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T h e  purpose o f  th is  p ap e r is  to  f in d  so m e  p ro p e rtie s  of
harmonic tensors defined in  a  domain with boundary, when the
Riemannian metric undergoes an  infinitesimal change. The varia-
tions of characteristic roots and Green's tensor are obtained. The
notion of abstract dimension is introduced to preserve the  duality
between differential and codifferential under the change of metric.
A n application of the abstract dimension to  a  physical problem
is  in  the  last paragraph.

§  1 .  Notations and formulas.

Let M  be an orientable Riemannian space of dimension n and
o f  class C -  f o r  simplicity, the positive definite metric tensor be
g i p  L et D  b e  a  bounded connected open set with regular boun-
dary B.

If  A ‘1,, and A im ,  fo r example, a re  associated tensors, we shall
denote them by one and the same symbol A .  A  tensor is called
skew-symmetric, if its associated covariant tensor is skew-sym-
metric.

W e  sh a ll a d o p t th e  following notations for skew-symmetric
tensors A  and B :

(A *) 1  A . E i  • i r
'1 12' 1. /L —p p! J i • •  i74 — p '

1  ali t i ,2* • • 741 D  A
1.2 .741 p !

112 '  ip+I :72' • -1141'

(VA) A.i.„•••ip a l i v  • • bp '

(zIA) in  D,

in D,
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(_[_A). .
p + i

N  A on B,p i  

( [44) N "A i,i,.

1(A• B)— A. P i•••ir,p ! I,

on B,

w here Di  deno tes the covariant differentiation, N  the outwards
unit normal vector to the boundary B , and

We get easily

4A= O, rrA =0
A .-=_LTA +Ti_A

(2) T T A - 0 ,  " I A = 0
T IT A  = T A ,  _LT_LA=_LA.

Thus _LTA is the normal part of A  and T IA  the tangential part.
Putting dV--=E, , .. • • -dx'n , dS=N 'do-i,

w e  have the following well-known formulas for skew-symmetric
tensors A  and B :

(T A • B)dS= j (V  A  B )dV + J (A- 41B)dV--f (A • __LB)dS,

f (TzIA • B )  d S = (V  A • B)dV+ j (z1 A • 4.8) d V

=f (4 A • j_B)dS,

(T A • VB)dS (PA •V B )d V + (A • 41713)dV

(3)
=f (A- _1_1713)dS,

ÇJ(111A -B)dV + (z1,41-4B)dV+Çf (17.4•17 B )dV

(T 4 A • B )d S + (IPA - B )dS

(4 11- _LB) d S + (rA •TB)dS,
w here  f  denotes th e  (n - 1) -p le  integration on B ,  JJ  the n-ple
integration on D  and El -----..117 - k ra . (See [1] and [2] in references.
The notations are some what different.)

§ 2 .  Dimensional differentiation o f  tensors fo r  a  infinitesimal
variation of the metric.

(1)

Definition (2.1). An abstract dimension of a tensor A, [A],
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is a  real number corresponding to each A  and satisfying the follow-
ing conditions:

(I) [d.
 i „]= e'd= 0

(II) if  A ' is any contraction of A , then [A ']=[A ],

(III) if  [A ]=[B ], then [A +B]=[21.1+[B],

(IV) [A x  B ]= [A] + [B],
(V) if  A  is  a  scalar, then[A]=k[A],

(VI) [gi i dxidx1]=2,

(VII) if  D A  is  covariant derivative of A,
then [DA ]=[A ]— [dx ].

There can be two kinds of dimensions, [ ]  a n d  [ ] ' ,  satisfying
the above conditions.

Definition ( 2 .2 ) .  I f  [A ]=0  implies [AT =0  and conversely for
all scalar's A , then we shall call the dimensions equivalent.

Theorem ( 2 .1 ) .  I f  two dimensions are equivalent, then they
coincide f o r all scalars.

