Dimensional differentiation of harmonic tensors for variations of Riemannian metric

By

Tatuo NakaE

(Received October 20, 1954)

The purpose of this paper is to find some properties of harmonic tensors defined in a domain with boundary, when the Riemannian metric undergoes an infinitesimal change. The variations of characteristic roots and Green's tensor are obtained. The notion of abstract dimension is introduced to preserve the duality between differential and codifferential under the change of metric. An application of the abstract dimension to a physical problem is in the last paragraph.

§ 1. Notations and formulas.

Let M be an orientable Riemannian space of dimension n and of class C^{∞} for simplicity, the positive definite metric tensor be $g_{i j}$. Let D be a bounded connected open set with regular boundary B.

If $A_{j k}^{i}$ and $A_{i j k}$, for example, are associated tensors, we shall denote them by one and the same symbol A. A tensor is called skew-symmetric, if its associated covariant tensor is skew-symmetric.

We shall adopt the following notations for skew-symmetric tensors A and B :

$$
\begin{array}{ll}
\left(A^{*}\right)_{i_{1} i_{2} \cdots i_{n-p}}=\frac{1}{p!} A_{j_{1} \cdots j_{p}} \varepsilon^{j_{1} \ldots j_{p_{1}} \cdots i_{n-p}}, \\
(\Delta A)_{i_{1} i_{2} \cdots i_{j},+1}=\frac{1}{p!} \delta_{i_{1} i_{2} \cdots i_{p+1}}^{j_{i} j_{2} \cdots j_{p+1}} D_{j_{1}} A_{j_{2} \cdots j_{p+1}}, & \text { in } D, \\
(\nabla A)_{i_{2} \cdots i_{p}}=D^{i_{1}} A_{i_{1} i_{2} \cdots i_{p},}, & \text { in } D,
\end{array}
$$

(1)

$$
\begin{array}{ll}
(\perp A)_{i_{1} i_{2} \cdots i_{p+1}}=\frac{1}{p!} \delta_{i_{1} t_{2} \cdots i_{p+1}}^{j_{1} j_{2} \cdots j_{p+1}} N_{j_{1}} A_{j_{2} \cdots j_{p+1}} & \text { on } B, \\
(T A)_{i_{2} \cdots i_{p}}=N^{i_{1}} A_{i_{1} i_{2} \cdots i_{p},} & \text { on } B, \\
(A \cdot B)=\frac{1}{p!} A_{i_{1} \cdots i_{p}} B^{i_{1} \cdots i_{p},} &
\end{array}
$$

where D_{i} denotes the covariant differentiation, N the outwards unit normal vector to the boundary B, and $\varepsilon_{i_{1} \cdots i_{n}}=\sqrt{\bar{g}} \delta_{i_{1} \cdots i_{n}}$.

We get easily
(2)

$$
\begin{aligned}
& \Delta\lrcorner A=0, \quad\ulcorner\Gamma A=0 \\
& A=\perp \mathrm{T} A+\mathrm{T} \perp A \\
& \text { T丁 } A=0, \quad \perp \perp A=0 \\
& \mathrm{~T} \perp \mathrm{~T} A=\mathrm{T} A, \quad \perp \mathrm{~T} \perp A=\perp A .
\end{aligned}
$$

Thus $\perp \top A$ is the normal part of A and $\top \perp A$ the tangential part.
 we have the following well-known formulas for skew-symmetric tensors A and B :

$$
\begin{aligned}
& \phi(\top A \cdot B) d S=\iint(\nabla A \cdot B) d V+\iint(A \cdot \Delta B) d V=\phi(A \cdot \perp B) d S, \\
& \oint(\top \Delta A \cdot B) d S=\iint(\nabla \Delta A \cdot B) d V+\iint(\Delta A \cdot \Delta B) d V \\
& =\phi(\Delta A \cdot \perp B) d S,
\end{aligned}
$$

$\oint(丁 A \cdot \nabla B) d S=\iint(\nabla A \cdot \nabla B) d V+\iint(A \cdot \Delta \nabla B) d V$
(3)

$$
\begin{aligned}
& \iint(\square A \cdot B) d V+\iint(\Delta A \cdot \Delta B) d V+\iint(\nabla A \cdot \nabla B) d V \\
& =\phi(\top \Delta A \cdot B) d S+\phi(\perp \nabla A \cdot B) d S \\
& =\oint(\Delta A \cdot \perp B) d S+\oint(\Gamma A \cdot \top B) d S
\end{aligned}
$$

where ϕ denotes the $(n-1)$-ple integration on B, \iint the n-ple integration on D and $\square=\Delta \Gamma+\Gamma \Delta$. (See [1] and [2] in references. The notations are some what different.)

