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Introduction. About the non-linear differential equation as well.
as about the linear one, various authors have discussed the bounded:
ness, the convergence™® of solutions and the existence of a periodic
solution® which we have also discussed recently. Moreover we
have obtained necessary and sufficient conditions for the bounded-
ness of solutions of a certain type.”” In these researches we have
utilized the existence of a function of points which is characterised
by the fact that it is non-increasing or. non-decreasing along any
solution of the given differential equation. Now by this idea, we
will discuss the stability of solutions about which Liapounoff® and
various mathematicians and physicists have discussed actively and
they have obtained many remarkable results in connection with the
above mentioned problems.

Now we consider a system of differential equations,

4 _g
1 | ix F(x, ),

where y denotes an #n-dimensional vector and F(x, y) is a given
vector field which is defined and continuous in the domain
4:0<x<o, |9I=R  (Iyl=Vy'+-+3D.

Before the research of a solution, we assume at first that y(x)=0
is a solution of (1), so that F(x, 0) is identically zero. And let
y=y(x; ¥, %) be any solution of (1) satisfying the initial condition
y=y, when x=x,. '

Here we state the following definitions.®

a) The solution y=0 is said to be stable if, given any &> 0,
there exists a 6> 0 such that if |y,|<d, then |y(x; ¥, 0) |< & for all
x=>0. v
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b) The solution y=0 is said to be asymptotically stable if it

is stable and there exists a (fixed) d,> 0 such that if |y,|< 4, then
lim y(x; ¥, 0) =0.
HWIn this paper we will see the relations between these notions
and the strong stability introduced by Okamura® and one more, say
equistability for the sake of convenience as compared with the above
defined stability.

1. Stability. At first, we will obtain a necessary and sufficient
condition in order that y=0 is stable.

Theorem 1. n order that the solution y=0 of (1) is stable,
it is necessary and sufficient that there exists a function @ (x,y) de-
fined in 4 satisfying the following conditions; namely

1° @(x, ¥)> 0, provided |y|*=0,

2° @ (x, 0)=0 for all x,

3° there exists a k(&) for any (R=>)E> 0 such that

P(x, y) k(&) (>0),

whenever 0<x <o and |y|=§,

4° @(0, y) is continuous at y=0,

- 5°  for any solution of (1), y=y(x), the function @ (x, y(x)) is
a non-increasing function of x.

Proof. At first, we show that the condition is sufficient. Now
we assume that there exists such a function @(x, ). By 3° there
is a (&) for any &€>0 and by 4°, we can choose a suitable posi-
tive number d0(< &) for this «(€) such that

(2) 0, y) <x(®), if [y[=9d,

since @(0, y) is continuous at y=0 and @(x, 0)=0. Now for a
solution of (1) y=y(x; ¥, 0) such as |y,|< 4, we suppose that we
have at some x, say x,, |y(x;: %, 0)|=E& Thus we have by 3°

O (x,, y(%, 5 ¥, 0)) = £ ()
and hence we have
90,503 9, 0))=x(8),

since @ (x, y(x)) is non-increasing for x by 5°. On the other hand
we have

?@0,y(0; 3,0)) <x(€)

by (2) and therefore there arises a contradiction. Hence any
solution of (1) y=y(x;y, 0) such as |y,|<4 satisfies for 0<x<
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y(x; 3, 0)| <E,

that is to say, the solution y=0 is stable.

Nextly we show that the condition is necessary. Now we
suppose that y=0 is stable. Here we consider the solutions of
(1) going to the right from a point P in 4 and we represent this
family by 9),. We will define d(P) as follows; namely if there
exists a solution of 9), which arrives at |y|=R, then we take

0(P)=R

and if otherwise, i.e. if all the solutions of (1) passing through P
lie in the interior of 4,

o(P)= sup ly(x)|

yg):?)p

and when P lies on |y|=R, 6(P) =R. Then if P lies on the x-axis,
we have ¢(P) =0, since for any point P on the x-axis the solution
through P is unique to the right and it is y=0 by the condition
that y=0 is stable. When P does not lie on the x-axis, we have
5(P)>0 Thus for any € (SR) and P on |y|=¢&, we have ¢(P)
=& whenever 0<x <o. This &is «(€) in the condition 3°. More-
over if for any €>0 we choose a suitable é >0, we have for y,
such as |y|<d and x=0

ly(x; y,0)|= €
since the solution y==0 is stable. Therefore we have
0P

for P lying in x=0, ]yl _ 0. Clearly if P and @ lie on the same
solution of (1) and x, <z, we have

d(P)=d(Q).
Here we put with P=(x, y)
?(x, y) =¢?‘(P),

and then it is clear from the above mentioned that this & (x, y)
satisfies the conditions 1°, 2°, 3°, 4° and 5°. Therefore this @(x,
y) is the desired.

2. Equistability. In §1 we have considered the case where
y=0 is stable for solutions starting from a neighborhood of y=0
at x=0. Compared with this stability, here we consider the fol-
lowing case.
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Definition. The solution y=0 is said to be eguistable if, given

any &>0, there exists a d(x,) >0 for every x, such that if |on

0 (%), then |y(x; yo, %) | <€ for all x=>x,.

' Namely for every x,, y=0 is stable when we consider y=0
as a solution going to the right starting from x=x, Often the
equistability is said merely stable,” specially in physical problems.
As Theorem 3 below shows, the stability and the equistability are
equivalent if y=0 is the unique solution starting from any point
on the xaxis. If we can choose ¢ independent of %o, We shall say
it uniformly equistable.

