A theorem for hypersurfaces of conformally flat space

By
Makoto Matsumoto
(Recieved October, 10, 1955)

In the following we shall prove a theorem for especial hypersurfaces of conformally flat Riemannian space as follows.

Theorem. If P and only $P(0<P \leqq n)$ of conformal principal radii of a hypersurface V^{n} of conformally flat space are equal identically in a neighborhood U of V^{n}, then U contains $\infty^{n-1} V^{p}$, such that $V^{" \prime}$ is umbilical in $V^{\prime \prime}$ and the conformal curvature tensor of V^{p} vanishes.

Hence V^{P} is conformally flat if $P \geqq 4$. The conformal principal radii σ_{a} are defined in terms of principal radii ρ_{a} as follows.

$$
\sigma_{a}=\rho_{a}^{\prime}-\frac{1}{n} \sum_{b} \rho_{b}^{\prime}
$$

It is clear that the theorem holds equally well, if conformal principal radii are replaced by principal radii.

We consider a variety V^{n} of coürdinates x^{i} immersed in a Riemannian space V^{m} of coördinates y^{d}. Let $B_{P}^{x}(P=n+1, \cdots, m)$ be mutually orthogonal unit vectors normal to V^{n} and $B_{i}^{x}=\partial y^{a} / \partial x^{i}$. Then there exist quantities $H_{i j}^{\prime \prime}$ and $H_{q i}^{\prime \prime}(P, Q=n+1, \cdots, m)$, such that

$$
\begin{align*}
& B_{i, j}^{\alpha}=\sum_{i,} e_{P} H_{i j}^{p} B_{p,}^{\alpha}, \tag{1}\\
& \left(e_{P}= \pm 1\right) \\
& B_{p ; j}^{\alpha}=-y^{\prime \prime} H_{h j}^{p} B_{i}^{\alpha}+\sum_{l} e^{q} H_{p, j}^{q} B_{q}^{\alpha},
\end{align*}
$$

where $g^{n i}$ are components of the fundamental tensor of V^{n}.
If V^{m} is conformal to a flat space and we put

$$
\begin{equation*}
M_{i j}^{P}=H_{i j}^{p}-\frac{1}{n} y^{n k} H_{h k}^{p} y_{i i}, \tag{2}
\end{equation*}
$$

$M^{P_{j}}=g^{t k} M_{k j}^{P}$ and $N_{i j}=\sum_{P} e_{P} M^{P}{ }_{i}^{p} M_{k j}^{p}$, then we have from the Gauss
and Codazzi equations

$$
\begin{align*}
& C_{h i j k}=\sum_{P} e_{P}\left(M_{h j}^{P} M_{i k}^{P}-M_{h k}^{P} M_{i j}^{P}\right)+\frac{1}{n-2}\left(g_{h j} N_{i k}-g_{h k} N_{i j}\right. \tag{3}\\
& \left.+g_{i k} N_{h j}-g_{i j} N_{n k}\right)-\frac{g^{l m} N_{l m}}{(n-1)(n-2)}\left(g_{h_{j}} g_{i k}-g_{h k} g_{i j}\right), \\
& M_{i j ; k}^{P}-M_{i k ; j}^{P}+\sum_{Q} e_{Q}\left(M_{i j}^{q} H_{Q k}^{p}-M_{i k}^{q} H_{Q j}^{P}\right)-\frac{1}{n-1}\left\{g _ { i j } \left(M_{k ; l}^{P_{k}^{l}}\right.\right. \tag{4}\\
& \left.\left.+\sum_{q} e_{Q} M_{i k}^{q l} H_{l l}^{P}\right)-g_{i k}\left(M_{j: l}^{P_{j}^{l}}+\sum_{Q} e_{q} M_{j}^{q l} H_{l l}^{p}\right)\right\}=0, \\
& H_{P j ; k}^{Q}-H_{P k ; j}^{Q}-\left(M_{j}^{{ }_{j}^{i}} M_{i k}^{O}-M_{k}^{\prime{ }_{k}} M_{l j}^{\ell}\right) \tag{5}\\
& +\sum_{k} e_{R}\left(H_{P j}^{R} H_{R k}^{\prime}-H_{P k}^{R} H_{R j}^{\prime \prime}\right)=0,
\end{align*}
$$

where $C_{h i j k}$ are components of the conformal curvature tensor of V^{n}.
K. Yano ${ }^{(2)}$ shaw that the quantities $M_{i j}^{P} B_{p}^{\alpha}$ are invariant under a conformal transformation of V^{m}. Also K. Yano and Y. Muto ${ }^{3)}$ proved that a Riemannian space V^{n} is immersed in a conformally flat space, if and only if there exist $M_{i j}^{P}$ and $H_{i, i}^{p}$ satisfying the equations (3), (4) and (5). It should be remarked here that, though they gave further conditions for such a space, those conditions are obtained as consequences of (3), (4) and (5). If V^{n} is a hypersurface of $V^{m}(m=n+1)$, then (3) and (4) are respectivelly expressible in the following.