Proof. Putting dV = tndxil•••dxin w e  have [cIV ]=[dIf ]'
= n  by the conditions in definition ( 2 .1 ) .  If  [A ]=a, [A ]'— a' for
a  scalar A , then  LA d Ir - - ;'1 = 0  b y  th e  above conditions. Hence
[A d17 - - ]' =0  by definition (2 .2 ). It follows that [Al' +1411 - 1' =0,
a'— a.

Theorem ( 2 .2 ) .  I f  two dimensions are equivalent and  [A l=
Lelx7, then they coincide for all relative or absolute tensors.

P ro o f . If  [dli]=[dx l]'=>, then [go ] =[g,1
]' = 2 - 2  by conditions

in  definition (2 .1 ), hence [dx,]=Lgt i d x 1 =2 — $ . If  A ' , •• j ,  is  a
tensor of weight w,

B = N /k-A ' .  • 2,
j g dx 1 .• • • dx'q dx. i • • • dx, , ,

is  a  scalar, and  [B ]=L A J—  w n (1— ) + + p ( 2 - 0 .  Similarly [B]'
=[A ]' —  w n  (1 -0  + + p (2 — ) . By theorem (2 .1 ), w e get [B ]=
[B]' ,  hence [A ]=[A ]'.

Definition ( 2 .3 ) .  I f  [dx "]=0 or [g;5]=2 ,  the dimension may be
called absolute d im ension , and  if  [d x 1 =1  o r  [g,5]= 0 ,  relative
dim ension. [3].

It follows immediately fo r  equivalent absolute and relative
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dimensions that :

[ A ] n b s  [ A ] r e l  + q — p+  nw,

[dV]„.1 =n,

1Alr,.1=[IA1],d,
where I A I is the absolute value of A, that is,

lA r=g - u'A f i i r  .  A.
.71 h i L I  • ' I,

Since [gi 1 ]=0  a n d  [-../b ]= 0  for relative dimension, all associated
absolute o r re la tive  tensors have the same dim ension. It is ade-
quate to use relative dimension for our simplified notation A.

When components o f a  tensor A (x, t) a re  differentiable func-
tio n s  o f  independent variables x„ •••, x „ a n d  a  parameter t, vA
denotes the variation of A , that is, 

aA
dt. v A  is  a  tensor of theat

same kind as A .  W e assume that A  is  o f C -  f o r  simplicity.
Let be components o f  a  tensar A  o f  weight w,

and vg,i (x, t) ---2(011 (x, t) .
Definition (2 .4 ) .  Dimensional derivatives of A are defined as

follows:

A  A  — v A ii . . - ip • • •  4 -  w i P A i i -

ii• • • i p S • • iq

(4) — (o' — • • • —  (Ds Ai 1.

i q • • • 4 - 1 '

— ( 1 V +
i l • • • i q

where a=[A ] r e , and w=
8 A  is a  tensor of the same kind a s  A  and [8 A]=[A].

We get
84=--- O.8 g = 0, oô1, . 0,

(5)
adx '-=  dxl — die, ado-, da 1 + do- i , d 0 ,

s in c e  vdx'=0.
Let 12 and .f2' are linear operators defined by :

PAii•"ip + • • • + (0 ', .A 1 ,- -s3 j 2,
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+ A 'i . . . iP + • • • + 44'1 — '1,
a 4 , i t '  " 3

±  a  W A ,

'

-(2' = —  w 'IA ' JP . — • • • —0)'PA'1 . . .

ir • *.iq3 41' '' 3r1

()8 A L i p — • • • — (0;,Aii•"‘Pi,•••

47

4 "   a  
+ (?)A‘1•••

n

If  A  and zIA . are covariant skew-symmetric tensors of weight
w , we get easily (v— tow) 4A= 4 (v — ww) A  a n d  y— w w ---8-142 by
(4 ) and  (6 ), it follows that

