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The system of ordinary differential equations has long been
studied and the properties of its solutions have been made clear
gradually. Several authors have given remarkable results concern-
ing the boundary value problem, the existence of a periodic solution,
the boundedness of solutions and those for a differential equation
of the second order. Recently we have also obtained some results
concerning the boundedness of solutions, the existence of a periodic
solution and the stability ([15], [16], [17], [18], [19]).

Here in case of the differential equation having discontinuities
with regard to  the independent variable and the like, we will
consider a system of differential equations (cf. [2], [5]) and a dif-
ferential equation of the second order (cf. [12], [21]) of Carathéo-
dory's type. In this paper the integral is o f  Lebesgue sense . In
the first half we will discuss the boundary value problem of a
differential equation of the second order and in the second half we
will discuss the boundedness and the others of solutions of a system
of differential equations.

1 .  Consider a system of ordinary differential equations,

dy 
 = F ( x ,  y ) ,dx

where y denotes an n-dimensional vector and F(x, y ) is a given
vector field, finite and defined in the domain

: a :  x b, —  0 0  < y ,‹+  0 0  (i=  1, 2,•••, n).
Moreover we suppose that F(x, y )  is measurable with regard to x
for every fixed y and is a continuous function of y for every fixed

(1)
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x .  And we suppose that there exists a summable function M(x)
for such as

IF(x, y)1._ M(x).
The definition of the solution of this differential equation is the same
with that given in [2] and [5].

Then by Carathéodory's existence theorem ([2], [5]) we see
that there exists at least a solution which issues to the right from
a point (a, y0 ) (y, being given arbitrarily). In this case every solu-
tion is continuable to the whole interval a  x  b. The continua-
tion of a solution may be interpreted in several ways ; but here
we consider it as a part of a solution defined beforehand in the
whole interval a  x  b. Now a solution y y (x) defined for a
x <X is continuable up to x = X .  Since the equation (1 )  has a
solution going to the right from (X, y (X )) and defined in , X x _ b ,
this solution, combined with the above solution y=y(x), defines a
solution y = Y (x) in a :ST x b. Remark that y= y (x) is therefore
a part of y= Y (x ).  Hence every solution is continuable to the whole
interval.

Let E  be the set of all the points lying on all the solution
curves for a x  b ,  starting from (a, y,), then E  is a  bounded
closed set ; it is clear since we have

y(x) F(x, y(x))dx

and 1F(x, y)I____M (x). Therefore we can verify the following lemma.
Lemma 1. Given an arbitrary positive number E, if for a suitable

positive number 8 , the distance of a point (a, tia) t o  (o, X) be smaller
than 8 , then the distances of all the points (x, v(x)) (a x b )  on
a solution curve y=.0(x) of  (1) issuing to the right f rom  (a, 5, , )  to
a solution curve lying in  E are smaller than &.

P ro o f .  Suppose that for a given &-> 0, there is no such 8.
L e t (a, 5),) (2)=1, 2,•••) be a sequence of points tending to (a, yu)
for v—,co and let y= y, (x) ( '= 1 ,  2,•••) be the solutions of (1) issu-
ing to the right from (a, y ,)  respectively. Then how we choose
a solution curve lying in E, it would not happen that the distances
of all the points on the arcs of the former to the latter are smaller
than &. Then since we have

(2) y, (x) F(x, (x ) )d x
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and I F(x, y)1 M ( x ) ,  the sequence of functions {y,(x)} is uniformly
bounded and equicontinuous. Hence we can select an uniformly
convergent sequence for a  x  b. Now we denote its suffix by
1) again and let y (x ) be its limit function. Then since we have

y(x) = yo + F(x, y (x)) dx

for v--.> co in (2), y=y (x ) is a solution of (1) passing through (a,
Yo). Therefore the point (x, y(x)) should belong to E .  But if i)
be sufficiently great, the distance between y=y,(x ) and y=y(x) is
smaller than 8. This contradicts that the distance of y =y ,(x ) to
E  is greater than 8. Hence if we choose a 8 suitably, the distance
of (x, 50(x) ) to a solution curve lying in E  must be smaller than
8.

By this lemma and the generalized Kneser's theorem (see p.
21 in [4]) , we obtain the following lemma in the same way as in
the case where F(x, y )  is continuous with regard to (x, y).

Lemma 2 .  Given a set of  points A  on the hyperplane x=a,
consider all the solution curves of  (1), going to the right from each
point of  A . L et B  be their section cut by  the hyperplan; x= b. I f
A  be connected, then B  is so also.

2 .  Now we consider a  differential equation of the second
order,

d'y f  ( y , d )\
dx - d.x

where f(x, y, y'), defined in the domain

D: —  oo <y<+ oo, — oo <y' <+ co,

is finite and measurable with regard to x  and continuous with
regard to (y, y') . W e  suppose there is a summable function M(x)
such that, in D,

f(g, y,
The existence of a solution y---y(x) of (3 ) such that y (a) =A

and y(b) = B, A  and B being arbitrary, has been discussed by Scorza
Dragoni, Zwirner and others. Zwirner [20] has proved its existence
by the successive approximation ; but here we will show it briefly
by the elementary Okamura's method (§ 23 in  [9 ]) according to

(3)
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the facts which we mentioned in  § 1.
Instead o f  (3), consider a  system

dy _  , dy'  = f ( x ,  y ,) .

dx dx
For a solution y =y (x ) o f  (4 ) issuing to th e  right from x =a, it
holds that

