposition 2  in  §7 . W e have q<n) ç + a o .  Set q'=
o'=o/q") and a'=residue class of a  in  o '. Then since a  is

not in q and since q' is a primary ideal belonging to ci/e ) , q'ça'o'
shows that cr=a'q', whence q'-=0 because a ' is in the J-radical of
o'. Therefore we have q =q (n) and n ,q ( ') = (1°1)=0, which shows
that q=0, because 0 is an integrity domain.

Proposition 3. L e t a  be a n  ideal of  a N oetherian ring o.
A ssume that a is generated by r  elements. Then f o r any  minimal
prim e divisor p  of ci , ran k  p is not greater than r. (Krull [5])

Proof . Let p=p„ j  p, D  •  •  •  D pa b e  a  chain of prime ideals p s

such that po/p, is o f rank 1. Then we have only to show that
s< r. Then considering 0/p. instead of o, we may assume that o
is an integrity domain. Therefore, if r=1 , our assertion follows
from Lemma 1. Therefore we prove our assertion by induction
on  r. Considering op instead of o, we may assume that p  is the
unique maximal ideal of o ;  in  this case, a is a  primary ideal
belonging to p. Let a„•-•, a ,  be elements of a which generate a.
We may assume that a ,  is not in  p , .  Then p,+a,o is a primary
ideal belonging to p , whence there exists a natural number t  such
that a , ' is  in  p,-Fa,o fo r  every i ;  we write w i t h
elements b, of o and c , of p „  Set a'=>=_;',•,ci o. Then since a,' is
in a'+a,o, a' +a,o  is a primary ideal belonging to p. Let p ' be a
minimal prime divisor of a' which is contained in p , .  Then since
p'+a,0 is a primary ideal belonging to p, p/p' is of rank 1, whence
p'=p,. Since a ' is generated by r-1 elements, we have rank p,
is not greater than r -1 by our induction assumption. Therefore
s r and our proof is completed.

C oro lla ry . R ank  of  an ideal in a N oetherian ring is finite.
Proposition 4 .  I f  a is an  ideal of  a N oetherian ring o and if

a  is of  rank  r ,  then there exist elements a„ •••,a, o f  a  such that
1 ] , a 1 0  is  o f  rank  s  f o r  any  s < r .  (W e regard that the  ideal
generated by the empty set is zero.)

Proof . When s=0, our assertion is evident. Therefore we
prove our assertion by induction on s ;  we assume that there are
s - 1  elements a„ •••,a,_, of ci such that rank (Y I=,a,o)---=t for any
t < s - 1 .  Let p„ •••,p„ be prime divisors o f Y ii z] a,o whose rank
are s - 1 .  If s - 1  <r,  th en  a  is not contained in  any o f pi 's,
whence there exists an element a, of a which is not contained in
any of pi 's by Proposition 4 in §1. Then the rank o f E;=, ai o  is
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at least s, whence it is s  by Proposition 3.

§ 9 . Norm aI Noetherian rings.
A  ring  o  is called a Dedekind d o m a in  if it is  Noetherian

normal ring of rank 1. N oetherian  l o c a l  r i n g  is a Noetherian
ring which has only one maximal ideal;  Noetherian s em i - local
ring is a  Noetherian ring which has only a finite number of
maximal ideals. According to these notions, we use terminology
such that local Dedekind domain and sem i - local Dedekind domain.

Lemma 1. Let o  be a Noetherian local integrity domain with
maximal ideal p. Let a (0) be an element of p  and let b  be
an element of a o  : p. When o  is of rank 1, we assume that a  is
irreducible (that is, a  cannot be expressed as the product of two
elements of p )  and that ao: p ̂  o. Then  b/a is integral over o.

Proof. Let h  be an element of p  and set c=  (b/a) h. Since b
is in ao: p, bh is in  ao, whence c  is in o. Assume that c  is not
in  p. Then ao=bho. Therefore, when o  is of rank 1, this is a
contradiction to our assumption that a  is irreducible and b  is in
p .  When o  is not of rank 1, let p '  be a minimal prime divisor
o f h o .  Then a is in p ' because ao=bho. Let q' be the primary
component of ao belonging to p'. Since p' p, q' : p=q', whence h
is in q'. Then  ao=bho shows that q ' o '  q'p'op' and therefore
q'op'=q'p'op', which is a contradiction by Corollary 1 to Proposition
1 in §  6 because op' is the J-radical of op'. Thus we see that c
is in p  in either case. Therefore  (b/a )h  is  in  p  for every n.
Therefore b/a is integral over o  by Corollary 3 to Proposition 2
in §4.