§ 2. Dimensional differentiation of tensors for a infinitesimal variation of the metric.

Definition (2-1). An abstract dimension of a tensor $A,[A]$,
is a real number corresponding to each A and satisfying the following conditions:

$$
\begin{equation*}
\left[\grave{o}_{i_{1} \cdots i_{n}}\right]=\left[\grave{\delta}^{i_{1} \cdots i_{n}}\right]=0, \tag{I}
\end{equation*}
$$

(II) if A^{\prime} is any contraction of A, then $\left[A^{\prime}\right]=[A]$,
(III) if $[A]=[B]$, then $[A+B]=[A]+[B]$,
(IV) $[A \times B]=[A]+[B]$,
(V) if A is a scalar, then $\left[A^{k}\right]=k[A]$,
(VI) $\quad\left[g_{i j} d x^{i} d x^{j}\right]=2$,
(VII) if $D A$ is covariant derivative of A, then $[D A]=[A]-\left[d x^{i}\right]$.
There can be two kinds of dimensions, [] and []', satisfying the above conditions.

Definition $(2 \cdot 2)$. If $[A]=0$ implies $[A]^{\prime}=0$ and conversely for all scalars A, then we shall call the dimensions equivalent.

Theorem $(2 \cdot 1)$. If two dimensions are equivalent, then they coincide for all scalars.

Proof. Putting $d V=\sqrt{g} \delta_{i_{1} \cdots i_{n}} d x^{i_{1} \ldots d x^{i_{n}}}$ we have $[d V]=[d V]^{\prime}$ $=n$ by the conditions in definition (2•1). If $[A]=a,[A]^{\prime}=a^{\prime}$ for a scalar A, then $\left[A d V^{-\frac{a}{n}}\right]=0$ by the above conditions. Hence $\left[A d V^{-\frac{a}{n}}\right]^{\prime}=0$ by definition (2.2). It follows that $[A]^{\prime}+\left[d V^{-\frac{a}{n}}\right]^{\prime}=0$, $a^{\prime}=a$.

Theorem (2.2). If two dimensions are equivalent and $\left[d x^{i}\right]=$ $\left[d x^{i}\right]^{\prime}$, then they coincide for all relative or absolute tensors.

Proof. If $\left[d x^{i}\right]=\left[d x^{i}\right]^{\prime}=\xi$, then $\left[g_{i j}\right]=\left[g_{i j}\right]^{\prime}=2-2 \xi$ by conditions in definition (2•1), hence $\left[d x_{i}\right]=\left[g_{i j} d x^{j}\right]=2-\xi$. If $A^{i_{1} \cdots i_{p_{j_{1}} \cdots j_{q}}}$ is a tensor of weight w,

$$
B=\sqrt{g}^{-w} A^{i_{1} \cdots i_{p_{1}}}{ }_{j_{1} \cdots j_{q}} d x^{j_{1} \cdots d x^{i_{q}}} d x_{i_{1}} \cdots d x_{i_{j}}
$$

is a scalar, and $[B]=[A]-w n(1-\xi)+q^{\xi}+p(2-\xi)$. Similarly $[B]^{\prime}$ $=[A]^{\prime}-w n(1-\xi)+q^{\xi}+p(2-\xi)$. By theorem (2•1), we get $[B]=$ $[B]^{\prime}$, hence $[A]=[A]^{\prime}$.

Definition (2•3). If $\left[d x^{i}\right]=0$ or $\left[g_{i j}\right]=2$, the dimension may be called absolute dimension, and if $\left[d x^{i}\right]=1$ or $\left[g_{i j}\right]=0$, relative dimension. [3].