I (x) I -5. 1Y' (a)I+f  M (x )dx ,

as long as it is continuable. Hence we have ly'(x) -<L H ' M4 (x )dx

provided y ' (a) is bounded by L .  For such solutions, we consider
instead o f  (4)

d y d y '
( 1 ,  y, y') ,

dx dx
where g(y ') is a continuous and bounded function in  — œ <y' < + œ

and g(y') =y' if 1y' I M(x)dx. Here L may be arbitrarily great,

but it is a fixed positive constant. Then by § 1, every solution
y =y (x ) issuing from x =a is continuable to x=b and by Lemma 2,
the set of y (b) of all solutions satisfying y (a) A and 1 < y' (a) <m
becomes an interval, where 1 and m are two numbers such as I <m .
On the other hand, since we have

(5) y (b) =y (a) y ' (a) (b— a) + [ f (t, y  (t) , y' (t))dt]dx

and f(x, y, y')I-<M(x) , if we choose 1 and m suitably, we can have
y(b) <B  for the solution y =y (x ) such as y' (a) =1 and y(b)> B for
the solution y =y (x) such as y' (a) =m  respectively. Therefore we
can prove the existence of a solution satisfying y(b) =B .

3 . In the case where the right-hand side f(x, y, y') of the differen-
tial equation (3) is continuous with regard to (1, y, y') , the boun-
dary value problem has been discussed by Tonelli, Nagumo [7],
[8], Okamura (§ 23 in  [9]) , Scorza Dragoni [11] and the others and
very remarkable results have been obtained. Nagumo and Okamura
have limited the  region of y  by utilizing two functions such that
CO"  (X )  f (X , CO (X  ) (X )  ) a n d  Th" (x) f (x, (7) (x) , ( x ) )  .  O n the
other hand for the boundary value problem in the case where the
right-hand side o f  (3 ) is measurable with regard to x  and con-

(4)
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tinuous with regard to  (y, y'), Scorza Dragoni and Zwirner have
settled some hypotheses as the generalization of this idea (see [12],
[2 1 ]) . Now we will deduce the existence of a solution in the boun-
dary value problem, by the extension of the region of y by Scorza
Dragoni's idea and by reducing to such a solution stated in § 2.

For this purpose, we give the def inition. We say that a func-
tion 50(x, y) (of course, y is an n-dimensional vector) is absolutely
continuous on x  uniform ly  at a p o in t (x„ y o ) when for a certain
positive number p  and for any given positive number 6, we can
determine a positive number ô such that we have

E  (xk', yk) —  (xk, yk) I <6,
k =1

provided
? I I

z=,
•• • x„ x„,'_ x 0 +

where y, is an arbitrary value satisfying ly,—yd and a depends
only on E and is independent of the choise of x ,, x ,', y k and of m.
We will say briefly the function under this definition has the pro-
perty a.c.u.. If such a function F (x, y ) satisfies locally the Lipschitz
condition with regard to y and y (x ) be an absolutely continuous
function, then 50(x, y (x)) is also an absolutely continuous function
in a neighborhood of x. For at first we have

Y I so (XL ', y (x,'))( x k ,  Y (xi .))
k= 1

I i° (xk', Y (x/) ) (x., y (x ii) )1 + Y (xk')) — 99(xz., Y (10)1
711 711

- -? -2115° (xk ', y (x1!) ) — 50 (xi., (xk') ) (xx../) — y (x/..) I;

then since ço (x, y )  has the property a.c.0 . and y (x) is absolutely

continuous, we have for /1 <a
k= I

<E-F-L6= (1 +L )6 ;
i.e., F (x , y (x )) is absolutely continuous.

For an example, take the function 50(x, y )  considered in the
necessary and sufficient condition of the uniqueness (see p. 231 in
[5]). It satisfies

IF (x> F ( -X, 5') 1.-LIY - 5/! M(x)dxl ;
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this function fulfils the above stated conditions. Hence if y (x) is
an absolutely continuous function, 50(x, y(x)) is so also.

Moreover we explain here a condition which will be used later.
Now consider a system of differential equations defined in a suitable
domain

dy = F(x, y).

Let a function F (x, y ) be continuous with regard t o  (x, y) , have
the property a.c.u. and satisfy locally the Lipschitz condition with
regard to  y. I f  it satisfies almost everywhere with regard to  x
(f rom  now  on we denote it briefly by a. e.)

lim  1( x  + t ,  y +tF ( x ,  y ) ) (x, y) } >0,
t

then io (x, y(x)) is absolutely continuous and w e have

lim -
1  

{q)(x+ t, y (x+ t)) —so (x, y (x) )1 >0 a.e.,
t

where y= y (x) is a solution of the system . Therefore ço(x, y ) is a
non-decreasing function of x along this solution. If (6) be replaced

,  1---by Inn Isa t, y+tF(x, y)) —so (x, y)} 0 a.e., so (x, y )  is non-in-
t-+0 t

creasing. Of course, if F(x, y )  is continuous with regard t o  (x, y),
(x, y ) requires no such additional condition (see p. 232 Remark

in [5]) .

4 .  Now we consider the differential equation of the second
order

d'y f f x , y ,  dy 
dx2 \ dx

and the domain

: a < x ‹b , 0 )(x ) y _ .(7 )(x ).

W e assume that f(x, y, y ') is measurable w ith regard to x and conti-
nuous with regard t o  (y, y') in the domain

.SD* : (x , y ) — co <y' < + co
and that w e have

(8) I f  ( >  y, Y') I M (x)

dx

(6)

(7)
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for ly' 5 L  (L  being arbitrary) , while M (x ) is a summable function
for a _ x b  which may depend on L .  For this differential equation
we will discuss the boundary value problem.

