# Tangential vector bundle and Todd canonical systems of an algebraic variety 

By<br>Shigeo Nakano

(Received Dec. 20, 1954)

In a previous paper [2], the author considered complex analytic vector bundles over a non-singular algebraic variety immersed in a projective space, and proved that the Chern (homology) classes of these bundles contain algebraic cycles. Now we can get in general the

Theorem For a non-singular algebraic variety in a projective space, the Chern classes of the tangential vector bundle coincide with Todd canonical systems.

This theorem was proved by W. V. D. Hodge [1] for a nonsingular variety which is a complete intersection of hypersurfaces, but the proof for arbitrary non-singular varieties seems not to have been published. ${ }^{1{ }^{1}}$

We shall make use of notations in [2].

1. Let $\boldsymbol{V}^{r}$ be a non-singular algebraic variety in a projective space $\boldsymbol{L}^{N}$ of complex dimension $N$. To every point $\boldsymbol{P}$ of $\boldsymbol{V}$, we associate the tangential linear variety $\boldsymbol{T}(\boldsymbol{P})$, considered as a point of the Grassman variety $\boldsymbol{H}(r+1, N+1)$. Then we have an everywhere regular rational mapping $\mathscr{D}$ from $\boldsymbol{V}$ into $\boldsymbol{H}=\boldsymbol{H}(r+1, N+1)$.

In $\boldsymbol{H}$, there are $r+1$ subvarieties $\Omega_{(p)}(p=1, \cdots, r+1)$ which generate, together with $\Omega_{(r)}=\boldsymbol{H}$, the homology ring of $\boldsymbol{H} . \Omega_{(p)}$ represent the Chern classes of the universal bundle over $\boldsymbol{H}$. We denote by $\boldsymbol{X}$ a generic hyperplane section of $\boldsymbol{V}$, and by $\boldsymbol{X}^{n}$ the intersection product of $h$ independent $\boldsymbol{X}$ 's.

By Todd canonical systems, we understand the cycles

[^0]\[

$$
\begin{align*}
& t_{p}(\boldsymbol{V})=\boldsymbol{\Sigma}_{h=0}^{p}(-1)^{n}\binom{r-p+1+h}{r-p+1} \Phi^{-1}\left(\Omega_{(p-k)}\right) \cdot \boldsymbol{X}^{h}  \tag{1}\\
& \quad(p=0, \cdots, r),
\end{align*}
$$
\]

where . denotes the intersection product on $\boldsymbol{V}$. $t_{p}(\boldsymbol{V})$ are not defined uniquely, but the arbitrariness lies in that we may replace $\Omega_{(\mu)}$ and $\boldsymbol{X}^{h}$ by linearly equivalent ones. (Here we say that two cycles are linearly equivalent on a variety, if they belong to an algebraic system on that variety, and if the parameter variety of the system is a rational variety.) Hence $t_{p}\left(\boldsymbol{V}^{\prime}\right)$ are well defined as homology classes. We shall also define $t_{r+1}(\boldsymbol{V})$ to be equal to 0 .
2. Consider $\Phi^{-1}(\mathfrak{R})$, the bundle induced on $\boldsymbol{V}$, by the universal bundle $\mathfrak{R}$ over $\boldsymbol{H}$. Then $c_{p}{ }^{\prime}=\mathscr{F}^{-1}\left(\Omega_{(p)}\right)$ is the $p$-th Chern class of $\Phi^{-1}(\mathfrak{R})$, and therefore

$$
F(\lambda)=\lambda^{r+1}+c_{1}^{\prime} \lambda^{r}+\cdots+c_{r+1}^{\prime}
$$

is the characteristic polynomial of $\Phi^{-1}(\mathfrak{R})$.
It is easy to see that

$$
\begin{equation*}
F(\lambda-\boldsymbol{X})=\lambda^{r+1}+t_{1} \lambda^{r}+\cdots+t_{r+1} \tag{2}
\end{equation*}
$$

