Some remark on rational points

By
Hajime Nishimura
(Received April 20, 1955)

§ 1. It seems to us that, in spite of their importance, little is known about properties of rational points on algebraic varieties. In this short note we shall prove ${ }^{1)}$

Theorem. Let $\boldsymbol{U}^{r}, \boldsymbol{V}$ be abstract varieties, \boldsymbol{V} be complete, π be a rational function defined on \boldsymbol{U} with values in \boldsymbol{V}, and k be a common field of definition for $\boldsymbol{U}, \boldsymbol{V}$ and π. If \boldsymbol{U} has a rational point \boldsymbol{P} over k which is simple on \boldsymbol{U}, then \boldsymbol{J} has also a rational point over k.

We begin by two lemmas which are proved in elementary way.

Lemma 1. Let U^{n} be an algebraic variety in $S^{n}, P=(x)$ be a simple point of U and k be a field over which U and (x) are rational. Then there is a subvariety W of dimension $r-1$ with the following properties:
(i). P is contained in W as a simple point,
(ii) W is defined over a purely transcendental extention $k(u)$ of k.
(iii) every rational function π defined on U is regular along W.

Proof. Let H be the hyperplane of S^{n} defined by the equation

$$
\sum_{i=1}^{n} u_{i}\left(X_{i}-x_{i}\right)=0,
$$

where (u) is a set of independent variables over k.
Then, as P is simple on U and H is transversal to U at P, it

[^0]is well-known that there is one and only one component W^{r-1} of $U \cap H$ containing P, and this W has the properties (i), (iii) mentioned in lemma 1.

As to (ii), in the first place W is algebraic over $k(u)$. If σ be any automorphism of $\overline{k(u)}$ over $k(u)$, then P belongs also to the conjugate W^{σ} of W, which implies $W^{\sigma}=W$.

On the other hand, the order of inseperability of W over $k(u)$ is equal to 1 , since the intersection multiplicity $j(U . H, W)=1$.

Therefore W is defined over $k(u)$. Thus we have proved lemma 1.

Lemma 2. Let \boldsymbol{V} be a complete abstract variety defined over k. If \boldsymbol{V} has a rational point \mathbf{Q} over $k(u)$ where $(u)=\left(u_{1}, \cdots, u_{n}\right)$ is a set of independent variables over k, then \boldsymbol{V} has also a rational point Q^{\prime} over k.

Proof. It is sufficient to prove in the case where $n=1$. Let E_{1} be a numerical straight line with reference to k, which is locus of point (u) over k.

Then, since \boldsymbol{Q} is rational over $k(u)$, there is a rational function $\theta: \theta(u)=\boldsymbol{Q}$, defined on E_{1} with values in \boldsymbol{V} with reference to k. As E_{1} is a nonsingular curve, and \boldsymbol{V} is complete, θ is defined at every point, and so particularly at a rational point (a) of E_{1} over k. Then $Q^{\prime}=\theta(a)$ is a rational point of \boldsymbol{V} over k. q.e.d.

Proof of the theorem. Now we shall prove the theorem, using induction on the dimension r of U. When $\mathrm{r}=1$, the assertion follows from the fact that π is defined at every simple point, particularly at P.

Let U be a representative of \boldsymbol{U} in which \boldsymbol{P} has a representative P. Since $U, \boldsymbol{J}^{\top}, P$ and k satisfy the conditions in our theorem, without loss of generality, we may assume that \boldsymbol{U} is a variety embedded in an affine space S^{n}.

Then, as has been verified in lemma 1, there is a subvariety W^{r-1} of U defined over $k(u)$, containing P as a simple and rational point over $k(u)$. It is clear that W, \boldsymbol{V}, P and restriction π_{w} of π to W satisfy the conditions in our theorem for dimension $r-1$, with reference to $k(u)$.

Therefore, by the induction assumption, we conclude that, with reference to $k(u), \boldsymbol{V}$ has a rational point \boldsymbol{O}. Hence lemma 2 is applicable, and with reference to $k \boldsymbol{V}$ has also a rational point \mathbf{Q}^{\prime}. q.e.d.
§2. In the above theorem, the assumption that \boldsymbol{P} is simple is essential. The following example ${ }^{3)}$ shows that even if \boldsymbol{P} is a normal point, \boldsymbol{V} has not always a rational point.