As the boundary value problem, there are cases where one
end is fixed or two ends are fixed and the remaining cases. A t
first we state some hypotheses necessary to these cases.

a) w (x) and V  (x) are continuous in ax ..1 3 .
b) For every y', f(x, w (x) , y') and f (x, w) (x), y') are two me-

asurable functions of x.

c) (x ) —  f  (u, (u), 0/ (u)) du  and ' f  (u, ( u )  ,  ( u ) )  du
a

(x ) are non-decreasing in a _< x _‹ b.
d) We can find a positive number a such that for IV (x)

<a and IV (x) —y' I <a, we have, almost everywhere in a<_ x b

(x, (x ), w ' (x )) — f (x, t_q(x) , y')I 5)(x) 12(w' (x) — y '),

(x, ii (x) , (x)) —f (x, (7, (x) , ti (V (1)
respectively, where À (x ) is summable in a x b ,  O  <;(x ) <
+ co and ,u(u) is positive for 0 < lu I <8, ti->0 when and
ti (0) =O.

These are the assumptions imposed on (0  (x ) and (T) (x) ,  while
the functions next given are to limit the region of y'. Namely we
suppose that 99, (x, y, y') , (x, Y, y ')  and v, 2(x, y, 30, 02(x, y, Y') are
positive and continuous in the domains

a x b ,  ( x )  y (x) , y ' > K
(constant K > 0 may be however great)

and
a x b , y (T )(x ) , y' _< —K

respectively and they tend to zero uniformly fo r  (x, y )  for
± co respectively and that in the interior of their respective domains,
they satisfy locally the Lipschitz condition with regard to  (y, y')
and they have the property a.c.u., and finally we have

1(9) lim {90,(x+t, y+ ty', y' +tf) — (x ,  y, y')} a.e.

and
 1  ,(10) hm  4  ls'"/ (x+ t, y+ ty' , y' + tf) -  (x, y, y')} 0  a . e .

t
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(i-=1, 2) respectively.

5 .  W e have the following theorem for the left end fixed.

Theorem 1. W e add to the hypotheses in  § 4 one more assump-
tion that 0)(a) (a) . N o w  if  the above stated functions so, (x, y, y')
an d  992 (x, y ,

 y ' )  e x is t , then it gives in at least a solution of  (7)
which passes through the point (a, w (a)) and an  arbitrary  point in

Proof. W e can  assume that the x-coordinate of the second
point in be x=b. •Since we may assume K  great, w e suppose
that K > ( x )  I and K > ( x )  I. N o w  ta k e  a num ber M  such as
M > K  and as

min so, (x, y, K) > max 9, (x, y, M )
and

min so, (x, y,—K) > max io 2(x, y, —  Al)
for (x, y )  of ..S . This is  possible, for these functions tend to zero
uniformly when y'—> ± co respectively. Now put

f  (x, y, M ) (y'> M)
g(x, y, y') = f (x , y, y'){ (—M y' -. m )

f (x, y, —  M) (y' < — M)
and consider the following function f* (x , y, y')

y—(0g(x, ï))(x) , y') +  ( x ) 2(x) (y> (7)(x))
y— w(x) +1

g(x, y, y')( w  ( x  y_<(7) ( x) )

g(x, w —  w ( x )  y   A ( x )  ( y
 < w

 ( x ) )  9

w (x) — y +1

where 2(x) is that in the condition d) in § 4.
Consider a differential equation

Y "=f * (x, y, y')
Here f* (x, y, y') is defined in [a x  b , —  co <y <+ co, —  co <y '
< + cc], measurable with regard to x and continuous with regard to
(y, y') and in this domain we have

If* (x, y, Y') I M(x) + 2 (x) =M (x),

f *

where M(x) becomes a summable function. Therefore y" =1* (x, y, y')
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has a solution y  y  (x ) which passes through the point (a, (0 (a))
and an arbitrary point in .5:), since this equation satisfies the
conditions in 2. Now we show that this solution y (x )  satisfies
the inequality (0 (x) y (x) T h  (x) . We may assume that A (x)

Now if it be y (x) <0)(x) at some point, there exist two points
x, and x, such that z (x1) = z (x) —0 and  (x) <0 for x, <x <x 2 , where
z (x) (x) — 0)(x). On the other hand we have for x, x 2

z' (x) =y' (x) —0/ (x) =y' (x i) +  f *  (u, Y (u) , y' (u)) du — (x)

(x1) — (x) + Ç g  (u ,  !,(u) , y' (u)) —  (u )  f ( u )  —  Y  (u )  } du
H f!l(u) — y (u)

= y' (x,) — to' (x) + (u , (u ) ,  (u ) )  d u

i)(u) (u ) ( u )   + g (u, 0)(u) , y' (u)) — g (u, ((u) , (0' (u))} du
1+ 0)(u) — y (u)

= y' (x,) — (u, !(u) , (u)) du + (u, f.(u) , (u )) d u  —  (x )

(u )  +Y (

(
,

u
)  (

)
u )  y

( u
(
)
u )   + g (u, (u) , y' (u) ) — g (u , (u) , (0' (u) )1 du.

At the same time, there exists E such as x, <e. <x2 and z' (e) =0  and
if we take (3 > 0  suitably, in  its neighborhood x —el _< a we can
have

(11)y  (x) ( x )  < — 8, (y' (x) — (q' (x)) <— ,1+ to  (x) — y (x) 2
where 8 is a certain positive number. Then in the neighborhood
of e we have

z'(E+ h) —z' (e) 
h

= ;1 +
1 g h (u, .L)(u) , (0' (u)) du— t!Z ($ + h)

a g (u, (u), (0' (u)) du — (0' (e)i

t-th

h1 J't {2  
(u) ( J O (u )  

1 +  (u ) y ( u )
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±g(u, (0 (u) , y' (u)) —g(u, û (u ), (0' (u))} du.

