MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 3, 1955.

Generalization of Lichnerowicz's theorem for a completely harmonic Riemannian space

By

Makoto MATSUMOTO

(Recieved October, 10, 1955)

André Lichnerowicz concerned with a completely harmonic Riemannian space H^n , whose fundamental form is positive-definite **[I]**, and proved the

Theorem (L). If a Riemannian space H^n is completely harmonic and is imbedded isometrically as a hypersurface in a space S^{n+1} of constant curvature K_0 , then H^n is of constant curvature.

Theorem (L) was based on the following two theorems.

I. If H^n is such that the equation

(1)
$$(f'(0))^2 \ge -\frac{5}{2}k(n-1)f''(0)$$

holds for a number k > 1, then H^n is locally euclidean.

II. Any Einstein space E^n , which is not of constant curvature and is imbedded as a hypersurface in a space S^{n+1} of constant curvature, is a product of spaces of constant curvature.

The second of the above theorems proved by A. Fialkow even as the fundamental forms of E^n and S^{n+1} are not positive-definite [2], under the condition that E^n is a *proper* hypersurface of S_{n+1} . On the other hand, the first of them does not always hold for H^n , the fundamental form being of indefinite sign. Hence Theorem (L) was proved under the restriction that the fundamental form of H^n is positive-definite.

In the following we shall show that Theorem (L) holds equally well without the above restriction. We suppose throughout the paper that the dimension n of H^n is greater than three, because it is well-known that any completely harmonic Riemannian space of dimension two or three is of constant curvature [3].

We consider a completely harmonic Riemannian space H^n $(n \ge 4)$, imbedded in a S^{n+1} of constant curvature K_0 . Let $N^{\alpha}(a =$ 1, ..., n+1) be the unit normal vector of H^n and $e=\pm 1$ the indicator of the normal, that is, $g_{\alpha\beta}N^{\alpha}N^{\beta}=e$, where $g_{\alpha\beta}$ is the fundamental tensor of S^{n+1} . The Gauss equation is

(2)
$$R_{hijk} = K_0(g_{hj}g_{ik} - g_{hk}g_{ij}) + e(H_{hj}H_{ik} - H_{hk}H_{ij}),$$

where H_{ij} are coefficients of the second fundamental form of H^n as a hypersurface of S^{n+1} . Since H^n is completely harmonic, we have [4]

(3)
$$R^{a}_{i\cdot ja} = \frac{R}{n} g_{ij},$$

(4)

$$(R^{a}_{h \cdot ib} + R^{a}_{i \cdot hb}) (R^{b}_{j \cdot ka} + R^{b}_{k \cdot ja}) + (R^{a}_{h \cdot jb} + R^{a}_{j \cdot hb}) (R^{b}_{k \cdot ia} + R^{b}_{i \cdot ka}) + (R^{a}_{h \cdot kb} + R^{a}_{k \cdot hb}) (R^{b}_{i \cdot ja} + R^{b}_{j \cdot ia}) = 4K_{2}(g_{hi}g_{jk} + g_{hj}g_{ki} + g_{hk}g_{ij})$$

where R is the salar curvature (constant) of H^n and K_2 is a constant [3] as follows.

$$K_2 = \frac{1}{n(n+2)} \left(\frac{R^2}{n} + R^{abcb} R_{abcd} + R^{abcd} R_{adcb} \right).$$

The equations (3) and (4) are equivalent to the facts that the following equations are satisfied for any choice of vector u^i .

(3')
$$\operatorname{tr} \Gamma = \frac{R}{n} u,$$
(4')
$$\operatorname{tr} \Gamma^2 = K_2 u^2,$$

where we put
$$u = g_{ij}u^i u^j$$
 and Γ is the matrix (Γ_j^i) , the elements Γ_j^i [4] be defined by $\Gamma_j^i = R_{a,bj}^i u^a u^b$. Now we put $u_n = H_{ij}u^i u^j$, $H_j^i = g^{ia}H_{aj}$ and $H = g^{ij}H_{ij}$. Then it follows from (2)

(5)
$$\Gamma_{j}^{i} = K_{0}(u\delta_{j}^{i} - u^{i}u_{j}) + e(u_{H}H_{j}^{i} - H_{a}^{i}H_{jb}u^{a}u^{b}).$$

Thus the equation (3') is written in the form

$$(n-1)K_0u+e(u_HH-H_{ai}H_j^au^iu^j)=\frac{R}{n}u.$$

Since the above equation is satisfied for any vector u^i , then we have

(6)
$$H_{ai}H_{j}^{a} = HH_{ij} + Lg_{ij},$$

226

where by definition $L=e((n-1)K_0-R/n)$. The equation (6) gives

(7)
$$g^{ai}g^{bj}H_{ab}H_{ij}=H^2+nL.$$

Next, making use of (5), (6) and (7), the equation (4') is written as follows.