It follows immediately for equivalent absolute and relative
dimensions that:

$$
\begin{aligned}
& {[A]_{\mathrm{ats}}=[A]_{\mathrm{rel}}+q-p+n w,} \\
& {[d V]_{\mathrm{rel}}=n, \quad[N]_{\mathrm{rel}}=0, \quad[d S]_{\mathrm{rel}}=n-1,} \\
& {[D A]_{\mathrm{rel}}=[A]_{\mathrm{rel}}-1, \quad[A]_{\mathrm{rel}}=[|A|]_{\mathrm{rel}}}
\end{aligned}
$$

where $|A|$ is the absolute value of A, that is,

$$
|A|^{o}=g^{-w} A^{i_{1} \cdots i_{j_{1}} \cdots j_{q}} A_{i_{1} \cdots i_{p}}^{j_{1} \cdots i_{q}} .
$$

Since $\left[g_{i j}\right]=0$ and $[\sqrt{g}]=0$ for relative dimension, all associated absolute or relative tensors have the same dimension. It is adequate to use relative dimension for our simplified notation A.

When components of a tensor $A(x, t)$ are differentiable functions of independent variables x_{1}, \cdots, x_{n} and a parameter $t, v A$ denotes the variation of A, that is, $\frac{\partial A}{\partial t} d t . \quad v A$ is a tensor of the same kind as A. We assume that A is of C^{∞} for simplicity.

Let $A^{i_{1} \cdots i_{p_{1}} \cdots j_{q}}$ be components of a tensar A of weight w, and $v g_{i j}(x, t)=2 \omega_{i j}(x, t)$.

Definition (2•4). Dimensional derivatives of A are defined as follows:

$$
\begin{align*}
& -\omega_{j_{1}}^{s} A_{{ }_{s j} \cdots j_{q}}^{i_{1} \cdots i_{p}}-\cdots-\omega_{j_{q}}^{s} A_{i_{1} \cdots i_{j_{j_{1}} \cdots j_{j_{-1}} s}}^{n} \tag{4}\\
& -\left(w+\frac{\alpha}{n}\right) \omega A_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{j}}
\end{align*}
$$

where $\alpha=[A]_{\text {rel }}$ and $\omega=\omega_{i j} g^{i j}$.
δA is a tensor of the same kind as A and $[\delta A]=[A]$.
We get

$$
\begin{align*}
& \delta g_{i j}=0 . \quad \delta g=0, \quad \delta \delta_{i_{1} \cdots i_{n}}=0, \tag{5}\\
& \delta d x^{i}=\omega_{i}^{i} d x^{j}-\frac{\omega}{n} d x^{i}, \quad \delta d \sigma_{i}=-\omega_{i}^{j} d \sigma_{j}+\frac{\omega}{n} d \sigma_{i}, \quad \delta d V=0,
\end{align*}
$$

since $v d x^{i}=0$.
Let Ω and Ω^{\prime} are linear operators defined by :

$$
\Omega A_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}=\omega_{s}^{i_{1}} A^{s \cdots i_{j_{1}}{ }_{j_{1}} j_{q}}+\cdots+\omega_{s}^{i_{1}} A^{i_{1} \cdots s}{ }_{j_{1} \cdots j_{q}}
$$

$$
\begin{align*}
& +\omega_{j_{1}}^{s} A^{i_{1} \cdots \boldsymbol{i}_{j} \cdots j_{q}}+\cdots+\omega_{j_{q}}^{s} A^{\boldsymbol{i}_{1}{ }^{\cdots} \boldsymbol{i}_{j_{1} \cdots,}} \\
& +\frac{\alpha}{n} \omega A_{i_{1} \ldots i_{j_{1}} \cdots j_{g}}, \tag{6}\\
& \Omega^{\prime} A^{i_{1} \cdots \boldsymbol{i}_{p_{j}}}{ }_{j_{1} \cdots j_{q}}=-\omega_{s}^{i_{1}} A^{\left.s \cdots i_{i_{1}}{ }_{j_{1} \cdots j_{q}}-\cdots-\omega\right)_{s}^{i_{p}} A^{i_{1} \cdots s}{ }_{j_{1} \cdots j_{q}}} \\
& -\omega_{j_{1}}^{s} A_{1}^{i_{1} \cdots i_{p}}{ }_{s j_{q}}-\cdots-\omega_{j_{q}}^{s} A^{i_{1} \cdots i_{p_{j}}}{ }_{j_{1} \cdots s} \\
& +\left(\frac{\alpha}{n}+1\right) \omega A^{i_{1} \cdots i_{j_{j} \cdots j_{q}}} .
\end{align*}
$$

