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W e consider a sp a c e  V ' w ith  an asymmetric Euclidean con-
nection L21,. Since the m etric  o f V" is defined  by  m eans of the
fundamental tensor gd,, w e  have the differential equations of geo-
desics, applying the calculus of variations, as w ell as for the case
of R iem annian spaces. But the equations do not coincide generally
w ith  th a t o f paths, because the sym m etric  parts of a r e  not
e q u a l to  the Christoffel sym bols F,1 construc ted  by  the funda-
mental tensor g,3 .

If both of them  are identical, then the fundamental tensor
i s  covariant constant w ith  respect t o  (L )  and (r)  , so  that w e
m ay define the covariant differentiations with respect t o  (L ) and
( r ) .  Such a connection will be called S-connection and the Rie-
m annian space, w hose fundam ental tensor is sam e as tha t of V" ,
w ill be called the space induced by V". The concept named by
S-extension o f R iem annian  space  is converse of concept of the
induced Riemannian space.

§  1 . Definition o f S-connection and S-extension

Let V" be an n-dimensional space with an asymmetric Euclidean
connection ard  P a curren t point of V", w hose local co-ordinates
are xi. The connection is defined by the equations

dP(x) = e, (x) dx" ,
de (x) = L i (x)e,(x)dx',

w h e re  (e1) i s  the na tu ra l fram e a ttached  to  the point P(x ) and
L ( x )  are the coefficients of the linear connection. The m etric of
V  is defined by the quadratic differential form

ds2 =e gi;  d (e= ±1) ,
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where e  is taken such that ds2 is non-negative. Then w e have

ei e,=go

It is well known that there exist the  following relations between
the fundamental tensor go  and the coefficients L5t. of connection.

gi4L =0 .
ax*

W e deno te  by  I'5,f a n d  S i. j k  th e  symmetric and  skew-symmetric
parts of LA respectively, and then L iik  are  written in the form

(2) Flik+ S:5* .
U nder a  transform ation  of local co-ordinates (x)—> (i) , th e  co-
efficients LA of connection are  transformed to TZ, which are given
by  the equations

aye ax,  axk ar (3) LZ= axt a.tb aic afcb axi
It is clear that the symmetric parts r i ik  o f  L j ik  are  subjected to the
same transformation (3 ) , while the skew-symmetric parts Si.,k are
components of a tensor, which is usually called the  torsion tensor
of V .

Substitution in (1 ) from  (2) gives

(4) ag.5 „  ,  hh
- gh5 ih  I  jk =

where by definition S w = g i h S h.5*, which will be called the covariant
torsion tensor of V .

W e see  from  (4 ) that the symmetric parts r fk coincide with
the Christoffel symbols constructed by the fundamental tensor gu ,
if  a n d  on ly  if  th e  covariant torsion tensor S o , is skew-symmetric
with respect to all the indices. This condition w ill be nam ed the
S-condition and  w e shall say  that the space V ' is o f S-connection
when the S-condition is satisfied.

I f  V " is R iem annian, then th e  coefficients LA  i s  of course
symmetric and so the torsion vanishes. Hence, such a V" is clearly
o f  S-connection. M oreover, we consider V" with so-called half-
symmetric connection, namely

S:5*= 
 1  

 (a1'5,— . 1 S.,) (SL=Sfik).
n - 1

(1) ago
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If such a  space is of S-connection, it is easily seen that the space
is Riemannian.

We consider V" of S-connection, the underlying n-manifold be
1114 . Then we may define a Riemannian n-space R", the underlying
m anifold and the fundamental tensor be same a s  V " . T h e  co-
efficients 11,,, o f the  connection of R" a re  th e  Christoffel symbols
constructed from g i i  a n d  coincide with the symmetric parts of the
coefficients LA of connection of the original space V ". T h e  space
will be called the Riemannian space induced from V" of S-connection.