Now we can assume that ly' (x) J  <M , for if 8 be sufficiently small,
the value of y ' (x) will be sufficiently near to that of w' (x) by the
continuity of z' (x). Hence we have finally

2'(c+ h) — z'  ($)
h

h
i- EAU , (u )  , _ t  (U ))  du- — !!_):( +h)

(0 (u) , (0' (u)) du —w' ( ) 4

±  hi- : 1 {2 (14) Y  u ( u )1 + o y(u )

+f (u , (u )  ,  y' (u)) — f(u, , w' (u))). du.

And yet the first term of the right-hand side is not positive by
the condition c )  in § 4 and the second term is, by ( i l ) ,

< :rh
(u)du K.0).

2 h  t

Since A (x) >_ 1, we have ultimately

z'(.;=+ h) — z '()  < 6  
h 2 •

From this we see that the four derivates of zt(x) at x=  $  are all
negative. Since this contradicts Scorza Dragoni's lemma (p. 268
in  [12]), w e must have y (x) w  ( x )  .  In the same way we can
prove that y (x) ïï)  (x ) . W e have 0)(x) y (x) (x )  after all.
Therefore if this y (A ) satisfies ly' (x) I <M , this becomes a required
solution of (7), for f* (x, y, y') coincides with f (x, y , y ')  in [ (x, y) E

!Y' l 11C .
Since 0) (x) _< y (x)i  (x ) , y' (a)  satisfies the inequality lyt (a) I

< K . Now if we suppose that at some x, say xi , we have y' (x1)
M , there exist two values of x , x , and x  say, such that a <X2 <X

y' (x,) = K  y ' (x i ) = M  and K <y' (x) <M  for x, <x <x i . Then
consider the function yo, (x, y (x) , y' (A) ) . Since w (x) <y (A ) <  (x)
for x, <x <x, (for we have K > '( x ) I  and K> Iw' (x) I) ,  this func-



N ote on the solutions of  a system of  dif ferential equations 259

tion is by (9) non-decreasing. This contradicts the choise of M.
Therefore we have y' (x) < M  and in the same way we can prove
that y' (x) > —  M by the aid of it), (x, y, y'). This completes the proof
of the theorem.

In the case where the right end is fixed, we can obtain an
analogous theorem by assuming (0 (b) (b )  and the existence of

.70  ( i= 1 ,  2)
The case where two ends are fixed is obtained as a collorary

of the case of Tonelli's type. In the case of Tonelli's type we
can extend the theorem (pp. 154-156 Lemma 1 in [14]) which has
been obtained by Okamura when f  (x, y, y') is a continuous function
o f (x, y, y'), but we do not state the theorem purposely to avoid the
repetition. As a collorary of this theorem, if we put (x) = w (x) by
using the symbol in [14], we shall have

Theorem 2 .  Under the hypotheses in §4, if  there exist 0,(x, y, y')
and 502 (x, y, y ') ,  we hav e in .5;1 at least a so lu tion  o f  (7 ),  y = y (x ),
which satisfies

y (a) =  (a)  and y (b ) =  (b ) .

Scorza Dragoni [12] has verified the existence of a solution
satisfying y (a) =a and y (b) =,@, where w (a ) a  <  (a)  and (0 (b)

5 (7 )(b ), under the condition V. (x, y, y') 6  ̀(y') + z (x) , tY (u) > 0
being continuous in — co < u <  co and z  (x) summable for
x b ;  moreover

• - -  nU du— - du— + 00
(u )J o  I ( u )

and

?9(u)
The last condition is not necessary when x 0 .  For this case,
using the symbols in  [14], it , is clear that we may take 0,(x, y, y')
and V , (x, y, y') ( i=  1, 2) as follows :

01 (x, y, y) e k. .x(e)dt+ y-5 z9. 0 , )

u  

2(x, y, y ') =e41„x(1)4,-y -S  ,,.00

T i  (x, y , y l) = e -kS a x(t)dt-y- f 0  0 1 4   du

(y'L<O),

(y 0 ),

< k  ( k =  const.) .
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2(X1 y l )  = e
! ) d i + V— i y

o
,  t  u ) (y'_.<0).

Also when If(x, y, y') (y') X (x) , where 6(y') is positive con-
tinuous, x (x) is summable for a x  b and

r   du  _ c o  ('-`°  d u  _ _
19 (u) (u)

we may put as follows ; namely
ss,  d o t  

t9- (u)0 1=  e  :x(e)de-

(t)dt +  
y /  

0 ,
f l u .

(u)
—ICP  2=  e

,   d u  
X(t)dt— y

x  0 A „ )
gf i = e  a

1 ( i ) d i + o - d ( " u )F 2 = e  "

But from the theorem of Tonelli's type, we cannot prove the
existence of a solution of the differential equation

(12)
-   YY/ 3  

and the others, while if we use the following theorem in which we
take particularly r i (x, y, y') and 502 (x, y, y') in Theorem 1, we can
prove the existence of a solution of (12) passing through the point
(0, 0) and an arbitrary point in the domain

O x__< 1, x (x -1 ) y

by putting i (x) 0  and (0 (x) =x (x— 1) .
Theorem 3 .  Let f(x, y, y'), (0(x) and (7)(x) be the same as in

§4 and suppose that w(a) (a). T h e n  if  we have
f(x, y, y') < 0 a.e., provided y' > K

(13)
f (x, y, y') 0 a.e., provided y' < — K,

there exists in  .5) at least a solution of (7) passing through the point
(a, w (a)) and an arbitrary Point in

P ro o f. Since this is a case where the left end is fixed, it is
sufficient to prove that there exist io,(x, y, y') (i=1, 2) in Theorem
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1. Now if we put so, (x, y, y') =e - Y'2 , the inequality (9) which shall
be satisfied by this 50,(x, y, y ') becomes

— 2yf (x, y, y') 0  a.e..
Hence it is sufficient that f(x, y, y') 0 a.e . when y'> K .  In  the
same way, we can see that we may have f(x, y, y') >__ 0 a.e. when
y' < — K by putting 502 (x, y, y') =e - Y". Therefore we obtain (13).