(7) (a- F Q)%1A=z1(4±,f2) A,

This identity holds not only for convariant skew-symmetric tensor
A , b u t  fo r  any skew-symmetric tensor A , since the operations,

Q' a n d  8 ,  a r e  commutable with the operations, uppering or
lowering of the indices of A  and weighting A  by Vg7 . S im ila ry
we get

(8) (8 + 12') l7 A=17 (8 - HQ')

We also have the identity

(9) (QA • B ) + (A • S2'13) =0,

provided that [A l  -1-rm, r e l  • , r e l — n

(p-1)!
scalar of relative dimension 0, we have

(71(2'A • B )dS  + (T  A • 12B) dS

(10) = (.(1' A • _LB) dS  + (A • i f  2B) dS

1 'A 1 . ado-(p-1)!

If (TA  • B )dS -= (A • _l_B )d S = 1
4 1 -  i P is  a

by (5 ) a n d  (6 ).
I f  A  is a  scalar of relative dimension ( —n), that is , if  A d V

is a  scalar of dimension 0 , then y i  A d V = j v  ( A d V )  j j  ( A d V ) ,
and  if A  is a  tensor of relative dimension (1—n), that is, if Aldo-,
is a  scalar of dimension 0, v fAida-,—fv(A'dcr i ) = fiô (A idcri) . We
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shall denote them 8! ÇA dV  and 8fAtder, for simplicity, that is, the
operation a upon a  integral is applicable if and only if the relative
dimension of the integral is 0.

We get from (10) a n d  (3)

a(TA-B)dS

(TdA • B )dS + (T  A • 3B)dS+ (T 12' A • B)dS+ (T A • 9B)dS

--(aA • _LB)dS+ (A • _La13)dS+ (12' A • _l_B)dS+ (A • _LI2B)dS

=a(A •_LB)dS,
(11)

afi (TA  •B )dS

— Jf(r3A •B )dV ±!j(aA •4.13)dV +!J(1 7 ,4•3B )dV

+ çç (A • 4dB)d V+ JJ (17 2' A • B) d V +  f (9' A- 4B) d V

fJ(17 .12B)dV + !Ç (A • 4913)dV =8# (A- _LB)dS,

f o r  skew-symmetric tensors A  a n d  B ,  sum o f  whose relative
dimension is (1—n).

It follows from (7) a n d  (8) that

84 = 4ô + 42-14

=rad-r12 , — gr,
(12) azir =Jr 8+ Jr fd,  — 2 , r+4 9 p -9 4 P,

4'4 = F A  rzild —r-Q4 -F r id ,  —  syt 74.

L e t  A  be a  skew-symmetric tensor of relative dimension
(1-- n

2 ) ,  p  a  positive scalar of relative dimension (-2 ).

Consider the elliptic differential equation

0A +2pA =0 in D, -
(13)

A =0 on B,

where A is a  characteristic ro o t . We shall assume that A and A
are  differentiable with respect to the  parameter t  a n d  A  is nor-
malized by Ç Ço(A -A )dV =1.
From (13) w e ge t Ç (A •IEJA )dV = —  ;
Operating a, we have

— 8,1=21 J[ (SY A • Jr A )±(9,4•174A )-F (Y rA •V A )
• ±(124A •4A )]clV -EÀ ÇPp(A •A )dV ,
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by (3), (9), (12) a n d  (13).
If  A  is a  scalar, then FA =0 ,1 1 1 A =F4 A  by definition, and

— 8 )  —2) Jp(td A • A )dV +2!! (P4A • 4A )dV -FÀ ÇPp (A- 24)dV .

L e t p„ • • • , p,, be th e  characteristic roots o f  Idj —p8ii  1=0,

and we shall assum e p„,._< p„ • • • , p 0 0 0M ,  where p„„
p,,0 ,„ and 0.„ are constants. Since Ç Ç (V 4A • A )dV = — ÇÇ JA )dV ,
we get an inequality fo r  ail:

[n ( r im -  tt„,) - (2p. + > (3
1
2 > [n (it. —  Pm) — (212A1 + 31)], (n > 3 ).

