Generalization of Lichnerowicz's theorem for a completely harmonic Riemannian space

By
Makoto Matsumoto

(Recieved October, 10, 1955)

Andre Lichnerowicz concerned with a completely harmonic Riemannian space H^{n}, whose fundamental form is positive-definite [I], and proved the

Theorem (L). If a Riemannian space H^{n} is completely harmonic and is imbedded isometrically as a hypersurface in a space S^{n+1} of constant curvature K_{0}, then $H^{\prime \prime}$ is of constant curvature.

Theorem (L) was based on the following two theorems.
I. If H^{n} is such that the equation

$$
\begin{equation*}
\left(f^{\prime}(0)\right)^{\underline{2}} \geqq-\frac{5}{2} k(n-1) f^{\prime \prime}(0) \tag{1}
\end{equation*}
$$

holds for a number $k>1$, then H^{n} is locally euclidean.
II. Any Einstein space E^{n}, which is not of constant curvature and is imbedded as a hypersurface in a space S^{n+1} of constant curvature, is a product of spaces of constant curvature.

The second of the above theorems proved by A. Fialkow even as the fundamental forms of E^{n} and S^{n+1} are not positive-definite [2], under the condition that E^{n} is a proper hypersurface of S_{n+1}. On the other hand, the first of them does not always hold for H^{n}, the fundamental form being of indefinite sign. Hence Theorem (L) was proved under the restriction that the fundamental form of H^{n} is positive-definite.

In the following we shall show that Theorem (L) holds equally well without the above restriction. We suppose throughout the paper that the dimension n of H^{n} is greater than three, because it is well-known that any completely harmonic Riemannian space of dimension two or three is of constant curvature [3].

We consider a completely harmonic Riemannian space H^{n} ($n \geqq 4$), imbedded in a S^{n+1} of constant curvature K_{0}. Let $N^{\alpha}(a=$
$1, \cdots, n+1$) be the unit normal vector of H^{n} and $e= \pm 1$ the indicator of the normal, that is, $g_{\alpha \beta} N^{\alpha} N^{\beta}=e$, where $g_{\alpha \beta}$ is the fundamental tensor of S^{n+1}. The Gauss equation is

$$
\begin{equation*}
R_{n i j k}=K_{0}\left(g_{h j} g_{i k}-g_{n k} g_{i j}\right)+e\left(H_{h j} H_{i k}-H_{n k} H_{i j}\right), \tag{2}
\end{equation*}
$$

where $H_{i j}$ are coefficients of the second fundamental form of H^{n} as a hypersurface of S^{n+1}. Since H^{n} is completely harmonic, we have [4]

$$
\begin{equation*}
R_{i \cdot j a}^{a}=\frac{R}{n} g_{i j}, \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \left(R_{h i \cdot i b}^{a}+R_{i \cdot h \cdot k}^{a}\right)\left(R_{j \cdot k a}^{b}+R_{k \cdot j a}^{b}\right) \tag{4}\\
& +\left(R_{h \cdot j b}^{a}+R_{j \cdot k b b}^{a}\right)\left(R_{k \cdot b a}^{b}+R_{i \cdot k a}^{b}\right) \\
& +\left(R_{h \cdot k b}^{a}+R_{k: \cdot h b}^{a}\right)\left(R_{i \cdot j a}^{b}+R_{j \cdot i a}^{b}\right) \\
& =4 K_{2}\left(g_{k i} y_{j k}+g_{h j} g_{k i}+g_{k k} g_{i j}\right),
\end{align*}
$$

where R is the salar curvature (constant) of H^{n} and K_{2} is a constant [3] as follows.

$$
K_{2}=\frac{1}{n(n+2)}\left(\frac{R^{2}}{n}+R^{a b>b} R_{a b b c t}+R^{a b c t} R_{a l c b}\right) .
$$

The equations (3) and (4) are equivalent to the facts that the following equations are satisfied for any choice of vector u^{i}.