If A and ΔA are covariant skew-symmetric tensors of weight w, we get easily $(v-w \omega) \Delta A=\Delta(v-w(\omega) A$ and $v-w \omega=\delta+\Omega$ by (4) and (6), it follows that

$$
\begin{equation*}
(\delta+\Omega) \Delta A=\Delta(\delta+\Omega) A \tag{7}
\end{equation*}
$$

This identity holds not only for convariant skew-symmetric tensor A, but for any skew-symmetric tensor A, since the operations, Ω, Ω^{\prime} and δ, are commutable with the operations, uppering or lowering of the indices of A and weighting A by \sqrt{g}. Similary we get

$$
\begin{equation*}
\left(\delta+\Omega^{\prime}\right) \nabla A=\nabla\left(\delta+\Omega^{\prime}\right) A . \tag{8}
\end{equation*}
$$

We also have the identity

$$
\begin{equation*}
(\Omega A \cdot B)+\left(A \cdot \Omega^{\prime} B\right)=0, \tag{9}
\end{equation*}
$$

provided that $[A]_{\text {rel }}+[B]_{\text {rel }}=-n$
If $\quad(T A \cdot B) d S=(A \cdot \perp B) d S=\frac{1}{(p-1)!} A^{i_{1} \cdots i_{p}} d \sigma_{i_{1}} B_{i_{2} \cdots i_{p}}$ is a scalar of relative dimension 0 , we have

$$
\begin{aligned}
& \left(T \Omega^{\prime} A \cdot B\right) d S+(丁 A \cdot \Omega B) d S \\
= & \left(\Omega^{\prime} A \cdot \perp B\right) d S+(A \cdot \perp \Omega B) d S \\
= & \frac{1}{(p-1)!} A^{i_{1} i_{2} \cdots i_{p}} B_{i_{2} \cdots i_{p}} \delta d \sigma_{i_{1}}
\end{aligned}
$$

by (5) and (6).
If A is a scalar of relative dimension $(-n)$, that is, if AdV is a scalar of dimension 0 , then $v \iint A d V=\iint v(A d V)=\iint \delta(A d V)$, and if A^{i} is a tensor of relative dimension $(1-n)$, that is, if $A^{i} d \sigma_{i}$ is a scalar of dimension $0, v \beta A^{i} d \sigma_{i}=\phi v\left(A^{i} d \sigma_{i}\right)=\phi \grave{o}\left(A^{i} d \sigma_{i}\right)$. We
shall denote them $\delta \iint A d V$ and $\grave{\delta} A^{\prime} d \sigma_{\text {: }}$ for simplicity, that is, the operation δ upon a integral is applicable if and only if the relative dimension of the integral is 0 .

We get from (10) and (3)

$$
\begin{align*}
& \delta(丁 A \cdot B) d S \\
& =(\top \delta A \cdot B) d S+(\top A \cdot \delta B) d S+\left(\top \Omega^{\prime} A \cdot B\right) d S+(\top A \cdot \Omega B) d S \\
& =(\delta A \cdot \perp B) d S+(A \cdot \perp \delta B) d S+\left(\Omega^{\prime} A \cdot \perp B\right) d S+(A \cdot \perp \Omega B) d S \\
& =\delta(A \cdot \perp B) d S, \\
& \delta \oint(\top A \cdot B) d S \tag{11}\\
& =\iint(\nabla \delta A \cdot B) d V+\iint\left((A \cdot \Delta B) d V+\iint(\nabla A \cdot \partial B) d V\right. \\
& +\iint(A \cdot \Delta \partial B) d V+\iint\left(\Gamma \Omega^{\prime} A \cdot B\right) d V+\iint\left(\Omega^{\prime} A \cdot \Delta B\right) d V \\
& +\iint(\nabla A \cdot \Omega B) d V+\iint(A \cdot \Delta \Omega B) d V=\delta \oint(A \cdot \perp B) d S,
\end{align*}
$$

for skew-symmetric tensors A and B, sum of whose relative dimension is $(1-n)$.