Conversely, le t R " be a  Riemannian space and g j  t h e  funda-
mental tensor o f  R". We take arbitrarily a  skew-symmetric
covariant tensor Sii k  of the  third order and define the function
by the equation

(2') LA= rik+sf,„ (s: i k—gihShi k),
where Fi ik  a r e  th e  Christoffel symbols of R". It is obvious that
Lf  a s  thus defined are  subjected to the law of transformation (3).
Therefore we may define a  space with asymmetric Euclidean con-
nection V" o n  the  underlying space o f  R", such that the funda-
mental tensor is common with R n an d  th e  coefficients of the con-
nection are  given by ( 2 ') .  T he  space a s  thus defined is clearly
o f  S-connection and  its induced Riemannian space coincides with
the original space 1?" . The space V " will be called the S-extension
of the Riemannian space Rn. w ith  respect to  the t e n s o r  S .  Since
we may choose arbitrarily a  skew-symmetric tensor S i j k  and then
construct a  S-extension, we shall have a number of S-extension of
R " . Especially any S-extension of flat space is a space with absolute
parallelism, due to Einstein".

The geodesic (g) of R " is defined by the differential equations

c12 xi d.x i dxk + —0
ds23  d s  d s

where the parameter s  is arc-length ( g ) .  Making use  of (2), the
above equations are  expressed in  the forms

d dx1 dxk +   =0 .
ds= • d s  d s

These equations define, a s  well known, the path o f  17 4 , the S-ex-
tension of R", and we see that the parameter s  is the affine para-
meter o f th e  p a th . Thus we have the
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THEOREM. L e t R "  b e  a  R iem annian space, the  underlying
manifold be M " .  Then any curve of  M ", which expresses a geodesic
(g )  of R ", is a  path of  any  S-extension of  R ", and the arc-length of
(g )  is  the affine param eter of the path.

It is to be noted finally that the Riemannian space R n  and the
S-extension V " h av e  th e  same topological properties, since they
have the same underlying manifold.

§  2 .  Curvature and torsion of space with an asymmetric
Euclidean connection

In  th is  section, before entering on  the  m ain  subject o f  this
paper, w e  sha ll exam ine the general properties o f  V " w ith  an
asymmetric Euclidean connection. Most of the following formulae
a re  already well known, so that we shall describe in  outline the
theories.

The covariant derivatives o f  a  tensor W.', with respect to  the
connection (L )  are  defined as follows :

(5) ,

w h e re  com m a m eans th e  o rd in a l p a r tia l differentiation. The
covariant derivatives o f a  scalar are equal to the ordinal one. By
the well known methods we have the Ricci identities

(6) — 2111“S r.iik

(7) i k— 2 /4 h.i la S ? j k  •

where by definition Q : j k  a re  components o f the  curvature tensor
o f  V4  g iven by the equations

L,': „= L i /j. .k — L , LI L'Ik
Since the fundamental tensor g i i  is  covariant constant, we have

kit —  go l i i k = 0 •
Hence, if we put L o ki=ga ; LiZu, then w e have the identities satisfied
by Li o d  a s  follows :

(8) L i j k i =  L i m =  L i j ik  .

Further we differentiate (6) covariantly with respect to x1 a n d  sum
the equations obtained by cyclic permutation of the indices j, k , 1,
and make use of the Ricci identities. This process gives the fol-
lowing formulae.
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kj + '41S ? (
,j ,S I■k),,

(9) u — 2.91,0 4..) ± 4S A a (11.9'..14..) .

We contract (9) with respect to h  and k, and put L i j - - L „  and
Then we have

(10) L i t )

The tensor will be called the Ricci tensor, Si the torsion vector
and the deriv ed torsion tensor. The Ricci tensor does not
always be symmetric and the above equations give the skew-
symmetric parts of the tensor.