$$
\begin{align*}
& \operatorname{tr} \Gamma^{\prime}=\frac{R}{n} u, \\
& \operatorname{tr} \Gamma^{2}=K_{2} u^{2},
\end{align*}
$$

where we put $u=g_{i j} u^{i} u^{j}$ and Γ is the matrix (Γ_{j}^{i}), the elements Γ_{j}^{i} [4] be defined by $\Gamma_{j}^{i}=R_{a \cdot b j}^{i} u^{a} u^{b}$. Now we put $u_{H}=H_{i j} u^{i} u^{j}$, $H_{j}^{i}=g^{i a} H_{a j}$ and $H=g^{i j} H_{i j}$. Then it follows from (2)

$$
\begin{equation*}
\Gamma_{j}^{i}=K_{0}\left(u \delta_{j}^{i}-u^{i} u_{j}\right)+e\left(u_{H} H_{j}^{i}-H_{a}^{i} H_{j b} u^{a} u^{s}\right) . \tag{5}
\end{equation*}
$$

Thus the equation (3^{\prime}) is written in the form

$$
(n-1) K_{0} u+e\left(u_{H} H-H_{a t} H_{j}^{a} u^{i} u^{j}\right)=\frac{R}{n} u .
$$

Since the above equation is satisfied for any vector u^{i}, then we have

$$
\begin{equation*}
H_{a i} H_{j}^{a}=H H_{i j}+L g_{i j}, \tag{6}
\end{equation*}
$$

where by definition $L=e\left((n-1) K_{0}-R / n\right)$. The equation (6) gives

$$
\begin{equation*}
g^{a i} g^{b j} H_{a b} H_{i j}=H^{2}+n L \tag{7}
\end{equation*}
$$

Next, making use of (5), (6) and (7), the equation (4') is written as follows.

$$
\left((n-1) K_{0}^{\varrho}+L^{\left.\underline{2}-2 e L K_{n}\right) u^{2}+(n-2) L u_{H}^{\circ}=K_{2} u^{2}, ~}\right.
$$

from which we obtain

$$
\begin{aligned}
& \left((n-1) K_{0}^{2}+L^{2}-2 e L K_{0}-K_{2}\right)\left(g_{n i} g_{j k}+g_{n j} g_{k i}+g_{n k} g_{i j}\right) \\
& \quad+(n-2) L\left(H_{h i} H_{j k}+H_{h j} H_{j k}+H_{h k} H_{i j}\right)=0
\end{aligned}
$$

Contracting this equation by $g^{n i}$ and making use of (6), we have

$$
\begin{gather*}
{\left[(n+2)\left((n-1) K_{0}^{2}-2 e L K_{0}-K_{2}\right)+(3 n-2) L^{2}\right] g_{j k}} \tag{8}\\
+3(n-2) L H H_{j k}=0
\end{gather*}
$$

If $L H \neq 0$, it follows from (8) that there exists a scalar p such that $H_{j k}=p \cdot g_{j k}$, and hence we see from (2) that H^{n} is of constant curvature.

Next we suppose $L=0$. In this case we have from (6)

$$
\begin{equation*}
H_{a i} H_{j}^{a}=H H_{i j} \tag{9}
\end{equation*}
$$

Since H^{n} is a proper hypersurface of S^{n+1}, we may refer to the coördinates x^{i} such that the coördinate lines coincide with the lines of curvature, and then we have $g_{i i}=e_{i}, g_{i j}=0, H_{i i}=e_{i} \mu_{i}$ and $H_{i j}=0$ ($i \neq j$); where $e_{i}= \pm 1$ are the indicators of the lines of curvature and ρ_{i} are the characteristic roots (real) of the determinant equation $\left|H_{i j}-\mu g_{i j}\right|=0$. If we take $i=j$ in (9), then we obtain

$$
\begin{equation*}
\rho_{t}\left(\rho_{1}+\cdots+\rho_{n}-\rho_{i}\right)=0 \quad(i=1, \cdots, n) . \tag{9'}
\end{equation*}
$$