Then we have in the same way as in the preceding theorem
of the stability.

Theorem 2. In order that the solution y=0 of (1) is equist-
able, it is necessary and sufficient that theve exists a similar function
D (x,y) as one in Theorem 1, but only the condition 4° being re-
placed by

4°" @ (x,, y) is continuous at y=0 for every x,.

For the uniform equistability, @ (x,y) is continuous at y=0 wzth
regard to y uniformly for x.

When the solution y—E'O is equistable, then it is of course
stable; but there is a case where it is stable and yet it is' not
equistable. For example, let us consider such an equation,

® D (s, 3),
where
2=y (=1
2(x—1) 0=x2<1, (x—1)°’<y)
S y)={ -2y (05251, 0Sy<(x—1)%
2(=y»™" 0<2=51,—(x—1)'Sy<0)
—2(x—1) (@O=x2=1, y=—(=—1).

Clearly y=0 is stable, being considered as the solution starting
from the point x such as 0<x <1, but it is not stable for x such
as x=1. The solution going to the left from x such as x=1 on
the x-axis is not unique in this case. This fact characterises the
non-equistability. About this matter we have

Theorem 3. When the solution y=0 of (1) is unique to the
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left for all points on the x-axis in Cauchy-problem,® if y=0 is stable,
it is also equistable. Namely in this case the stability and the equi-
stability are the same.

Proof. Suppose that y==0 is not equistable. Then we assume
that, even if we take any neighborhood of y=0 at x=x, for some
%,(> 0) and some &, there exists a solution going to the right from
there such as |y|=€ at an x (>4%,). For this & and a suitable > 0
we have |y(x; y, 0)| <& if |9]|<0d, since y=0 is stable. By the
uniqueness to the left of y=0, if we choose a suitable neighbor-
hood U(x, 0) of y=0 at x=x,, all the solutions of (1) going to the
left from U arrive at the plane x=0 and moreover we have |y|< ¢
at x=0. Then there exists a solution starting from |y|<d at x=0
such as |y(x; ¥, 0)|=& and there arises a contradiction. There-
fore y=0 1is equistable.

In the case where the right-hand side of the system (1) .does
not depend on x, i.e. where

ﬂ.:
4 i F(y),

we can prove easily the following theorem, where we assume that
F) =
: Theorem 4. If the solution y=0 is stable for the system (4),
it is also equistable (uniformly).
The proof is omitted.

3. Strong stability. Okamura has introduced a notion, i.e.
the strong stability.

Definition. Let Y (x) be an arbitrary function such that
Y(0)=0, [Y(®)| <R (0=x<X)

which is of bounded variation in 0<x <X (X being arbitrary, 0=
X<w). The solution y=0 of (1) is said to be strongly stable
when for any given » >0 and for a suitable positive number ¢,
we have |Y(X)| <y, provided

V [Y(0)—{F(@x, Y(x)dx] <&®
[5579.¢

holds, where V denotes the total variation.
Okamura has obtained the following theorems for the strong

stability. ‘
. Theorem 5. A function ¢(y) being defined in a neighborhood
of y=0, if ¢(y) is positive or zero according as |y| is positive or zero
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and ¢(y) satisfies the Lipschitz condition
le(y) —¢ (3 |= K|y, — .

and finally it is a non-increasing function of x along any solution

y(x) of (1), then the solution y=0 of (1) is strongly stable.
Theorem 6. Ir order that the solution y=0 of the system (4)

is strongly stable, it is necessary and sufficient that there exists such

a function ¢(y) asin Theorem 5 for F of the right-hand side of (4).
Moreover for an equation of the first order

%=f(y> (7(0) =0,
X

in order that y=0 is strongly stable, it is necessary and sufficient
that, given any & >0, both the measure of the set of y such as
[0<y<§& f(y) < 0] and that of the set of y such as [—&€<y<0,
f(y)=0] are positive. Hence for the equation,
dy ysingl (yx<0)
%) o= y
dx

0 (y=0),

the solution y=0 is stable, but it is not strongly stable. Besides
in - (5) y=0 is uniformly equistable by Theorem 4. Hence there
is a case where y=0 is uniformly equistable, but it is not strongly
stable. By considering ¢(y) in Theorems 5 and 6 as @(x,y) in
Theorem 2, we can see in these cases that if y=0 is strongly
stable, then it is also uniformly equistable. And yet we have always

Theorem 7. If the solution y=0 of (1) is strongly stable, it
is also uniformly equistable. '

Proof. For every x, (=0), given any »>0 and for a suitable
&€>0, let Y(x) be a function such that Y'(x)=0 for 0<x<x, and
it is a solution of (1) satisfying |y| <& as x—>x,+0 for x,<ax<X.
Then by the strong stability of y=0, we have |Y(X)| <z, since
for this Y'(x) we have

V [Y®—[F@x Y(x)ds]<é.
025X

Therefore y=0 is uniformly equistable.

Thus the equation (5) shows that the strong stability is stronger
than the uniform equistability, @ fortiori, than the stability. There-
fore in the case where y=0 is equistable simply (not uniformly),
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y=0 can not be strongly stable. For example, in

dy _ (y—2" (y=e™)

dx |y (y=e™),

y==0 is equistable, but it is not uniformly ; hence it shall not be
strongly stable.
Finally we add a theorem™ due to Okamura showing a relation
between the strong stability and the asymptotical stability.
Theorem 8. If the solution y=0 of the system (4) is asymptotic-
ally stable, y==0 is strongly stable.
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