In the similar way, for the case where two ends are fixed
we have

Theorem 4. f(x, y, y'), w (x ) and  ii") (x) are the same as  in  §4.
If f(x, y, y') > 0 a.e. when ly'l > K, there exists in  SD at least a solu-
tion y= y(x) o f  (7 ) satisfying

y (a) =w(a) an d  y (b) = (b).

Putting these together, we obtain
Theorem 5. Let f(x, y, y'), w(x) an d  (T) (x) be the  sam e as

before and suppose that e_12 (a) =w)(a) and  w(b) =w)(b). If  f(x, y, y')
has the definite sign almost everywhere with regard to x when y'> K
and y' < — K  (K  may be sufficiently great) respectively, there exists
in  2 , at least a  solution y=y (x ) of  (7 ) satisfying

y (a) = (!? (a) [-= i  (a)] and y (b) = w (b)[= (7) (b)] .

As before, we obtain various criteria by taking so, (x, y, y') and
(x, y , y ')  (i= 1, 2) suitably.

6 . This time we consider a system of differential equations,

dx(14)
dt

where x  denotes an n-dimensional vector and F (t, x ) is a given
vector field, finite and defined in the domain

D :  0._<t<co, —00<x,<+00

Moreover we suppose that F(t, x) is a measurable function of t when
x is fixed and it is a continuous function of x when t  is fixed, and
that, if  I L  (L  arbitrary) , we have

IF(t, x)! 5_ m(t),
where M (t) is summable for0 . 1. ._< T ( T  arbitrary) and of course,
it may depend on L .  We shall call the solution x(t) of (14) periodic
with period (0, if it satisfies
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(15) x (t + to) =x (t) .

By Carathéodory's existence theorem, (14) has at least a solu-
tion which passes through an arbitrary point in D  and is defined
for a suitable interval of t. Then in the same way as in [17], we
have the following boundedness theorem (see pp. 153-154 Theorem
1 in [17]).

Theorem 6 .  L et R, b e  a positive constant which may be su-
fficiently great and D* be the dom ain such as

0 t <co ,  Ix! Ro.
Suppose that there ex ists a continuous function 9 (t, x) satisfying

the following conditions in D * ;  namely
10 f o r  any  positive number R ( > J?), there exists a positive con-

stant G (R) such that

F (t, x) >_ G (R) > 0
for ixl =R,

2 °  9 (t, x) tends to zero uniformly forlx co ,
30 9 9 (t, x) satisfies locally the Lipschitz condition with regard to

x and in the interior of  D* 9 (t, x) has the property a.c.u.
and we have

(16) h m  
1
  {ço (t+h, xd-hF(t, x)) —9(t, x)} 0 a.e..

A -01 h
Then given an arbitrary positive number a, we can find a positive

number p(> a )  such that, f o r any solution x=x (t) of  (14) satisfying

(17) I x (to) I a

at an arbitrary  t o (  0 ) ,  we have for t
(18) lx(t) <

P ro o f. Let us assume that o >  Ro, for this case alone is worth
to consider. We can choose 19 so large that

(19) G (a) > so (t, x)
when Ixi = /9. Since by the condition 3°, (t, x(t)) is a non-decrea-
sing function of t, we can see from (19) that the above stated /9
is the desired.

Theorem 6 is valid for an arbitrary to . But for any solution
x (t ) of (14) satisfying ix (0)i a  only, such a sufficient condition
as ix < i fo r  t 0  may be obtained similarly, if we assume that
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yo (t, x) exists in D  and the condition 1 0  o f Theorem 6 be replaced
by the existence of G (R ) satisfying for x i  R

(20) 50(0, x) G (R )> 0 .

For example, we suppose that the right-hand side of (14) satis-
fies for r R,

(t, x) l < x (t) (r) ,

where r= Vx1
2+ • • • +x„2 and ?(r) is positive, continuous for r > R,

and is Stbjected to the condition
f'°  dr
JRo 9 (r)

while y ( t )  is summable in [0 , t] (t arbitrary) and J'ax(t)dt<K (K,

a certain positive constant independent o f t). Then putting in

Osa(t, x)--en Jox w r i t - ç'R. ; 7 ' )

we can verify the boundedness of solutions.
By the aid of Theorem 6 and the following theorem, we can

prove the ultimate boundedness of a solution such as x=x u (x u ar-
bitrary) for t=1 0 .

Theorem 7. W e suppose that the conclusion of Theorem 6 is
true and that there exists a function 0(t, x) satisfying the following
conditions in D*

1 ° 0 (t, x ) is positive, continuous in D*,
20 w h en  f o r any positive constant K (K> R 0 ), we have ixl < K,

then 0(t, x) tends to 2ero uniformly for
30 ib (t, x) satisfies locally the Lipschitz condition with regard to

x and in the interior of D*, it has the Property a.c.u. and
we have

1(21) Um (t + h, x+ hF) — (t, x)} 0  a .e . .h
Then f or any  solution x = x (t) of  (14) f o r which we have x(t 0)

=x, at t= t 0 and 1x01 (;- arbitrary), we have, at some value of t,
say T Ix(T)1_< R u , where t, is arbitrary.