If $n-1$ of ρ_{i} are equal to zero, then the rank of the matrix $\left(H_{i j}\right)$ is less than two, so that $H_{h j} H_{i k}-H_{h k} H_{i j}=0$. Therefore the equation (2) shows that H^{n} is of constant curvature. Next we suppose $\mu_{1} \alpha_{2} \neq 0$. If we take $i=1$ and 2 in (9^{\prime}), then we have $\rho_{2}+\mu_{3}+\cdots$ $+\sigma_{n}=0, \rho_{1}+\rho_{3}+\cdots+\rho_{n}=0$, from which $\rho_{1}=\rho_{2}=\mu$. Accordingly we obtain

$$
\begin{equation*}
\rho+\rho_{3}+\cdots+\rho_{n}=0 \tag{10}
\end{equation*}
$$

If we take $i=p>2$ in (9^{\prime}) then $\rho_{p}\left(\rho_{p}-\rho\right)=0$. Hence we have $\rho_{p}=0$ or μ, so that $\rho=0$ from (10), contradicting to hypothesis.

Finally we suppose $H=0$. We refer again to the above coördi
nates x^{i} and then $H=0$ is written as follows.

$$
\begin{equation*}
\rho_{1}+\cdots+\rho_{n}=0 . \tag{11}
\end{equation*}
$$

It follows from (6) that $H_{a x} H_{j}^{a}=L g_{i j}$, that is, $\gamma_{i}^{2}=L(i=1, \cdots, n)$, so that we have $L \geqq 0$. If $L=0$, then all of ρ_{i} vanish and H^{n} is of constant curvature. If $L=l^{2}(l>0)$, then the equation (11) shows that the dimensional number n be even ($n=2 r$) and $\rho_{1}=\cdots=\rho_{r}=$ $+l,{ }^{\prime}{ }_{r+1}=\cdots=\rho_{2 r}=-l$. Consequently, by means of the theorem (6.2) of Fialkow's paper [2], H^{n} is a product of spaces S^{r} and $S^{\prime \prime}$, both of which are of constant curvature K, given by

$$
\begin{equation*}
K=e(\pm l)^{2}+K_{0}=e L+K_{0} \tag{12}
\end{equation*}
$$

making use of the equation (6•13) of the paper [2]. Now, the similar process which was used in Lichnerowicz's paper [1] to obtain $f^{\prime \prime}(0)=0$ from the fact that H^{n} is decomposable, can be applicable to the equation (4) and gives $L_{2}=0$. On the other hand, we have $e l(-l)+K_{0}=K_{0}-e L=0$, making use of the equation (6.20) of the paper [2]. We obtain from (8)

$$
(n+2)\left((n-1) K_{0}^{2}-2 e L K_{0}\right)+(3 n-2) L^{2}=0
$$

in virtue of $H=K_{2}=0$. Combining this equation with $L=e K_{0}$, we have $K_{0}=L=0$, so that $K=0$ from (12). Therefore both of spaces S^{r} and $S^{\prime r}$ are locally flat, and hence H^{n} is so.

We have finally proved Theorem (L), under the restriction that H^{n} is a proper hypersurface of S^{n+1}.

REFERENCES

[1]. A. Lichnerowicz: Sur les espaces riemanniene completement harmoniques, Bull. Soc. Math. France, 72 (1944), 146-168.
[2] A. Fialkow: Hypersurfaces of a space of constant curvature, Ann. Math., 39 (1938) 762-785.
[3] E. T. Copson and H. S. Ruse: Harmonic Riemannian spaces, Proc. Roy. Soc. Edinburgh, 60 (1939-40), 117-133.
[4] A. G. Walker: On Lichnerouicz's conjecture for harmonic 4-spaces, J. London Math. Soc., 24 (1949), 21-28.