where $t_{p}=t_{p}\left(\boldsymbol{I}^{\prime}\right)$. This suggests that $\mathscr{J}^{-1}(\mathfrak{R})$ will be a $\otimes$-product of a complex line bundle $\mathfrak{B}=\{-\boldsymbol{X}\}$ and a vector bundle whose characteristic classes are $t_{p}$ 's. (See [2], the end of §1.)
3. We shall now seek for a system of transition functions of $\Phi^{-1}(\Re)$. Let ( $\xi_{0}, \cdots, \xi_{N}$ ) be homogeneous coordinate functions on $\boldsymbol{V}$, and let $\boldsymbol{P}$ be a point on $\boldsymbol{V}$ such that $\xi_{i_{0}}(\boldsymbol{P}) \neq 0$ and $\left(x_{i_{1}}, \cdots\right.$, $x_{i r}$ ) form a system of local parameters at $\boldsymbol{P}$. (Here we set $x_{\lambda}=\xi_{\lambda} / \xi_{i_{0}}$.) Then for a generic point $\left(z_{0}, \cdots, z_{N}\right)$ of the tangent linear variety $\boldsymbol{T}(\boldsymbol{P})$, we have

$$
z_{\lambda} / z_{i_{0}}-x_{\lambda}(\boldsymbol{P})=\sum_{\alpha=1}^{r}\left(\partial x_{\lambda} / \partial x_{i_{\alpha}}\right)_{\boldsymbol{P}}\left(z_{i_{\alpha}} / z_{i_{0}}-x_{i_{\alpha}}(\boldsymbol{P})\right),
$$

or

$$
z_{\lambda} \xi_{i_{0}}-z_{i_{0}} \xi_{\lambda}=\sum_{\alpha=1}^{r}\left(\partial x_{\lambda} / \partial x_{i_{\alpha}}\right)_{P}\left(z_{i_{\alpha}} \xi_{i_{0}}-z_{i_{0}} \xi_{i_{\alpha}}\right) .
$$

Hence the homogeneous conrdinates $\left(z_{0}, \cdots, z_{N}\right)$, which are now considered as a vector in the fiber over $\boldsymbol{P}$, in the fiber bundle $\Phi^{-1}(\Re)$, are determined by $r+1$ components $z_{i_{0}}, \cdots, z_{i}$, among them.

If another set of indices $j_{0}, \cdots, j_{r}$ are such that $\xi_{j_{0}}(\boldsymbol{P}) \neq 0$ and ( $y_{j_{1}}, \cdots, y_{j_{n}}$ ) with $y_{\lambda}=\xi_{\lambda} / \xi_{j_{0}}$ form a system of local parameters at $\boldsymbol{P}$, then the vector $\left(z_{0}, \cdots, z_{N}\right)$ can also be determined by $\left(z_{j_{0}}, \cdots, z_{j_{4}}\right)$
and we have the following relation between $\left(z_{i_{0}}, \cdots, z_{i_{r}}\right)$ and $\left(z_{j_{0}}, \cdots, z_{j_{r}}\right)$;

$$
\left(z_{j_{\alpha}} \xi_{i_{0}}-z_{i_{0}} \xi_{j_{\alpha}}\right)=\sum_{\beta}\left(\partial x_{j_{\alpha}} / \partial x_{i \beta}\right)_{P}\left(z_{i, 3} \xi_{i_{0}}-z_{i_{0}} \xi_{i \beta}\right),
$$

or
(3) $\left(\begin{array}{c}z_{j_{0}} \\ \vdots \\ \vdots \\ \vdots \\ z_{j_{r}}\end{array}\right)=\left(\begin{array}{c}x_{j_{0}}-\sum_{3}\left(\frac{\partial x_{j_{0}}}{\partial x_{i_{3}}}\right) x_{i_{i \beta}}, \frac{\partial x_{j_{0}}}{\partial x_{i_{1}}}, \cdots, \frac{\partial x_{j_{0}}}{\partial x_{i_{r}}} \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ x_{j_{r}}-\sum_{3}\left(\frac{\partial x_{j_{r}}}{\partial x_{i, 3}}\right) x_{i_{\beta}}, \frac{\partial x_{j_{r}}}{\partial x_{i_{1}}}, \cdots, \frac{\partial x_{j_{r}}}{\partial x_{i_{r}}}\end{array}\right)\left(\begin{array}{c}z_{i_{0}} \\ \vdots \\ \vdots \\ \vdots \\ z_{i_{r}}\end{array}\right)$.

Hence if we put

$$
\begin{equation*}
g_{\left(j_{0}, \cdots, j_{r)}\right)\left(i_{1}, \cdots, i_{r)}\right.}=\text { the matrix in (3), } \tag{4}
\end{equation*}
$$

then $\left\{g_{(j)(i)}\right\}$ form a system of transition functions of $\mathscr{J}^{-1}(\mathfrak{R})$. Here $\Phi^{-1}(\mathfrak{R})$ is considered to be defined with respect to the open covering $\left\{U_{(i)}\right\}$, where $U_{(i)}=U_{i_{0}}, \ldots, i$, is the set of points $\boldsymbol{P} \in \boldsymbol{V}$ such that $\xi_{i_{0}}(\boldsymbol{P}) \neq 0$ and $x_{i_{0}}, \cdots, x_{i,}$ form a system of local parameters at $\boldsymbol{P}$.