Proposition 1. A  sem i-local  Dedekind d om a in  is  a  p r in cip a l
ideal ring. ( C f .  [61)

P r o o f .  Let first o be a local Dedekind domain and let a  be
an irreducible element of o. Then by Lemma 1, ao : p=o, whence
ao=p. Now let b be a semi-local Dedekind domain with maximal
ideals p 1 , p .  Let in be the J-radical of b(rn=p n n p ) .  Then
b/rn2 is isomorphic to the direct sum of b/p/, . . . ,  b/p,.. S ince
b/p/=bp,/pi 2bp1 and since bp, is a local Dedekind domain, we see
that p1/in 2 is generated by an element a 4'. L e t  a4 be an element
of i  whose residue class is a 4'. Then p4=a1o+rn 2 , whence p=
ao+pin. Therefore by Corollary 2 Proposition 1 in §6, we have
p4 = a 1 o. Since every maximal ideal of b is principal, every ideal
of b is principal (it is generated by an element of the form  a u l
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•••a:-, except for 0).
Corollary. A  lo c a l  Dedekind dom ain is a  discrete valuation

ring (and conversely).
Proposition  2 . Let o be a  Noetherian integrity domain and let

a  ( 0 ) be a non-unit in  o. I f  ao has imbedded Prime divisors,
then there exists an  element b of  o such that b/a is integral over o
and b/a is not i n  o .  Conversely, if  there exists such an element b
as above, then either there exists a m inim al prim e divisor p  of  ao
such that Op is not norm al or ao has imbedded prim e divisors.

Proof . Assume that ao has an imbedded prime divisor q . Let
h' be an element of aoq : qoq which is not in aoq ; existence of such
h' follows from the expression of aoq as the intersection of primary
ideals. Then by Lemma 1, b7a is integral over oq . Let c,/s„ •-•,
cn/s„ (ce, s1E0, silq) be elements o f  oq such that (b '/ a)"+ (c,/ s,)
(b'/a) - 1 + ••• + (c„/s)= 0. Set b=b'ss„•••s,„ where s  is an element
of 0  which is not in q such that b's is in o. Then b/a is integral
over o. Since b'la is not in oq , b/a is not in oq and therefore b/a
is not in  o. Conversely, we assume that there exists an element
b  o f o  such that b/a is integral over o  and b/a is not in o.
Assume further that for every minimal prime divisor p  of ao,
is normal and that ao has no imbedded prime divisor. Let p„ •••,

be the set of (minimal) prime divisors of ao and let q„ •.•, q,.
be the primary components o f ao belonging to p„ p , .  respec-
tively. Then since ao has no imbedded prime divisor, q, n •-• n q,.
= a o . Since b/a is integral over o,b/a is integral over Op i ,  whence
b/a is in Op i  (fo r  each i). Therefore boNçaop, = (1,14, and there-
fore bEq,op; n o= q, for each i, which shows that b is in a y .  This
is a contradiction to our assumption that b/a is not in  o. Thus
the proof is completed.

Corollary 1 .  A  Noetherian integrity  domain o  is  norm al if
and only if the following two conditions are satisfied:

(1) For every prim e ideal p  of  rank  1, Op is normal.
(2) Every principal ideal of o has no imbedded prime divisor.

(Krull [6])
This follows from Proposition 2 and the following
L em m a  2 . Any ring of quotients of a normal ring is also

normal.
The proof is easy.
C oro lla ry  2 . A  Noetherian integrity  domain o  i s  norm al if
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and only if  every principal ideal o f  o  is  an intersection of formal
powers of prime ideals of  rank 1 (except for the zero ideal). (Krull
[6])

This follows from Corollary 1 and the following
Lemma 3 .  L e t o  be a  Noetherian local integrity domain of

rank 1. Then o is normal if and only if  10  is principal, where
p denotes the maximal ideal of u.

Proo f . I f  o  is  norm al, then p  is  principal, whence p/pa is
principal. Conversely, if p/pf-'  is principal, then p is principal by
Corollary 2  to Proposition 1 in  §6 . Therefore o  is  a  principal
ideal ring and o is normal.

Corollary 3 .  A  Noetherian norm al rin g  o  is  the intersection
of all op, where p runs over all prime ideals of o of rank  1. (K ru ll
[6])

Corollary 4 .  Let o be a Noetherian integrity domain. A ssume
that f o r every  prim e ideal p o f  o  of  rank  1, Op i s  norm al. If  a
principal ideal au (aEo) has an imbedded prime divisor q, q is also
an  imbedded prime divisor of bo for any  non-zero element b of  q.

Proof . We may assume without loss o f  generality that q  is
the unique m axim al ideal o f  o. L et d  be a n  element o f  ao
which is not in  a o .  Then d ia  is not in  o and is integral over o
by Lemma 1. Let b be a non-zero element of q. Then c=(d/a)b
is in  o. Since d /a=c /b , we see that bo has q a s  a n  imbedded
prime divisor.

R em ark . L e t o  be a n  integrity domain (which may not be
Noetherian). Then o  is the intersection of a ll Op, where p runs
over all maximal ideals of o.

Proof . Let b be the intersection of all o . T hen  oÇ b. Let a
be an  element of b a n d  le t  a  be the set of elements o f  o  whose
product with a  is in  o. I f  lE a, then aE o. We assume that 10.
Since a  is an ideal of o, there exists a maximal ideal p of o which
contains a. Then op cannot contain a ,  which is a contradiction.
Therefore b  o  and therefore b = 0.
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