It follows from (7) and (8) that

$$
\begin{aligned}
& \delta \Delta=\Delta \grave{o}+\Delta \Omega-\Omega \Delta, \\
& \dot{\sigma} \Gamma=\Gamma \hat{o}+\Gamma \Omega^{\prime}-\Omega^{\prime} \Gamma, \\
& \delta \Delta \Gamma=\Delta \Gamma \delta+\Delta \Gamma \Omega^{\prime}-\Delta \Omega^{\prime} \Gamma+\Delta \Omega \nabla-\Omega \Delta \nabla, \\
& \partial \nabla \Delta=\nabla \Delta \hat{\delta}+\nabla d \Omega-\nabla \Omega \Delta+\nabla \Omega^{\prime} \Delta-\Omega^{\prime} \nabla \Delta .
\end{aligned}
$$

Let A be a skew-symmetric tensor of relative dimension $\left(1-\frac{n}{2}\right), \rho$ a positive scalar of relative dimension (-2).

Consider the elliptic differential equation

$$
\begin{array}{cl}
\square A+\lambda \rho A=0 & \text { in } D, \tag{13}\\
A=0 & \text { on } B,
\end{array}
$$

where λ is a characteristic root. We shall assume that λ and A are differentiable with respect to the parameter t and A is normalized by $\iint \rho(A \cdot A) d V=1$.
From (13) we get $\iint(A \cdot \square A) d V=-\lambda$;
Operating δ, we have

$$
\begin{aligned}
-\delta \lambda=2 \iint\left[\left(\Omega^{\prime} A \cdot \Delta \nabla A\right)\right. & +(\Omega A \cdot \nabla \Delta A)+(\Omega \cdot \nabla A \cdot \nabla A) \\
& +(\Omega \Delta A \cdot \Delta A)] d V+\lambda \iint \partial \rho(A \cdot A) d V
\end{aligned}
$$

by (3), (9), (12) and (13).
If A is a scalar, then $\Gamma A=0, \square A=\Gamma \Delta A$ by definition, and

$$
-\delta \lambda=-2 \lambda \iint \rho(\Omega A \cdot A) d V+2 \iint(\Omega \Delta A \cdot \Delta A) d V+\lambda \iint \partial \rho(A \cdot A) d V
$$

Let μ_{1}, \cdots, μ_{n} be the characteristic roots of $\left|\omega_{j}^{i}-\mu \lambda_{j}^{i}\right|=0, \theta=\frac{v \rho}{\rho}$, and we shall assume $\mu_{m} \leqq \mu_{1}, \cdots, \mu_{n} \leqq \mu_{M}, \theta_{m} \leqq \theta \leqq \theta_{M}$, where μ_{m}, μ_{s}, θ_{m} and θ_{μ} are constants. Since $\iint(\Gamma \Delta A \cdot A) d V=-\iint(\Delta A \cdot \Delta A) d V$, we get an inequality for $\grave{o} \lambda$:
$\left[n\left(\mu_{M}-\mu_{m}\right)-\left(2 \mu_{m}+\theta_{m}\right)\right]>\frac{\dot{\lambda} \lambda}{\lambda}>\left[n\left(\mu_{m}-\mu_{M}\right)-\left(2 \mu_{M}+\theta_{M}\right)\right],(n \geq 3)$.
Putting $K=\iint \rho^{\frac{n}{2}} d V$, we also get an inequality:

$$
2 \mu_{M}+\theta_{M}>\frac{2}{n} \frac{\delta K}{K}>2 \mu_{n}+\theta_{m}
$$

§ 3. Conformal change of metric.

Let x and y be two points in D. Set of functions $A^{i^{1 j}}(x, y)$ of variables (x) and (y) may be called a double tensor, [1], if

$$
A^{i^{i j}}(x, y)=\frac{\partial x^{i}}{\partial \bar{x}^{k}} \frac{\partial y^{j}}{\partial \bar{y}^{l}} \bar{A}^{k \mid l}(\bar{x} . \bar{y})
$$

for any coordinates transformations: $(x) \rightarrow(\bar{x})$ and $(y) \rightarrow(\bar{y})$. The covariant differentiation with respect to (x) or (y) and the dimensional differentiation can be defined as follows:

$$
\begin{aligned}
& D_{k(x)} A^{i \mid j}=\frac{\partial A^{\varepsilon \mid j}}{\partial x^{k}}+\left\{{ }_{\mu k}^{i}\right\}_{(x)} A^{p \mid j}, \\
& D_{l(y)} A^{i \mid j}=\frac{\partial A^{i \mid j}}{\partial y^{i}}+\left\{{ }_{\mu l}^{i}\right\}_{(y)} A^{i ; j,}, \\
& \grave{i} A^{i ; j}=v A^{i \mid j}+\omega_{s}^{i}(x) A^{\varepsilon \mid j}+\omega_{s}^{j}(y) A^{i \mid s} \\
& \quad-\frac{\alpha}{n} \omega(x) A^{i \mid j}-\frac{\alpha^{\prime}}{n} \omega(y) A^{i \mid j},
\end{aligned}
$$

where α and α^{\prime} are relative dimensions of $A^{i, j}$ with respect to (x) and (y), which we denote $[A]=\left(\alpha, \alpha^{\prime}\right)$ for simplicity.
The notions above may be extended for any tensor, and relations analogous to (12) hold for $\delta, D_{(x)}$ and $D_{(y)}$.
If $A^{i \mid j}(x, y)$ and $B_{i j}(x, y)$ are double tensors for example, and $A^{i \mid j}$
$(x, y) B_{i j}(x, y)$ is of dimension ($-n$) with respect to (y), then its integration over D with respect to $(y), \iint A^{i j}(x, y) B_{1 j}(x, y) d V(y)$, is a contravariant tensor with respect to (x), and moreover $\delta \iint A B d V(y)=\iint \lesssim(A B d V)$, since $A B d V(y)$ is of 0 dimension with respect to y.

For conformal change of metric, $\omega_{i j}=\tau g_{i j}$, from (4), (5) and (6) we get

$$
\begin{aligned}
& \delta A^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{q}}=v A^{i_{1} \cdots i_{p_{1}}{ }_{j_{1}} j_{j_{q}}}+(p-q-n w-\alpha) \tau A^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{q}}, \\
& \delta d x^{i}=0 . \quad \delta d \sigma_{i}=0, \quad \delta d V=0, \\
& \Omega A^{i_{1} \cdots i_{p_{j}}}{ }_{j_{1} \cdots j_{q}}=(m+\alpha) \tau A_{i_{1} \cdots i_{j_{1}} \cdots j_{q}}, \\
& \Omega^{\prime} A^{i_{1} \cdots i_{p_{j}}}{ }_{j_{1} \cdots j_{q}}=\left(m^{\prime}+\alpha\right) \tau A^{i_{1} \cdots i_{p_{j_{1}} \cdots j_{q}}},
\end{aligned}
$$

where $m=p+q=$ the degree of $A, m^{\prime}=n-m$, we shall call m^{\prime} the dual degree of A.

Since degree of A is smaller than degree of ΔA by one, and greater than degree of ∇A by one, relative dimension of A is greater than relative dimension of ΔA or ∇A by one, we also have :

$$
\begin{align*}
& \delta \Delta A=\Delta \delta A+(m+\alpha)(\Delta \tau A-\tau \Delta A), \\
& { }_{\mathrm{o}} \boldsymbol{\nabla} A=\nabla \boldsymbol{\delta} A+\left(m^{\prime}+\alpha\right)(\nabla \tau A-\tau \nabla A) \text {, } \\
& \delta \nabla \Delta A=\nabla \Delta \partial A+\left(m^{\prime}+\alpha\right)(\Delta \nabla \tau A-\Delta \tau \nabla A) \tag{16}\\
& +(m+\alpha-2)(\Delta-\nabla A-\tau \Delta \nabla A), \\
& \delta \nabla \Delta A=\Delta \nabla \grave{o} A+(m+\alpha)(\nabla \Delta=A-\nabla \tau \Delta A \\
& +\left(m^{\prime}+\alpha-2\right)(\nabla \tau \Delta A-\tau \nabla \Delta A),
\end{align*}
$$

by (12).
Let the Riemannian space be euclidean, (x) and (y) the cartesian coordinates of two points, r^{2} the square of distance of (x) and (y). We regard r^{2} as a double scalar of relative dimension (1,1).
Put $l_{i ; j}^{\prime}=-\frac{1}{2} \frac{\partial^{2} r^{2}}{\partial x^{i} \partial y^{j}}$, then $\Gamma_{i ; j}$ is a double tensor of covariant order $(1,1)$ and relative dimension $(0,0)$. For the special conformal change of metric, $\omega_{i j}=\tau \delta_{i j}$, where τ is a constant, we get

$$
\delta r^{2}=0, \quad \delta \Gamma_{i \mid j}=0
$$

It follows that :

Theorem (3•1). If the space is Riemannian and r is the geodesic distance between two points (x) and (y) sufficiently near, then $\delta r^{2} \rightarrow 0, \delta \Gamma_{i \mid j} \rightarrow 0$ when $(x) \rightarrow(y)$, for comformal change of metric.