Next, we differentiate the equation

U o v k  U ilk i  j —  7 ttaL i?jk —  214 i/a S■zjk

covariantly with respect to xi and sum the equations obtained by
cyclic permutation of j, k, 1, and then we get immediately the
Bianchi identities

Lif.̀ (,,1 0 =2Lf.ha( j Sf.hl)  9

Cik11) 2 -L id a  (j SZkl) •

§  3 .  Curvature and torsion of S-connection

Let V ' be a  space with S-connection and R "  the induced
Riemannian space. We denote by semi-colon the covariant differenti-
ation with respect to the Christoffel symbols Ffk , which are equal
to the symmetric parts of the connection L. of Vn. Any tensor
of R 4  ( V 4 )  may be regarded as tensor of V " (R"). Hence both of
the covariant derivatives u ; 5  and u ,  of the tensor te., are tensors
of Ra  as well as of V " .  Especially, the fundamental tensor g0  is
covariant constant as the covariant differentiations with respect to
(L )  and ( P ).

The curvature tensor 12/.',, of R" defined by

R,h. i k = r ih,,„- 1- a, rah,— rah,
is a tensor o f 17 4 ,  which will be called the curvature tensor of the
second k ind of V"; while the curvature tensor o f V " is called
of  the f irs t k in d . The Ricci identities for the covariant differenti-
ation (;) are given by

(12) 14f; j;k a•hjk -  U L R  f a
t  j l c  •
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Making use of (2) we have .

— S':ik;j + S : i j S  L k —  S :ik  S  1:4

(13) L hf  jk —  R  hi ik —  S h i;jk + S h ik ; j S ala + S :ik S a h  j  •

There exist the following relations between the covariant derivatives
(;) and (/) of the torsion tensor St j , which are easily obtained.

(14) Sh.",,--= — St, + S t i  S — St, S?) k .
It is a remarkable property of S-connection that the torsion vector
S ,  vanishes identically, by means of skew-symmetry of the covariant
torsion tensor Si,k . Hence we obtain from (14) the interesting
identities

(15) j;a =  S :( j l a  •

The equations (13) and (14) give the equations

LI:j k  — k j S i:k a 2Si:aaS:jk

(16) L h ijk —  Rh% S h i j I k +  S  Mk, j +  . j -'
Q

S a i  j — S a l k  •

It is well known that the curvature tensor R h i j k  of the Riemannian
space satisfies the identities

R h i j k  R  j k h i  — 0  •

Making use of this we have from (16)

L hi jk  L j k h i =  S i  j k lh +  S, ,b + S h ik l  S h i j l k

(17) —  S i j k ;h +  S h j k ; t +  S h i k ;  j —  S h ij;k  •

From (10) we have immediately

(18) (L aj— L ja)=S ?w a.

Therefore the Ricci tensor of the space V" of S-connection is
not generally symmetric and the skew-symmetric parts of L i j  are
the components of the derived torsion tensor. On the other hand,
we obtain the expression of components of the Ricci tensor as
follows :

(19) 11 a +  S : h i S ! 5aj

in virture of (16), where R a j are the components of the Ricci
tensor of R ", namely Ri i — R„ which is symmetric, as well known.

Further we put L =g ilL a l and R = g 1jR , j . These scalars are
respectively called the scalar curvature of  the f irst and the second
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k ind of 17 4 , the latter be the scalar curvature of R .  F ro m  (19)
we obtain

(20) L= R — S" I'Sabc •

If the fundamental form of V 4 is positive-definite, the scalar Sabc „S“,„
is non-negative and hence we have the

THEOREM. If  the fundam ental form  o f  V 4  of  S -connection is
po'sitive-definite, then the  scalar curv ature of  the  f irst k ind  is no t
greater than that of  the second k in d . In  the  other words, the scalar
curvature of  the f irs t k in d  o f  any  S -ex tension of  the  Riemannian
space R ", the fundam ental form  of  which is positive-definite, is not
greater than the scalar curvature of

It is concluded from (15) and (18) that the Ricci tensor 1,,
is symmetric, if and only if the skew-symmetric tensor S i p ,  satisfies
the equations

(21) S'̀ .̀ ,i,„= 0 ,

namely, the derived torsion tensor vanishes identically. If S  i s
a  harmonic tensor, the above equations are satisfied by means of
the definition of harmonic tensors3 ) . Therefore

THEOREM. I f  the tensor .5, is harm onic, then the Ricci tensor
L 15 of the S-extension w ith respect to S i 3 k  is symmetric.