$$((n-1)K_0^2 + L^2 - 2eLK_0)u^2 + (n-2)Lu_H^2 = K_2u^2,$$

from which we obtain

$$((n-1)K_0^2 + L^2 - 2eLK_0 - K_2)(g_{hi}g_{jk} + g_{hj}g_{ki} + g_{hk}g_{ij}) + (n-2)L(H_{hi}H_{jk} + H_{hj}H_{jk} + H_{hk}H_{ij}) = 0.$$

Contracting this equation by g_{i}^{hi} and making use of (6), we have

(8)
$$[(n+2)((n-1)K_0^2 - 2eLK_0 - K_2) + (3n-2)L^2]g_{jk} + 3(n-2)LHH_{jk} = 0.$$

If $LH \neq 0$, it follows from (8) that there exists a scalar p such that $H_{jk} = p \cdot g_{jk}$, and hence we see from (2) that H^n is of constant curvature.

Next we suppose L=0. In this case we have from (6)

$$H_{ai}H_{j}^{a}=HH_{ij}.$$

Since H^n is a proper hypersurface of S^{n+1} , we may refer to the coördinates x^i such that the coördinate lines coincide with the lines of curvature, and then we have $g_{ii}=e_i$, $g_{ij}=0$, $H_{ii}=e_i\rho_i$ and $H_{ij}=0$ $(i \neq j)$; where $e_i=\pm 1$ are the indicators of the lines of curvature and ρ_i are the characteristic roots (real) of the determinant equation $|H_{ij}-\rho g_{ij}|=0$. If we take i=j in (9), then we obtain

(9')
$$\rho_i(\rho_1+\cdots+\rho_n-\rho_i)=0 \quad (i=1,\cdots,n).$$

If n-1 of ρ_i are equal to zero, then the rank of the matrix (H_{ij}) is less than two, so that $H_{kj}H_{ij}-H_{kk}H_{ij}=0$. Therefore the equation (2) shows that H^n is of constant curvature. Next we suppose $\rho_1\rho_2 \neq 0$. If we take i=1 and 2 in (9'), then we have $\rho_2 + \rho_3 + \cdots + \rho_n = 0$, $\rho_1 + \rho_3 + \cdots + \rho_n = 0$, from which $\rho_1 = \rho_2 = \rho$. Accordingly we obtain

(10)
$$\rho + \rho_3 + \dots + \rho_n = 0.$$

If we take i=p>2 in (9') then $\rho_p(\rho_p-\rho)=0$. Hence we have $\rho_p=0$ or ρ , so that $\rho=0$ from (10), contradicting to hypothesis.

Finally we suppose H=0. We refer again to the above coördi

Makoto Matsumoto

nates x^i and then H=0 is written as follows.

(11) $\rho_1 + \dots + \rho_n = 0.$

It follows from (6) that $H_{ai}H_j^a = Lg_{ij}$, that is, $\rho_i^2 = L(i=1, \dots, n)$, so that we have $L \ge 0$. If L=0, then all of ρ_i vanish and H^n is of constant curvature. If $L=l^2(l>0)$, then the equation (11) shows that the dimensional number n be even (n=2r) and $\rho_1=\dots=\rho_r=$ $+l, \ \rho_{r+1}=\dots=\rho_{2r}=-l$. Consequently, by means of the theorem (6.2) of Fialkow's paper [2], H^n is a product of spaces S^r and S'^r , both of which are of constant curvature K, given by

(12)
$$K = e(\pm l)^2 + K_0 = eL + K_0$$

making use of the equation (6.13) of the paper [2]. Now, the similar process which was used in Lichnerowicz's paper [1] to obtain f''(0) = 0 from the fact that H^n is decomposable, can be applicable to the equation (4) and gives $L_2=0$. On the other hand, we have $el(-l) + K_0 = K_0 - eL = 0$, making use of the equation (6.20) of the paper [2]. We obtain from (8)

$$(n+2) ((n-1)K_0^2 - 2eLK_0) + (3n-2)L^2 = 0,$$

in virtue of $H=K_2=0$. Combining this equation with $L=eK_0$, we have $K_0=L=0$, so that K=0 from (12). Therefore both of spaces S^r and S'^r are locally flat, and hence H^n is so.

We have finally proved Theorem (L), under the restriction that H^n is a *proper* hypersurface of S^{n+1} .

REFERENCES

- A. Lichnerowicz: Sur les espaces riemanniene completement harmoniques, Bull. Soc. Math. France, 72 (1944), 146–168.
- [2] A. Fialkow: Hypersurfaces of a space of constant curvature, Ann. Math., 39 (1938) 762-785.
- [3] E. T. Copson and H. S. Ruse: Harmonic Riemannian spaces, Proc. Roy. Soc. Edinburgh, 60 (1939-40), 117-133.
- [4] A. G. Walker: On Lichnerowicz's conjecture for harmonic 4-spaces, J. London Math. Soc., 24 (1949), 21-28.

228