Put

$$
h_{(i)}=\left(\begin{array}{ccc}
1 & 0 & \cdots \\
x_{i_{1}} & \\
\vdots & I_{r} \\
x_{i, r} &
\end{array}\right)
$$

then $h_{(i)}$ is holomorphic and invertible on $U_{(i)}$, and we have

$$
\begin{aligned}
& h_{(j)}^{-1} g_{(j)(i)} h_{(i)}=\left(\begin{array}{cc}
\xi_{j_{0}} / \xi_{i_{0}} & \frac{\partial x_{j_{0}}}{\partial x_{i_{1}}} \cdots \cdots \frac{\partial x_{j_{0}}}{\partial x_{i,}} \\
0 & \frac{\partial x_{j_{\alpha}}}{\partial x_{i_{3}}}-\frac{\partial x_{j_{0}}}{\partial x_{i 3}} y_{j_{\alpha}} \\
\vdots &
\end{array}\right) \\
& =\left(\tilde{\xi}_{j_{0}} / \tilde{\xi}_{i_{0}}\right) \otimes\left(\begin{array}{c}
1 \\
\frac{1}{x_{j_{0}}} \frac{\partial x_{j_{0}}}{\partial x_{i_{1}}} \cdots \cdots \frac{1}{x_{j_{0}}} \frac{\partial x_{j_{0}}}{\partial x_{i_{r}}} \\
0 \\
\vdots \\
0
\end{array}\right] \frac{\partial y_{j_{\alpha_{-}}}}{\partial x_{i_{i 3}}} .
\end{aligned}
$$

4. The system $f_{(j)(i)}=\hat{\xi}_{j_{0}} / \hat{\xi}_{i_{0}}$ defines the complex line bundle $\mathfrak{B}=\{-\boldsymbol{X}\}$, and the system

$$
g_{(j)(i)}^{\prime}=\left(\begin{array}{cccc}
1 & \frac{1}{x_{j_{0}}} \frac{\partial x_{j_{0}}}{\partial x_{i_{1}}} \cdots \cdots & \frac{1}{x_{j_{0}}}-\frac{\partial x_{j_{0}}}{\partial x_{i_{i}}}  \tag{5}\\
0 & \frac{\partial y_{j_{\alpha_{2}}}}{\partial x_{i_{i j}}} \\
\vdots &
\end{array}\right)
$$

defines a vector bundle which is topologically equivalent to the Whitney product of a trivial complex line bundle $\mathfrak{R}$ and the tangential vector bundle $\mathfrak{F}$ over $\boldsymbol{V}$ :

$$
\mathscr{J}^{-1}(\mathfrak{R})=\mathfrak{B} \otimes(\mathfrak{H} \dot{F})
$$

For characteristic polynomials, we have

$$
\left\{\begin{array}{l}
G(\lambda+\boldsymbol{X})=\dot{\lambda}^{r+1}+c_{1}^{\prime} \lambda^{r}+\cdots+c_{r+1}^{\prime}  \tag{6}\\
G(\lambda)=\lambda\left(i^{r}+c_{1} i^{r-1}+\cdots+c_{r}\right),
\end{array}\right.
$$

where $c_{p}$ is the $p$-th characteristic class of the tangential bundle. Compared with (2) we have $c_{p}=t_{p}$, which proves our theorem announced.
5. If we stand on an analytical point of view instead of topological one, the bundle defined by (5) is not a Whitney product.

Consider the system $g^{\prime \prime}{ }_{(j)(i)}=^{t}\left(g_{(j)(i)}^{\prime}\right)^{-1}$, then just as in [3], we can associate to it an element of $H^{1}\left(\boldsymbol{V} ; \Omega\left({ }^{( } \mathfrak{F}^{-1}\right)\right.$ ), where ${ }^{\prime} \mathfrak{F}^{-1}$ is the vector bundle defined by the transposed inverses of transition functions of $\mathfrak{F}$, and $\Omega\left(\mathfrak{F}^{-1}\right)$ denotes the sheaf of germs of holomorphic cross sections of $\mathfrak{F}^{-1}$.