Putting K =f f p 2'2'  cIV  , we also get a n  inequality :

2   a x
K  

> 2p„,+0„,.
n 

§ 3. Conformal change of metric.

Let x a n d  y  be two points in  D .  Set of functions A "(x ,y )
of variables (x )  a n d  (y )  may be called a double tensor, [1],
if

ax' a y i(x, y) A -  - \-  -  . t i yai/c a y i

for any coordinates transformations : (X) and (y )-- (y ). The
covariant differentiation with respect to (x ) or (y) and the dimen-
sional differentiation can be defined as follows :

aA "ax k P

A ci= + , A!'" ,P

aAci— v.A ."+0);(x)A"Ii+ds (y)
a a ' w(x) A" — w (y )A ' ,

where a  a n d  a ' are relative dimensions of A "  with respect to
(x )  a n d  (y), which we denote [A]= (a, a ')  for simplicity.
The notions above may be extended fo r any tensor, and relations
analogous to (12) hold fo r d, D ( ) a n d  D ( y ) .
If  A "(x , y) and B, ; (x, y) are double tensors for example, and  Aci
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(x, y) (x, y )  is of dimension ( - n ) with respect to ( y ) ,  then its
integration over D with respect to (y) , Ç Ç At 1 (x, y)B l i  (x, y) dV (y) ,
is  a  contravariant tensor with respect t o  ( x ) , a n d  moreover
8f Ç ABd V (y) JJ ( A B d V ) ,  since A B dV (y ) is of 0 dimension with
respect to y.

For conformal change of metric, (o,1 --=7g,1 ,
from (4 ) , (5 )  a n d  (6 ) we get

Afi — vA '1. i P  •  ±  ( p -  q—  nw a)7 A il .

. 1 1  •  Jo 31 i q

8C1Xi  =O. M O E {  = 0, ad V =0,
(15) £1,( m +  a) z A 'l• io il •  • iq '

A . 1 .  • i r =  (m' + a )  A ir• i P • ,
J I Jo • .7

where m = p -F q =  the  degree of A, m ' =n— m , we shall call m ' the
dual degree of A.

Since degree of A  is smaller than degree of 4 A  by one, and
greater than degree o f  P A  by one, relative dim ension of A  is
greater than relative dimension of 4A . o r  P A  by one, we also
have :

4A= 4&4+A= 48A + (m + (z .17 A— 74 A ) ,

(317A =P84+ (m ' +a)  (F7A — 7F A) ,
(16) 474 A =F4 A + (nz' + a) (Or A —  zIrt 7 A )

(m + a - 2 )  (47P' A— 7417  A) ,
8174 A = i.117dA + (m+ a) (17 4 r A —F rz I A

+ (m' + a - 2 )  (Pr4A -7174A ),
by (12).

L e t  th e  Riemannian space be euclidean, ( x )  a n d  (y )  th e
cartesian coordinates o f  two points, )'2 the square of distance of
(x ) a n d  ( y ) .  We regard r  as a double scalar of relative dimen-
sion (1,1).

1 a'r2 

P u t  / — ,  then r i , ,  is a double tensor of covariant2  ax'ayi
order (1 ,1 ) and relative dim ension (0 ,0 ) .  F o r  th e  special con-
formal change of metric, (00 = 7 ,  where 7 is a  constant., we get

4 '2 =0 , 8 =  0  .
It follows that
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Theorem (3.1). I f  th e  space is R iem annian an d  r  is  the
geodesic distance between two points (x ) an d  (y ) sufficiently near,
then a , 81-'0 , 0  w hen (x ) “y ) , f o r  comformal change of
metric.

Let 4.1 j . (x, y ) be Green's tensor for the elliptic differential
equation :

OA = 0  in  D  with given _LTA and T_LA on B.

