MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 3, 1955.

A theorem for hypersurfaces of conformally flat space

By

Makoto MATSUMOTO

(Recieved October, 10, 1955)

In the following we shall prove a theorem for especial hypersurfaces of conformally flat Riemannian space as follows.

Theorem. If P and only $P(0 < P \leq n)$ of conformal principal radii of a hypersurface V^n of conformally flat space are equal identically in a neighborhood U of V^n , then U contains $\infty^{n-P}V^P$, such that V^P is umbilical in V^n and the conformal curvature tensor of V^P vanishes.

Hence V^{P} is conformally flat if $P \ge 4$. The conformal principal radii σ_{a} are defined in terms of principal radii ρ_{a} as follows.

$$\sigma_a = \rho_a - \frac{1}{n} \sum_b \rho_b.$$

It is clear that the theorem holds equally well, if conformal principal radii are replaced by principal radii.

We consider a variety V^n of coördinates x^i immersed in a Riemannian space V^m of coördinates y^a . Let $B_P^a(P=n+1, \dots, m)$ be mutually orthogonal unit vectors normal to V^n and $B_i^a = \partial y^a / \partial x^i$. Then there exist quantities H_{ij}^{μ} and $H_{qi}^{\mu}(P, Q=n+1, \dots, m)$, such that

(1) $B_{i;j}^{\alpha} = \sum_{P} e_{P} H_{ij}^{P} B_{P}^{\alpha},$ $B_{P;j}^{\alpha} = -g^{hi} H_{hj}^{P} B_{i}^{\alpha} + \sum_{Q} e^{Q} H_{Pj}^{Q} B_{Q}^{\alpha},$ $(e_{P} = \pm 1)$

where g^{hi} are components of the fundamental tensor of V^{n} .

If V^m is conformal to a flat space and we put

(2)
$$M_{ij}^{P} = H_{ij}^{P} - \frac{1}{n} g^{hk} H_{hk}^{P} g_{ij},$$

 $M_{j}^{P_{i}}=g^{\iota k}M_{kj}^{P}$ and $N_{\iota j}=\sum_{P}e_{P}M_{kj}^{Pk}M_{kj}^{P}$, then we have from the Gauss

and Codazzi equations

$$(3) \quad C_{hijk} = \sum_{P} e_{P} \left(M_{hj}^{P} M_{ik}^{P} - M_{hk}^{P} M_{ij}^{P} \right) + \frac{1}{n-2} \left(g_{hj} N_{ik} - g_{hk} N_{ij} \right) \\ + g_{ik} N_{hj} - g_{ij} N_{hk} \right) - \frac{g^{lm} N_{lm}}{(n-1)(n-2)} \left(g_{hj} g_{ik} - g_{hk} g_{ij} \right), \\ (4) \quad M_{ij;k}^{P} - M_{ik;j}^{P} + \sum_{Q} e_{Q} \left(M_{ij}^{Q} H_{Qk}^{P} - M_{ik}^{Q} H_{Qj}^{P} \right) - \frac{1}{n-1} \left\{ g_{ij} \left(M_{k;i}^{P} + \sum_{Q} e_{Q} M_{k}^{Qi} H_{Ql}^{P} \right) - g_{ik} \left(M_{j;i}^{P} + \sum_{Q} e_{Q} M_{j}^{Qi} H_{Ql}^{P} \right) \right\} = 0, \\ (5) \quad H_{Pj;k}^{Q} - H_{Pk;j}^{Q} - \left(M_{jj}^{P} M_{k}^{Q} - M_{ik}^{P} M_{lj}^{Q} \right) \\ + \sum_{Q} e_{R} \left(H_{Pk}^{R} H_{Qk}^{Q} - H_{Pk}^{P} H_{Ql}^{P} \right) = 0, \\ \end{cases}$$

where C_{hijk} are components of the conformal curvature tensor of V^n .

K. Yano⁽²⁾ shaw that the quantities $M_{ij}^{r}B_{i}^{r}$ are invariant under a conformal transformation of V^{m} . Also K. Yano and Y. Muto³⁾ proved that a Riemannian space V^{n} is immersed in a conformally flat space, if and only if there exist M_{ij}^{r} and H_{qi}^{p} satisfying the equations (3), (4) and (5). It should be remarked here that, though they gave further conditions for such a space, those conditions are obtained as consequences of (3), (4) and (5). If V^{n} is a hypersurface of $V^{m}(m=n+1)$, then (3) and (4) are respectively expressible in the following.

(6)
$$C_{hijk} = e(M_{hj}M_{ik} - M_{hk}M_{ij}) + \frac{e}{n-2}(g_{hj}M_i^{t}M_{lk} - g_{hk}M_i^{t}M_{lj}) + g_{ik}M_k^{t}M_{ij} - g_{ij}M_k^{t}M_{lk}) - \frac{eM_m^{t}M_l^{m}}{(n-1)(n-2)}(g_{hj}g_{ik} - g_{hk}g_{ij}),$$

(7) $M_{ij;k} - M_{i';j} + \frac{1}{n-1}(g_{ij}M_{k;l}^{t} - g_{ik}M_{j;l}^{t}) = 0,$

And (5) is satisfied identically.