First we shall prove a lemma probably well-known.
Lemma 3. Let x_{1}, \cdots, x_{n} be n independent variables over a field k of characteristic $p \neq 2$, and let $z=\sqrt{f(x)}$, where $f(x)$ is a polynomial with no multiple prime factor in $k[x]$. Then the ring $\mathrm{o}=k[x, z]$ is integrally closed in its quotient field.

Proof. Let $w=r_{1}(x)+r_{2}(x) z \epsilon k(x, z)$ be any integral element over \mathfrak{o}, where $r_{i}(x) \in k(x) ; i=1,2$.

Then the conjugate w^{σ} of w over $k(x)$, hence $w+w^{a}, w \cdot w^{a}$, and therefore, $r_{1}(x), r_{2}(x)^{2} z^{0}$ are integral over \mathfrak{o}. This implies $r_{1}(x) \in k[x], r_{2}(x)^{\underline{n}} z^{\underline{2}}=r_{2}(x)^{\underline{n}} f(x) \in k\lfloor x]$.
Let an expression of r_{2} be $r_{2}(x)=h(x) / g(x)$, where $g(x), h(x)$ are relatively prime polynomials in $k[x]$, then $g(x)^{2}$ divides $f(x)$, which implies $g(x)$ is an unit in $k[x]$, by the assumption of our lemma for $f(x)$.

Hence $r_{2}(x) \in k[x]$, therefor $w \in k\left[x, z_{j}^{\prime}=0 \quad\right.$ q. e. d.
The example (for any value of characteristic $p \neq 2$) is the following :
U^{2} is the surface in S^{3} defined by the equation

$$
x^{4}+u x^{2}+v y^{2}+w z^{2}=0,
$$

containing a rational point $P=(0,0,0)$,
\boldsymbol{J}^{23} is the surface in projective space \boldsymbol{L}^{3} defined by the equation

$$
x^{2}+u t^{2}+v y^{2}+w z^{2}=0
$$

in homogeneous co-ordinates (x, y, z, t); where u, v, w are independent variables over a prime field κ.

It is readily seen U^{2} and V^{n} are birationally equivalent over $k=\kappa(u, v, w)$.

Since $f(x, y)=-\frac{1}{w}\left(x^{4}+u x^{2}+v y^{2}\right)$ is irreducible in $k[x, y]$, lemma 3 is applicable and U^{2} is everywhere normal.

We shall now show that $\boldsymbol{V}^{\mathbf{2}}$ has no rational points over k. In fact, let, say in affine representative $z=1$, there be a rational point
 We have

[^1]$$
\alpha^{2}+w r^{2}+v_{l}{ }^{\mathfrak{o}}+w \grave{o}^{2}=0
$$

After removing, if necessary, common factors from both sides of the above relation, specialize $(u, v, w) \rightarrow(u, v, o)$ over κ and we have

$$
\alpha^{\prime 2}+u \gamma^{\prime 2}+v \beta^{\prime 2}=0,
$$

where $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right) \neq(0,0,0)$, for otherwise $\alpha, \beta, \gamma, \delta$ would have a common factor w.

Next, specialize $(u, v) \rightarrow(u, 0)$ over κ, and we have

$$
a^{\prime \prime 2}+u \gamma^{\prime \prime 2}=0
$$

where, on the same reason as above, we may assume $\left(\alpha^{\prime \prime}, \gamma^{\prime \prime}\right) \neq(0$, 0), which against our assumption that u is a variable over κ.

[^0]: 1) This problem is proposed to us by Y. Nakai.
 2) It is noted that, instead of using a component of hyperplane section of U, we may take as W the most general hypersurface section of sufficiently high degree containing P, which is itself absolutely irreducible subvariety. See M. Nishi and Y. Nakai, "On the hypersurface sections of algebraic varieties embedded in a projective space." Mem. Coll. Sci. Univ. of Kyoto, vol. XXIX, 1955.
[^1]: 3) I owe this example to M. Nagata.