As we have indicated, $f^{\prime}{ }_{(i)(i)}=\hat{\xi}_{j_{0}} / \xi_{i_{0}}=x_{j_{0}}$ may be interpreted as transition functions for $\{\boldsymbol{X}\}$. We shall write $\lambda, \mu, \cdots$ instead of $(i),(j), \cdots$ as indices for neighborhoods, and $x_{\lambda}{ }^{1}, \cdots, x_{\lambda}{ }^{r}$ instead of $x_{i_{1}}, \cdots, x_{i,}$. Then after re-ordering rows and columns of matrices, $g^{\prime \prime}{ }_{(j)(i)}$ are rewritten as

$$
g^{\prime \prime}{ }_{\lambda \mu}=\left(\begin{array}{cc}
h_{\lambda \mu} & b_{\lambda \mu} \\
0 & 1
\end{array}\right)
$$

with

$$
h_{\lambda \mu}=\left(\frac{\partial x^{\alpha}{ }_{\mu}}{\partial x^{3}}\right), \quad b_{\lambda \mu}=\left(\begin{array}{c}
-\frac{\partial}{\partial x^{1}{ }_{\mu}}\left(\log f_{\lambda^{\prime}}^{\prime}\right) \\
\vdots \\
-\frac{\partial}{\partial x_{\mu}{ }^{\prime \prime}}\left(\log f^{\prime}{ }_{\lambda \mu}\right)
\end{array}\right) .
$$

We put $\eta_{\lambda \mu}^{(\nu)}=h_{\nu \lambda} b_{\lambda \mu}$, then $\gamma_{\lambda \mu}^{(\nu)}=h_{\nu \mu} \eta_{\lambda \mu}^{(\rho)}$ in $U_{\lambda} \cap U_{\mu} \cap U_{\nu} \cap U_{\rho}$, and
$r_{\lambda \mu}=\left\{\gamma_{\lambda_{\mu}}^{(\nu)}\right\}$ defines a holomorphic cross section of ${ }^{t} \mathfrak{F}^{-1}$ on $U_{\lambda} \cap U_{\mu}$.
In $U_{x} \cap U_{\lambda} \cap U_{\mu}$, we have

$$
n_{x \lambda}+n_{\lambda \mu}+\eta_{\mu x}=0
$$

and $\left(\eta_{\lambda \mu}\right)$ defines a 1 -cocycle of the nerve of the covering $\left\{U_{\lambda}\right\}$, with coefficients in $\Omega\left({ }^{( } \mathfrak{F}^{-1}\right)$. This cocycle determines the cohomology class in question. (This was indicated by Y. Kawada [4], the note [3] contains this only implicitly.)

Now there is a canonical isomorphism between the sheaves $\Omega\left({ }^{( } \mathfrak{F}^{-1}\right)$ and $\Omega^{1}$ (the sheaf of the germs of holomorphic 1 -forms on $\boldsymbol{V})$, which is defined by

$$
\Omega\left({ }^{\prime} \mathfrak{F}^{-1}\right) \ni \gamma=\left\{\eta^{(\nu)}\right\} \leftrightarrow \longrightarrow \eta_{1}^{(\nu)} d x_{\nu}{ }^{1}+\cdots+\eta_{\nu}^{(\nu)} d x_{\nu}{ }^{r}=\omega \in \Omega^{1} .
$$

Hence we have

$$
H^{\prime}\left(\boldsymbol{V} ; \Omega\left(\mathfrak{F}^{-1}\right)\right) \cong H^{\prime}\left(\boldsymbol{V} ; \Omega^{1}\right) \cong H^{1,1}(\boldsymbol{V}, \boldsymbol{C}),
$$

the second isomorphism being that of Dolbeault.
It is easily seen that our cohomology class corresponds to the homology class of $\boldsymbol{X}$ by this isomorphism.

This describes the deviation of (5) from the Whitney product $\mathfrak{M} \mathfrak{F}$ in analytical sense.

## REFERENCES

1. Hodge, W. V. D.: Characteristic classes on algebraic varieties, Proc. Lond. Math. Soc., Ser. 3, Vol. 1, 1951.
2. Nakano, S.: On complex analytic vector bundles, J. Math. Soc. Japan, Vol. 7, 1955.
3. Nakano, S.: On a certain type of analytic fiber bundles, Proc. Jap. Acad., Vol. 3J, 1954.
4. Kowada, Y.: On Analytic Line Bundles with the Affine Structural Groups, Sci. Papers, Coll. of Gen. Education, Univ. of Tokyo, Vol. 4, 1954.

[^0]:    1) I learned from J. Igusa that K. Kodaira and J. P. Serre have this result already, but I would lịke to complete my paper [2] by this note.