Hereafter we assume that all of the principal radii ρ_a of V^n are real and none of the principal directions are null vectors. Such a hypersurface was called to be *proper* by A. Fialkow¹). Then there exists an orthogonal ennuple in V^n , the unit vectors $\hat{\varsigma}_{a}^i$ of which are tangent to the lines of curvature, and the fundamental tensor g_{ij} and H_{ij} are expressible in terms of $\hat{\varsigma}_{a}^i$ and ρ_a as follows:

220

A theorem for hypersurfaces of conformally flat space 221

$$g_{ij} = \sum_{a} e_a \xi_{a,i} \xi_{a,j}, \quad H_{ij} = \sum_{a} e_{a,i'a} \xi_{a,j,i} \xi_{a,j}, \quad (e = \pm 1)$$

Hence the tensor M_{ij} are written in the similar form :

(8)
$$M_{ij} = \sum_{a} e_a \sigma_a \hat{\xi}_{aji} \hat{\xi}_{ajj},$$

where σ_a are conformal principal radii of V^n . The coefficients γ_{abc} of rotation of the ennuple $\hat{\varsigma}_a^i$ are defined by

$$\gamma_{abc} = \xi_{a)i;j} \xi_{b)}^{i} \xi_{c)}^{c}.$$

Making use of them, the equation (7) are equivalent to the system of equations

(9)
$$(\sigma_a - \sigma_b) \gamma_{abc} = (\sigma_a - \sigma_c) \gamma_{acb} \quad (a, b, c \neq),$$

(10)
$$\frac{\partial \sigma_a}{\partial s_b} + \frac{1}{n-1} \frac{\partial \sigma_b}{\partial s_b} + e_a (\sigma_a - \sigma_b) \gamma_{baa} + \frac{1}{n-1} \sum_c e_c (\sigma_b - \sigma_c) \gamma_{bcc} = 0 \quad (a \neq b)$$

Now we suppose first that all σ 's are equal to σ in a neighborhood U of a point O. We have $\sigma=0$ by means of $\sum_{a} \sigma_{a}=0$, so that (8) gives $M_{ij}=0$ and hence $C_{hijk}=0$ from (6).

Next we consider the case where $\sigma_1 = \cdots = \sigma_P = \sigma \neq \sigma_{\lambda} (0 < P < n; \lambda = P+1, \dots, n)$ in U. It follows from (9) that

(11)
$$\gamma_{p\lambda q}=0$$
 $(p, q=1, \dots, P; p\neq q; \lambda=P+1, \dots, n).$

Therefore n-P vectors $\hat{\varsigma}_{\lambda}^{i}(\lambda=P+1, \dots, n)$ are normal to a *P*-dimensional variety V^{P} , contained in *U*, and $\hat{\varsigma}_{p}^{i}(p=1, \dots, P)$ constitute an orthogonal ennuple of V^{P} . Let u^{p} be coördinates of V^{P} and put $\partial x^{i}/\partial u^{p} = B_{p}^{i}$. The components η_{p}^{q} of vectors $\hat{\varsigma}_{p}^{i}$ in V^{P} are given by $\hat{\varsigma}_{p}^{i} = \eta_{p}^{q}B_{q}^{i}$ and the second fundamental tensors H_{pq}^{λ} of V^{P} are defined by

(12)
$$B_{p;q}^{i} = \sum e_{\lambda} H_{pq}^{\lambda} \xi_{\lambda}^{i}.$$

Making use of the above equation we have

$$\begin{split} \gamma_{p\lambda q} &= \tilde{\varsigma}_{p);j}^{i} \tilde{\varsigma}_{\lambda ji} \tilde{\varsigma}_{qj}^{j} = (\gamma_{p);j}^{s} B_{s}^{i} + \gamma_{pj}^{s} B_{sij}^{i}) \tilde{\varsigma}_{\lambda ji} \gamma_{qj}^{r} B_{r}^{j} \\ &= \gamma_{pj}^{s} B_{s;r}^{i} \tilde{\varsigma}_{\lambda ji} \eta_{qj}^{r} = \sum_{\mu} e_{\mu} H_{sr}^{\mu} \tilde{\varsigma}_{\mu}^{i} \tilde{\varsigma}_{\lambda ji} \eta_{pj}^{s} \eta_{qj}^{r} = H_{rs}^{\lambda} \gamma_{pj}^{s} \eta_{qj}^{r}. \end{split}$$