It is known that Green's tensor is unique under some appropriate
topological conditions for domain D  and the tensor is characterized
by the following properties :

G (x, y) =0 in  D,

G (x, y) =0, if x is on B,

G (x, y) — r(x ,y ) is regular at x =y,
where

1 1 
T  - imp, • .5 .

(x
' 
Y )( n  — 2)S„

ii• • • 1'4 ,o .

S n  is the area of the  unit (n -1 )  sphere. [4
We shall assu m e  [G ], (1 —   71

2  , 1— n
2 ) ,

since 1— n
2 ) .

By theorem (3.1) ar --)0 when (x) ( y ) ,  and we get easily 8G =0,
i f  (x ) is on B .  Thus we have :

Theorem (3.2) aG is regular f o r an y  (x ) an d  (y )  in  D ,
8G -0 i f  (x ) is on B .

Operating a  o n  0,G= 0, it follows

0  G (x, y) — R n
2  m  + 1 )i  41,7 (x )r  4 1 )7%-r (x)

+ (m —1— n2  ){ (x)4,17., — 4,7 (x)17 .,}

+(m+1—  n
2   )11 ,r (x) Az- (x)}

+ ( n
2 —m -1) {r (x), (x ) d G (x ,y )

(17)
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by (16).
Putting the right side in (17) e; (x, y) , we have

ôG (y, z) — Ç G (1, z) 6 (x, y) d V(x)

since 8G (x, y) = 0 i f  (x) is on B.
Integrating by part, we get

8 G (I, y) =- — 2(m —  n
2   — 1)1  (x ) (I ,G (x, y) • r.,G(x,2))

+ (4)7 (x, y) • G (x,z))]d V (x)

—2(  n
2   — nz —1)f r ( x ) [  z G (x, y) z))

+  A G (x, y) • G (x, z)id V (x) •

It follows that :
if r = c o n s t. aG=o ;
if m = 0 , that is, G  is a double scalar,

3G (x, y) -= (2 — n ) j r[4.,G(x, y) • z ,G (x, z))dV(x),

since PG=0, CIG —17 4G = 0 ;

if n is even and m 2  '
eiG(x, z) —2i Jr(x)[(F,G(x, y) .12%G (x, z))

,G(x y) • 4.,G (x, z))] d V (x)

since (dp+P  G  =EC =O.

4 .  An application to electrostatic field.

Let it (x )  be the dielectric constant for an electrUstatic field
in an n-dimensional Riemannian space with the metric tensor go .
Physical dimension o f p, [p],,h ,„  is L' - "Q2E - 1 ,  where L, Q and E
denote the dimensions o f length, electric charge and energy re-
spectively, and L, Q, E are independent since dimensions of mass
and time do not appear.

Electric energy contained in a domain D  is given by

ÇI2
as°( i v d x ` '  •  •  • , where iv

is the electrostatic potential, and
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[gi i ],„,, = QT"L", [d xi]h y = L.

Putting = P g i3 f =

we have

i i , (
3 9 d . x i i •  • -A Ç L • • •x axi ii" ax3

Hence fi j  m ay be used as the  fundamental tensor fo r  th e  electro-
static field instead of g, i .

2- n
W e have [ f i i ] p h y  = [ fodx idx i ]phy =-- -- S 2 , [it']phy=
where S= (Q 2E - 1

)

If physical dimension of the absolute v alue of  a tensor A  with
respect to the fundamental tensor f c i  i s  S 'E ',  we shall define abstract
relative dimension o f  A , [A ],,,, as  a, since it satisfies the axioms
of abstract dimension in § 2.

Thus w e h a v e  [fi l ]ro  = 0 , [d.e]..] =1, [49]r0=1— 2

f a. . dxi' • • •dx 'd re, =- O.a io   -

Variation of p  is  a  conformal change of f j ,  and  the arguments in
prev ious paragraphs hold f o r such a  k ind of  problems in physics,
providing that J  i s  the fundam ental tensor.
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