Let $G_{i_{1} \cdots i_{m} \mid j_{1} \cdots j_{m}}(x, y)$ be Green's tensor for the elliptic differential equation:
$\square A=0 \quad$ in D with given $\perp \top A$ and $T \perp A$ on B.
It is known that Green's tensor is unique under some appropriate topological conditions for domain D and the tensor is characterized by the following properties :

$$
\begin{aligned}
& \square_{x} G(x, y)=0 \quad \text { in } D \\
& G(x, y)=0, \quad \text { if } \quad x \text { is on } B, \\
& G(x, y)-\gamma(x, y) \text { is regular at } x=y,
\end{aligned}
$$

where

$$
r_{i_{1} \cdots i_{m} \mid j_{1} \cdots j_{m}}(x, y)=\frac{1}{(n-2) S_{n}} \frac{1}{r^{n-2}}\left|\begin{array}{c}
\Gamma_{i_{1} \mid j_{1}} \cdots \Gamma_{i_{1} \mid j_{m}} \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \\
\Gamma_{\left.i_{m!} \mid\right\}_{1}} \cdots \Gamma_{i_{m} \mid j_{m}}
\end{array}\right|, \quad(n \geqq 3)
$$

$S n$ is the area of the unit $(n-1)$ sphere. [2].
We shall assume $[G]_{\text {rel }}=\left(1-\frac{n}{2}, 1-\frac{n}{2}\right)$,
since $[r]_{\text {rel }}=\left(1-\frac{n}{2}, 1-\frac{n}{2}\right)$.
By theorem (3•1) $\delta \gamma \rightarrow 0$ when $(x) \rightarrow(y)$, and we get easily $\delta G=0$, if (x) is on B. Thus we have:

Theorem (3.2) δG is regular for any (x) and (y) in D, $\delta G=0$ if (x) is on B.

Operating δ on $\square_{x} G=0$, it follows

$$
\begin{aligned}
\square_{x} \delta G(x, y)= & {\left[\left(\frac{n}{2}-m+1\right)\left\{\Delta_{x} \tau(x) \nabla_{x}-\Delta_{x} \nabla_{x} \tau(x)\right\}\right.} \\
& +\left(m-1-\frac{n}{2}\right)\left\{\tau(x) \Delta_{x} \nabla_{x}-\Delta_{x} \tau(x) \nabla_{x}\right\} \\
& +\left(m+1-\frac{n}{2}\right)\left\{\nabla_{x} \tau(x) \Delta_{x}-\nabla_{x} \Delta_{x} \tau(x)\right\} \\
& \left.+\left(\frac{n}{2}-m-1\right)\left\{\tau(x) \nabla_{x} \Delta_{x}-\nabla_{x} \tau(x) \Delta_{x}\right\}\right] G(x, y)
\end{aligned}
$$

by (16).
Putting the right side in (17) $\tilde{G}(x, y)$, we have

$$
\grave{\sigma(y, z)=-\iint G(x, z) \tilde{G}(x, y) d V(x), ~(x)}
$$

since $\delta G(x, y)=0$ if (x) is on B.
Integrating by part, we get

$$
\begin{aligned}
\left.\delta G(x, y)=-2\left(m-\frac{n}{2}-1\right)\right] & \int \tau(x)\left[\left(\nabla_{t} G(x, y) \cdot \nabla_{x} G(x, z)\right)\right. \\
+ & \left.+\left(\Delta_{x} \nabla_{x} G(x, y) \cdot G(x, z)\right)\right] d V(x) \\
\left.-2\left(\frac{n}{2}-m-1\right)\right] & \int \tau(x)\left[\left(\Delta_{x} G(x, y) \cdot \Delta_{x} G(x, z)\right)\right. \\
& +\left(\nabla_{x} \Delta_{x} G(x, y) \cdot G(x, z)\right] d V(x) .
\end{aligned}
$$