Hence, in virtue of (11), H_{pq}^{λ} are expressed in the form

Makoto Matsumoto

(13)
$$H_{\mu q}^{\lambda} = -\sum_{r} \gamma_{\lambda r r} \eta_{r) \mu} \eta_{r) q}$$

On the other hand, if we take a=r and $b=\lambda$ in (10), then

$$\frac{\partial \sigma}{\partial s_{\lambda}} + \frac{1}{n-1} \frac{\partial \sigma_{\lambda}}{\partial s_{\lambda}} + (\sigma - \sigma_{\lambda}) e_{\gamma} \gamma_{\lambda rr} + \frac{1}{n-1} \sum_{e} e_{e} (\sigma_{\lambda} - \sigma_{e}) \gamma_{\lambda ce} = 0,$$

from which we find $e_{1\gamma_{\lambda 11}} = \cdots = e_{P\gamma_{\lambda PP}}$. If we denote by $-\gamma_{\lambda}/P$ these quantities $e_{P\gamma_{\lambda PP}}$, then (13) are written in the form

(14)
$$H_{pq}^{\lambda} = \gamma_{\lambda} g_{pq},$$

where g_{pq} are components of the fundamental tensor of V^{p} . It follows that V^{p} is umbilical in V^{n} .

The space V^{P} may be looked upon as a subspace of the enveloping space V^{n+1} . The n-P+1 normals of V^{P} in V^{n+1} are B^{α} and $\zeta_{\lambda}^{\alpha} = \hat{\zeta}_{\lambda}^{i} B^{\alpha}_{i}$. The second fundamental tensors \overline{H}_{pq} and $\overline{H}_{pq}^{\lambda}$ of V^{P} are given by the equations

$$B_{p;q}^{\alpha} = e \overline{H}_{pq} B^{\alpha} + \sum_{\lambda} e_{\lambda} \overline{H}_{pq}^{\lambda} \zeta_{\lambda}^{\alpha} \quad \left(B_{p}^{\alpha} = \frac{\partial y^{\alpha}}{\partial u^{p}} \right).$$

Besides, we have from (1) and (12)

(·

$$B_{p;q}^{\alpha} = (B_i^{\alpha} B_p^i)_{;q} = e H_{ij} B_p^i B_q^j B^{\alpha} + \sum_{\lambda} e_{\lambda} H_{pq}^{\lambda} \zeta_{\lambda}^{\alpha},$$

so that the following relations are obtained.

$$\overline{H}_{pq} = H_{ij} B_p^i B_q^j, \quad \overline{H}_{pq}^{\lambda} = H_{pq}^{\lambda},$$

from wich we have in consequences of (14) and the definition of ρ_a

$$\overline{H}_{pq} = \sum_{a} e_{a} \rho_{a} \xi_{a} \delta_{a} \delta_{a} \delta_{a} \delta_{a} \delta_{a} \delta_{a} \delta_{g} B_{p}^{j} B_{q}^{j} = \sum_{r=1}^{P} e_{r} \rho_{r} \xi_{r} \delta_{r} \delta_{r} \delta_{r} \delta_{q} \delta_{q}$$

Substituting from these expressions in

$$\overline{M}_{pq} = \overline{H}_{pq} - \frac{1}{P} g^{rs} \overline{H}_{rs} g_{pq}, \quad \overline{M}_{pq}^{\lambda} = \overline{H}_{pq}^{\lambda} - \frac{1}{P} g^{rs} \overline{H}_{rs}^{\lambda} g_{pq},$$

we have immediately $\overline{M}_{pq}=0$, $\overline{M}_{pq}^{\lambda}=0$, and hence the conformal curvature tensor C_{pqrs} of V^{P} vanishes by means of (3)

Finally the theorem has been established.

222

•r: -

REFERENCES

- (1) A. Fialkow: *Hypersurfaces of a space of constant curvature*; Ann. of Math., vol. 39 (1938), pp. 762-785.
- (2) K. Yano: Sur les équations de Gauss dans la géométrie conforme des espaces de Riemann; Proc. Imp. Acad. Tokyo, vol. 15 (1939), pp. 247-252.
- (3) K. Yano et Y. Mutô: Sur le théorème fondamental dans la géométrie conforme des sous-espaces riemanniens; Proc. Phys.-Math. Soc. Japan; vol. 24 (1942), pp. 437-449.

A theorem for hypersurfaces of conformally flat space 223

REFERENCES

- (1) A. Fialkow: Hypersurfaces of a space of constant curvature; Ann. of Math, vol. 39 (1938), pp. 762-785.
- (2) K. Yano: Sur les équations de Gauss dans la géométrie conforme des espaces de Riemann; Prox. Imp. Acad. Tokyo, vol. 15 (1939), pp. 247-252.
- (3) K. Yano et Y. Mutó: Sur le théorème fondamental dans la géométrie conforme des sous-espaces riemanniens; Proc. Phys. Math. Suc. Japan; vol. 24 (1942); pp. 437-449.