P roo f. Of course, the theorem is true when r R , .  Hence
we assume that 1>R 0 . L e t  D ' be the domain such as t, <_ t< co,
lx1<r* (r* is what corresponds to r by Theorem 6) and E be the
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domain such as to t <  œ, Ix l< R o . Observing in D'— E, the ine-
quality (21) shows that ç (t, x (t)) does not decrease along the solu-
tion. Hence we can easily prove this theorem.

For instance, let 99(t, x )  be the same with that in Theorem 6
and be bounded in D * (if we take a sufficiently great Ro again,
ço(t, x) becomes bounded by the condition 2° in Theorem 6 ) and
we replace (16) by the following condition :

When 1.vi K  (K  arbitrary), we have in the interior o f D*
•(22) hm -

1
— 199 (t+ h, x+hF) —50 (t, x)} (K ) >0  a.e.,

h+O h
where 8 (K ) may be arbitrarily small, but it is a fixed positive
number.

And considering a function 99(t, x)e - " ' (N >  0 ) in the domain D'—E,
we take this function for sb(t, x). Then this function satisfies
the conditions in Theorem 7. As to the property a.c.u., we can
prove it as follows : Since 99 (t, x ) is bounded, i f  we choose L
suitably, we shall have

716

Elso(tb', xk)e - Nei —50(4, 1,,,.)e - R41
k= l

‹E  50 (tZ, e- N‘i — k i" c'k 150 (tk', xk) —50(4, xk)1
k=I k -1

•V .

— e- Nik 1 d-E  150 (4', xk) So (4, xlc)
k=1

On the other hand, by the fact that 99 (t, x) has the property a.c.u.
and the absolute continuity of e-Nt, we have

<LE+6= (L+1)6

when E  1tk '—tI < a. Therefore we can see that 99 (t, x) e " has the
k=1

property a.c.u.. And the proof of the inequality (21) is quite same
as in [15] (see pp. 135-136 Proof of Lemma 2).

By Theorems 6 and 7, the ultimate boundedness of solutions
is proved ; so we have

Theorem 8 .  If  the same assumptions as those in  Theorems 6
and 7 hold good, there exists a positive constant B  (independent of
the particular solution considered) such that any solution x= x (t) of
(14) satisfies ultimately

Ix (t ) < B

(cf. p. 136 Theorem 1 and p. 137 Remark 2 in [15]).
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7. I n  § 6 we have obtained a sufficient condition in order that
Ix(t) I <1.9 for to <  t if  Ix(4) I c e .  When for any solution of (14)
such as x(to ) ( x o  arbitrary) , there is a positive constant g de-
pending only on xo and we have always lx(t) I <g for t to as long
as the solution exists, then by the existence theorem a solution
such as x=x0 at t= to is defined in t„ t < r  (7 be a suitable constant)
and we can see that it exists really in to <  t < r in the same way
with F(t, x) continuous. In the present case we consider the fol-
lowing function F* (t, x): It coincides with F(t, x) when Ix1 .<49
and if Ixi > p, its values at the points on a straight line joining x=0
and a point on the hypersphere Ixi = 19 at every t are equal to the
value of F(t, x) at the intersection point of this line and the sphere.
Then F*(t, x) becomes defined in 0 5 t< co, 1x1<oo, measurable
with regard to t and continuous with regard to x and besides there
exists a summable function M (t) such as

, IF* (t, x) I 5-M (t)
in 0 <  t T (T be arbitrary) , Ixi <c0. Now consider the differen-
tial equation

dx(23) (t, x).
dt

Then there exists a solution defined in 7  <_ t T  passing through
( 7 ,  X ( 7 ) ) .  And this solution does not attain to .1x1=f3 ; for if so,
the equation (14) has a solution such as I x(t) I =p at some point.
Therefore this becomes a solution of (14), since in Ixl , 8  we have
F* (t, x) = F(t, x). From this we see that a solution defined in to .<
t<7 is a part of a solution defined in to .< t .< T (T 7 ). It is so
for every solution. Hence it is sufficient to observe only the solu-
tions defined in to t  .5  T .  Representing this fact geometrically,
we have

L em m a 3 .  In the differential equation (14) defined in  to <t<T,
Ixi < 00, if for any solution such as x=x0 at t=t„ there exists a positive
constant p depending only on xo an d  we have always 1x(t)1<13 for
t t ,  as long as the solution exists, then it is continuable to t= T.

In this case we can see by the aid o f (23) that the section of
all the solutions starting from any point P, cut by t= T  is also a
bounded closed set. Hence considering the distance between a point
Q on the t-axis such as ti._</Q and the section by t= t 2 , in the same
way as in [18] (namely considering the distance between the in-
finity point and solutions by the change of the metric), we have the
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following theorem analogous to Theorem 3 in [18] (pp. 296-298).
Theorem 9 .  In  order that, f or any  solution of  (14), x=x(t),

passing through any  point P  in  D , there exists a (P )  such as  Ix(t)I
<a (P ) for t< co, it is necessary and  sufficient that there exists
a positive function so (t, x) o f  (t, x) satisfying the following conditions
in  D:

10 50(t, x) tends to zero uniformly f o r t, w hen lx1-->co,
2 ° for any  solution o f  (14) , x=x (t), the function ç)(t,x (t)) is

a  non-decreasing function of  t.
Moreover for the differential equation

dxx ,  y )

dt

dt
the method stated in [17] by which at first we prove the bounded-
ness for x or y and next we prove the boundedness for the other
(pp. 155-157 Theorem 2 in [17]) may be applied to th e present
case ; only it is necessary that 90(t, x, y ) a n d  (t, x, y ) satisfy such
conditions as those in § 3.