Next, we take a  Killing tensor S ,  so that the covariant
derivatives S m ,, a re  skew-symmetric°. In  this case, we see from
(17) that the curvature tensor Lhia k  satisfies the identities

(22) L h i j k =  i k h i  •

Consequently the curvature tensor satisfies the identities, which are
satisfied by the curvature tensor of Riemannian space. Further
the equation (21) are  clearly satisfied for the Killing tensor S .
Thus we have the

THEOREM. I f  t h e  tensor i s  a  K illing tensor, then  the
curvature tensor L k i j k  of  the f irst k ind of the S-extension w ith respect
to S i l k  satisfies (8 ), (9 ) as well as  (22), and the Ricci tensor L,5 is
symmetric.

§ 4. S-extensions o f completely harmonic Riemannian spaces

The Riemannian space R " is centroharmonic, when the follow-
ing equation is satisfied.
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(23) 9;o=f (9),

where f2(x0, x )  is the characteristic function with respect to the
point (x0)  and (x ), which is named so by Synge" and is given by

(e/2).s', s  be the geodesic distance from  (xo)  to  ( x ) .  The
covariant differentiation ( ;)  in (23) is taken at the point (x ), and
the point (x ) )  is called the base point. If the equation (23) holds
for all choices of the base point, the space is called completely
harmonic" ) .

L e t V " be a  S-extension of the Riemannian space R a  with
respect to the tensor Sip., then we have

+

Therefore (23) is expressed in the form

(24) Id111 = f ( Q )

Now we shall call completely harmonic a space with an asym-
metric Euclidean connection V '', such that the equation (24) holds
for all choices of the base point. If V" is of general asymmetric
Euclidean connection, the methods used in the 7th section of the
paper by Copson and Ruse", does not be applicable. Because the
equations (7 .4 ) , ... ., (7 4 0 )  in their paper have been found by
Synge, obtained by the successive covariant differentiations of the
equation 9= (e/2).3 2 along the geodesic. In our case, the geodesic
o f V"

+
{ i } ch i dx* ,

ds= j k  d s  d s

is obtained by the calculus of variation by means of the funda-
mental form and jk }  in the above equation are the Christoffel
symbols constructed by the fundamental tensor. But the symmetric
parts r:k of the coefficients 14.„ of the connection are not always
identical with {

j  } '  as shown in the first section. Besides,k  
in their paper is the covariant derivatives with respect to {J .

Now, if V" is of S-connection, the symmetric parts 1;‘, coincide
with } and the equationjk

g i j

is satisfied, and hence the process, by which they gave the complete
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condition for harmonic space, may be applicable equally well to
V" of S-connection. Consequently we have the

THEOREM. If the Riemannian space R " is completely harm onic,
any S-extension of R " is also completely harmonic. Conversely, i f  V
is of S-connection a n d  completely harmonic, then t h e  Riemannian
space induced from V" is completely harmonic.

§  5 .  Subspaces of spaces o f 8-connection

We consider a  variety Ti n  of the space V"' of S-connection*,
which is given by the equation ỳ  =--y" (x) . When a  current point
P of V - displaces along V", we have

dP= e u dyOE = e„B7 dxi ( I 3 = aYa

ax"

Hence we put
(25) ei=

it follows

(26) dP= e i dx'

We see that (e2 ) are  n vectors o f  frame attached to P  of Va .
We take further m — n vectors e„ (P= n +1, . . . . , n i), which are
orthogonal to e, and matually orthogonal, whose lengthes are unit.
Then we have

(27) e,e,=0 , e , e Q =d , Q

Now we put
de,= (Le,+ L f;:e„)d.e,

(28)
d e=  (L i k e j + Lfik eQ )dxk,

(29) .

The equations (28) , (25) , (29) and
(30) de„=L:re,dyr

give the equations

(31) BL+ MBIL4—  B ì! Lit= Lf',, /3'; ,

(32) B;,,k+ .M,Brk L = B1 LX,.B .

*  In this section we assume that the fundamental form of V* , is positive-definite.
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The equations (31) give

SZIT rg B1 =  (Lil— B; + A (Lf;,— LID B1, .