It follows that:
if $\tau=$ const. $\quad \delta G=0$;
if $m=0$, that is, G is a double scalar,

$$
\delta G(x, y)=(2-n) \iint \tau\left[\Delta_{x} G(x, y) \cdot \Delta_{x} G(x, z)\right) d V(x),
$$

since $\nabla G=0, \square G=\nabla \Delta G=0$;
if n is even and $m=\frac{n}{2}$,

$$
\begin{aligned}
& \delta G(x, z)=2 \iint_{\tau} \tau(x)\left[\left(\nabla_{x} G(x, y) \cdot \nabla_{x} G(x, z)\right)\right. \\
&\left.+\left(\Delta_{x} G(x, y) \cdot \Delta_{x} G(x, z)\right)\right] d V(x) \\
&(\Delta \nabla+\nabla J) G=\square G=0 .
\end{aligned}
$$

since

4. An application to electrostatic field.

Let $\mu(x)$ be the dielectric constant for an electrostatic field in an n-dimensional Riemannian space with the metric tensor $g_{i j}$. Physical dimension of $\mu,[\mu]_{\text {,hy }}$, is $L^{2-n} Q^{2} E^{-1}$, where L, Q and E denote the dimensions of length, electric charge and energy respectively, and L, Q, E are independent since dimensions of mass and time do not appear.

Electric energy contained in a domain D is given by

$$
\iint \mu \frac{\partial \varphi}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}} g^{i j} \varepsilon_{i, \cdots i_{n}} d x^{i_{1} \cdots d x^{i_{n}}, \text { where } \varphi}
$$

is the electrostatic potential, and $[\varphi]_{\text {,hy }}=E Q^{-1}$,

$$
\left[g_{i j}\right]_{\mathrm{p}, \mathrm{hy}}=[\varepsilon]_{\mathrm{p}, \mathrm{hy}}=Q^{n} E^{0} L^{0},\left[d x^{i}\right]_{\mathrm{phy}}=L .
$$

Putting

$$
f_{i j}=\mu^{\frac{2}{n-2}} g_{i j}, \quad f=\left|\begin{array}{l}
f_{11} \cdots f_{1 n} \\
\hdashline f_{n 1} \cdots f_{n n}
\end{array}\right|,
$$

we have

Hence $f_{i j}$ may be used as the fundamental tensor for the electrostatic field instead of $g_{i j}$.
We have $\quad\left[f_{i t}\right]_{\mathrm{phy}}=L^{-2} S^{2}, \quad\left[f_{i t} d x_{i} d x^{5}\right]_{\mathrm{phy}}=S^{2}, \quad[\varphi]_{\text {phy }}=S^{\frac{2-n}{\underline{2}}} E^{\frac{1}{2}}$, where $\quad S=\left(Q^{2} E^{-1}\right)^{\frac{1}{n-2}}$.

If physical dimension of the absolute value of a tensor A with respect to the fundamental tensor $f_{i j}$ is $S^{a} E^{3}$, we shall define abstract relative dimension of $A,[A]_{\text {rel }}$, as α, since it satisfies the axioms of abstract dimension in $\S 2$.
Thus we have $\left[f_{i j}\right]_{r e 1}=0,\left[d x^{x}\right]_{r e 1}=1, \quad[\varphi]_{\mathrm{rel}}=1-\frac{n}{2}$
and

$$
\left[\iint \frac{\partial \varphi}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}} f^{i j \sqrt{f}} \hat{\delta}_{i_{1}, \cdots i_{n}} d x^{i_{1} \ldots d x^{i_{n}}}\right]_{\mathrm{rec}}=0 .
$$

Variation of μ is a conformal change of $f_{i j}$, and the arguments in previous paragraphs hold for such a kind of problems in physics, providing that $f_{t j}$ is the fundamental tensor.

REFERENCES:

1. G. de Rahm, K. Kodaira, Harmonic Integrals, Mimeographed notes, Institute for Advanced Study, 1950.
2. G. F. D. Duff, D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Annals of Math., Vol. 56, No. 1.
3. J. A. Schouten, Tensor analysis for physicists, Oxford 1951.