Theorem 9 is stated about any solution starting from an arbitrary
point. But when the solution starting from any point is unique, a
necessary and sufficient condition in order that a bounded solution
exists (as the mentioned in Massera's theorem (p. 460 in [6])) is
also obtained by modifying io(t, x) only as follows ; i.e., in Theorem
9, we have

io(t, x) 0
and there exists an g so as so (0 3-C) > O. Conversely from this we
may regard Theorem 9 as a natural consequence.

8 .  Now we assume that every solution of (14) is unique for
the Cauchy-Problem. A  necessary and sufficient condition for that
has been obtained in [5]. A n d  besides we assume that the result in
Theorem 6 holds good ; i.e., every solution is bounded. Then con-
sidering in t, t r ,  i f  x = x (t ) be the solution such as x=x0 at
t= to ,  then we have Ix(t) —i(t) I < 8  ( 6 :  however small) in t, K  t

r for the solution g (t ) starting from a sufficiently near point of
x, at t= t„ . This may be proved as follows. Now we assume that,
even if we take any neighborhood of x, at t=t„, there is a solution

(t )  starting from there such as I(t) —x(t)I-=-8 at some t  in t, 5

d y  =g(t, x, y),
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t_‹7. Namely we assume that for the solution x=x ( i) ( t)  starting
from x, ( i)  converging to xo at t= to, we have jx( i)  (ta) —x(t) I = 6  for
some tj . I f  Ixo ( j)  I <ct, there exists tg such as !x( i) (t)!<[3 and hence
all such solutions arrive at t= r and besides they are uniformly
bounded. For to t  7 ,  we have

(24) x ( i ) ( t ) = x o ( i ) + t F(t, x ( i) (t))dt.o

Since then there exists a summable function M (t) such as IF(t, x)1
x ( i)  (t) (j=1 , 2 , •••) are equicontinuous. Therefore we

can select an uniformly convergent sequence x( k)  (t). Their limit
function X (t) becomes the solution passing through (to , xo) by (24),
but this coincides with x ( t)  (by the uniqueness). Then we have
for a sufficiently great k

lx(t)—xm (t) I K&

and this is contradictory to the assumption. Therefore if we take
a suitable neighborhood of xo, the solutions starting from there lie
in &neighborhood of x ( t ) .  That is to say, they are continuous with
regard to the initial values.

What we have stated above is the case where the solution is
unique to the right. Also the case to the left is the same. Hence
if the solution is unique to the right and to the left, the transfor-
mation of the point P in t— to into the point on the same solution in
t= 7 is a  topological mapping. Therefore when n =2  and F(t, x)
is periodic with regard to t, then Massera's existence theorem of a
periodic solution is true (Theorem 2 in [6]), for the above trans-
formation is sense-preserving. Hence when n=2 , we can deduce
an existence theorem of a periodic solution from the boundedness
of solutions of (14).

9 .  Reuter [10] has discussed a non-linear differential equation

X + f ( k )  +g (x )  p (t) ,
where f(A ,), g(x) and p (t) are continuous, and he has obtained an
ultimate boundedness theorem which we have proved in [15] as an
example by our method. In p. 127 of Mathematical Reviews Vol.
15 it is reported that de Castro [3] has discussed

+f(x, t) +g(x ) = e  (t) ;
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but the author has yet no chance to read its details. Now in order
to consider a case where the forces have discontinuities in regard
to the time and the other cases, we will discuss now the differential
equation having the type considered above. Thence we will
deduce a simple sufficient condition for the ultimate boundedness.
Now let the differential equation be

(25) .t 4-f (x, 3., t) + g(x) = 0 ,
where f(x, i, 0  includes the term p (t) or e (t) as before. Instead
of (25) we consider the system

(26) i=y, Y= —f(x, y, t) — g(x).
We assume that g (x ) is continuous, while f (x, y, t) is a measurable
function of t and is continuous with regard to (x, y), moreover that
we have If (x , y, t) ( t )  w h e n  x2 + 312 L  (L  arbitrary), where
M (t ) is a summable function, and

sgn y f(x, y, t) >6  a.e., provided b
(6 may be however small, but fixed, positive, constant),

1/(x, y, t) S  A  a.e., provided ly1
and

sgn x.g(x)> A(b+1)+ )2, provided I x j>  a
(2 may be however small, but fixed, positive, constant).

Then we can prove the ultimate boundedness of solutions of (25)
by defining the function r (t, x, y )  as follows : choosing a' so large

2bas <8,
a'

f o r ixi <co, y> b,

f or x>_ a',
f or x  a', y .<—b,

for a', y
f or x —a', y —b,

for

where G (x) g (x) dx.
Therefore it follows that if f(x, y, t )  is a periodic function of

t and the solution of (25) is unique, then it has at least a periodic
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solution.
And Cahen [1] is reported to have discussed about

• ) +.f (i) + -kb (x) + r (x) ;
yet the author does not know his result. Now generalizing his
equation, we will consider the differential equation

(x ) + h(i, t) +g(x) = p (t);
or rather letting p (t) into the term h (i, t) , we will consider

(27) + h t) + g(x) '—O,

which we deal as the system :

k= y, —f(x)y—h(y, t)—g(x),
where f (x )  and g (x )  are continuous and h(y , t) is of the same
category as that we are observing in this paper. Now we suppose
that f ( x ) ,0  f o r lx1 <co , h(y, t) > 0 a.e. for b, h(y, t) a.e.
f or y 5— b, h(y , t)15A  a.e. f o r lyl z.b and g(x )>A (b+1) for
g(x) A (b +1) f o r x_< — a, where we may take as b >1.