Hence we denote by ri and S!,, the symmetric and skew-symmetric
parts of L ,  and also by HL; and Sr, the symmetric and skew-
symmetric parts of L L .  Then we have

(33) B,I= S! B1+

and from (31)

(34) 137.,+ IX Br, 1;4— B; 1'4= HL ,

where r,OET  are the symmetric parts of the coefficients 1.;,",. of the
connection of V", that is, the Christoffel symbols constructed by
the fundamental tensor g ,  of V - , and SZ„ are components of the
torsion tensor of V".

We contract (33) by g. 6 /32 and then we have

(35) S  —  S aN T B ,IB : Brk (Shik—gbiB ) •
It follows from (35) that S,,, k  is the projection of the torsion tensor
Sun  o f th e  enveloping space V"' on  V " on hence Sk i , is skew-
symmetric tensor. Similarly we have from (33), contracting by

(36) SQ,,= LS,OT BI (Sgik= a Q Stk =  SS) •
It follows from (36) that S L  (P : fixed) are components of a skew-
symmetric tensor o f 17 4 .

The induced metric of V"  from V -  is given by the fundamental
tensor

(37) gii= ga ,Bf Br; .

Differentiation of (37) gives by means of (31)

(38) g,j,k— La— gi a  4 = 0  .

We know now from (38) and skew-symmetry of S i j , that L L  are
the coefficients of the induced connection o f V" from V"' and S:
are the components of the torsion tensor of V', and further r:k  are
the Christoffel symbols constructed by the fundamental tensor gi  j

o f V ". Thus we have the
THEOREM. If V " is  a  space of  S-connection, then a  subspace

o f  V"' is also of S-connection.
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The symmetric parts H [  o f  L fi  are the second fundamental
tensors of R ", w hich  is the Riemannian space induced from V .
Hence H1 are the second fundamental tensors of R ", which is the
subspace of Riemannian space .12-  induced from  V - .

The asymptotic directions of R 4  are defined by the differential
equations

H dx.' = 0.

Similarly we define the asymptotic directions of Vn by the equations

LfB dx dx '=0.

Since Ht; are symmetric parts of L fi ,  the asymptotic directions of
V ' coincide with that of R4 . We see easily that the similar results
hold for the lines of curvature o f 17 4  and R".

Now, from  (27) and (28) we have

(39) L,!,= a,„ = —gla LaPi  , Lf?i= — .

The conditions of integrability of (31) and (32) are given by

(40) Lora HI .13;131B = LfkLÇi+LILJ.

(41) — TI' T I ' Lrki Lf  i T Q  1F' ' - i
—2Ln s?,„ ;

(42) L4:11-8/3 , B M B I.-- -LpQiii — LA/a+Lrit,L 1 —

+ 1,4% a—  L'iij L??,+2L (1 ,

where L i i k , are components of the curvature tensor o f V " .  These
equations are respectively the generalizations of the Gauss, Cadazzi
and Ricci equations in the case of Riemannian space.

Differentiation o f (33) gives

SZ3T /6 B BB2 + SZir (LfkBri BI)

(43) + SI B

+ SI; (LA B:+ L Xk B

from which we have by means o f (36)

(44) .9„,r/aBt BI; = Sir;L;', + S  .1/; ;— Sfi Lf, ,

(45) SroT/6 B;, B HI B2= S .5 ' .0  LL+ Si?)Lf;k
+S  Efk S  1,Q

where we put
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(46) SQ 1 Saft r .M . B  ,

In R", instead of (28), we put

de=

de i ,= (H k ej + l i g k eQ )dx ,

where FA are the Christoffel symbols constructed by the funda-
mental tensor go  o f  R "(V "), and x i  are the symmetric parts of
L„ and that H  _ g i a H .  From (47) we obtain (34) and further

(48)

Subtraction (48) from (34) gives

S Z„ .
Therefore (m— n) (m—  n-1)/2 vectors Spo  defined by (46) are
given by

(49)

If V " is a hypersurface of V -, that is, n= m -1 , then vectors S p(2f

are obviously equal to zero.
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