In this case we can verify the boundedness of solutions of (27)
4bby choosing a ' so large that we have 5  E  and defining the
a'

function 50 (t, x, y )  as follows :
e u ( x , y ) - P ( x ) - 2 8

•e le ( x ,y ) +7 (e ) +y +b

e u( y )+ F M  +28

y ) - F ( x ) - -

i
 - , +2 8

, t

for a', y>_b ,
f o r x y I
for y b,
f o r x_.< 0,
f o r x  —a',
for y › .b ,

for

where G(x )—  g(x )dx  F(x )—  f (x )dx  and u(x, y) = — G (x)
0 2

Moreover when in the differential equation

+f (x) + g (x, t) =p (t);

p (t) is measurable and G(x , t) = g(x , t)dx  has the property a.c.u.,

then reasoning by aid of e- " ( '̀€) - , we can see the boundedness of
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x and y by the method of Theorem 2 in [17] under certain conditions
for f (x ), g (x ,t) and pm (e.g., conditions in [13]).

10 . In this section we will obtain a sufficient condition in order
that x(t) - 0 as t-).-1- co for the solution of the differential equation
(14). Now we assume that all the solutions of (14) are bounded,
i.e., that for any solution such as lx(0) a at t=0, we have lx(t)
< i9 for 0 < t <c 0 , Where a  is arbitrary and [3 is a positive constant
depending upon a .  Namely we consider a case where Theorem 6
or Theorem 9 holds good.

Lemma 4 .  Let J  b e  the domain such as
0<t<c0,1x1<t9

f o r every i9 and zlo  b e  the domain such as
0 <1<co,lxi<3

f or every a>o (a m ay  be  sm all). Suppose that there ex ists a  con-
tinuous function 50,4 (t, x)=-90 (t, x) in  4 ,-4 8 satisfy ing the following
conditions:

10 50(4 x) is Positive in
2 °  so (t, x) tends to inf inity  (or to zero) uniformly f or x  when

t--). co
30 ço  (t, X ) satisfies locally the Lipschitz condition with regard to

x and in the interior of 41,- 4 8 it has the property a.c.u. and
we have

• 1(28) h m Iv (t+h,x-FhF(t, x)) (t, }  <0 a.e.h

(or lim  
1

Ir(t+h, xd-hF)-50(t, x)}. 0 a.e.).
A-01 h

T hen for any  solution x = x (t )  o f  (14) such as  x (0 )=x o  an d
Ixol >a, we have at a certain T

For, assume that some solution such as 1./c3I > a satisfy lx(t)1>
for 0  < t< c o .  Then to this solution, there exists some /3 such that
lx(t)l< /3 for 0  <  t< oo . Therefore using 500  (t, x) corresponding to
this ,8 and a, the lemma may be proved by the absurdity.

Lemma 5 . For every E>0, let d  b e  the dom ain such as

0<t<00, lx1 5 6 .
Suppose that there exists a continuous function 0(t, x) in 4€ satisfying
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the following conditions:
(t, x) =0 for x i =0,

2 °  there exists a positive constant À such that 54 (t, x) >._À when
xi (2 may depend on E),

3° sb (t, x) satisfies the Lipschitz condition with regard to x and
for a positive constant K , and in the interior of 44 it has
the property a.c.u. and we have

lirn  1   10(t+h,x+hF(t,x)) — 0 (is, X) } O a.e..
h_oo h

Then f o r an y  solution x = x (t )  o f  (14), there exists a positive
number ô such that if  Ix (t0 ) -‹ ô  (t o arbitrary), then ive have Ix(t)I < 8

f o r  <  co .
may be taken as follows :

a < min (À/K, E)

(cf. the proof of Lemma 3 in [16]).
Therefore for any solution x = x (t) such as lx(0)1_< a ( a  arbi-

trary) at t= 0 , i f  w e have lx(t) j <t9 for 0 Lç t ‹. co, then we can
obtain the following theorem by the aid of Lemmas 4 and 5; namely

Theorem 1 0 . Suppose that the assumptions in  Lemmas 4 and
5  hold good. Then f o r any  solution x = x (t )  o f  (14) issuing to the
right from 1 = 0 , we have x(t)—÷0 as t-->00 •

For example, let us consider the system
dx 

 — A x + f ( t , x ) ,

g ( t ) o l l+ N t
99 ( t  x) e stu • 'xi'

1 °

dt
where A  is a  given constant matrix (au ) and >2 ai ix,x, is nega-
tive definite. We assume that f(t, x) satisfies If(t, X) 1 g(1) xj, where
g (t) is summable a n d  g (t) dt < K In this case we can see x (t ) -0
(t—>00) by considering

and

(t, x) =e 'n ) ° I 'd' • ix!'
f t

(since there is a constant K  0 such as Y .,ai i x,xj <=t, )
(28) holds for a suitable N ).

In conclusion we notice that it is possible to
convergence theorem [16] and the stability of

discuss about the
solutions [19] in

— K for a _.<1x15fi ,
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similar ways.
The case where F(t, x ) is a continuous function o f (t, x ) is  a

special one of our research ;  but in that case the conditions on io
and b  m ay be  m odified  sligh tly . F inally  rem ark  sure th a t  a.e.
regards to each independent variable.
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