$$
\begin{gather*}
C_{h i j k}=e\left(M_{h j} M_{i k}-M_{h k} M_{i j}\right)+\frac{e}{n-2}\left(g_{h j} M_{i}^{l} M_{l k}-g_{h k} M_{i}^{l} M_{l j}\right. \tag{6}\\
\left.+g_{i k} M_{h}^{l} M_{l j}-g_{i j} M_{h}^{l} M_{l:}\right)-\frac{e M_{l,}^{l} M_{l}^{m}}{(n-1)(n-2)}\left(g_{n j} g_{i l i}-g_{h k} g_{i j}\right), \\
\\
\quad M_{i j ; k}-M_{i: ; j}+\frac{1}{n-1}\left(g_{i j} M_{k ; l}^{l}-g_{i k} M_{j ; i}^{l}\right)=0,
\end{gather*}
$$

And (5) is satisfied identically.
Hereafter we assume that all of the principal radii ρ_{a} of V^{n} are real and none of the principal directions are null vectors. Such a hypersurface was called to be proper by A. Fialkow ${ }^{1)}$. Then there exists an orthogonal ennuple in V^{n}, the unit vectors $\hat{\varsigma}_{i}^{i}$) of which are tangent to the lines of curvature, and the fundamental tensor $g_{i j}$ and $H_{i j}$ are expressible in terms of $\xi_{a j}^{i}$ and μ_{a} as follows:

$$
g_{i j}=\sum_{a} e_{a} \xi_{a) i} \xi_{a) j}, \quad H_{i j}=\sum_{a} e_{a i \prime} a_{a}^{\prime} \xi_{a) i} \xi_{a) j} \quad(e= \pm 1) .
$$

Hence the tensor $M_{i j}$ are written in the similar form :

$$
\begin{equation*}
M_{i j}=\sum_{a} e_{a} \sigma_{a} \xi_{a j i} \xi_{a) j}, \tag{8}
\end{equation*}
$$

where σ_{a} are conformal principal radii of V^{n}. The coefficients $\gamma_{a b c}$ of rotation of the ennuple ξ_{a}^{i} are defined by

$$
\gamma_{a b c}=\xi_{a) i ; j} \xi_{i, i}^{i}=\frac{j}{j} .
$$

Making use of them, the equation (7) are equivalent to the system of equations

$$
\begin{equation*}
\left(\sigma_{a}-\sigma_{b}\right) \gamma_{a b c}=\left(\sigma_{a}-\sigma_{c}\right) \gamma_{a c b} \quad(a, b, c \neq), \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \sigma_{a}}{\partial s_{b}}+\frac{1}{n-1} \frac{\partial \sigma_{b}}{\partial s_{b}}+e_{a}\left(\sigma_{a}-\sigma_{b}\right) \gamma_{b a a} \tag{10}\\
& \quad+\frac{1}{n-1} \sum_{c} e_{c}\left(\sigma_{b}-\sigma_{c}\right) \gamma_{b c c}=0 \quad(a \neq b)
\end{align*}
$$

Now we suppose first that all σ 's are equal to σ in a neighborhood U of a point O. We have $\sigma=0$ by means of $\sum_{a} \sigma_{a}=0$, so that (8) gives $M_{i j}=0$ and hence $C_{h i j k}=0$ from (6).

Next we consider the case where $\sigma_{1}=\cdots=\sigma_{P}=\sigma \neq \sigma_{\lambda}(0<P<n$; $\lambda=P+1, \cdots, n$) in U. It follows from (9) that

$$
\begin{equation*}
\gamma_{p \lambda \lambda}=0 \quad(p, q=1, \cdots, P ; p \neq q ; \lambda=P+1, \cdots, n) . \tag{11}
\end{equation*}
$$

Therefore $n-P$ vectors $\xi_{\lambda,}^{i}(\lambda=P+1, \cdots, n)$ are normal to a P-dimensional variety V^{p}, contained in U, and $\xi_{p, j}^{\prime}(p=1, \cdots, P)$ constitute an orthogonal ennuple of V^{P}. Let u^{p} be coördinates of V^{p} and put $\partial x^{i} / \partial u^{p}=B_{p}^{i}$. The components $\gamma_{p, p}^{(}$of vectors $\xi_{j, i}^{i}$ in V^{p} are given by $\xi_{p)}^{i}=\eta_{p p}^{\eta} B_{q}^{i}$ and the second fundamental tensors $H_{p q}^{\lambda}$ of V^{P} are defined by

$$
\begin{equation*}
B_{p ; q}^{i}=\sum_{\lambda} e_{\lambda} H_{\lambda \eta}^{\lambda} \xi_{\lambda)}^{i} . \tag{12}
\end{equation*}
$$

Making use of the above equation we have

Hence, in virtue of (11), $H_{p q}^{\lambda}$ are expressed in the form

$$
\begin{equation*}
\left.H_{p r}^{\lambda}=-\sum_{r}^{\lambda} \gamma_{\lambda m} \eta_{r}\right), \eta_{r} \gamma_{r)} . \tag{13}
\end{equation*}
$$

On the other hand, if we take $a=r$ and $b=\lambda$ in (10), then

$$
\begin{aligned}
\frac{\partial \sigma}{\partial s_{\lambda}}+\frac{1}{n-1} & \frac{\partial \sigma_{\lambda}}{\partial s_{\lambda}}+\left(\sigma-\sigma_{\lambda}\right) e_{, \gamma_{\lambda ; r}} \\
& +\frac{1}{n-1} \sum_{r} e_{r}\left(\sigma_{\lambda}-\sigma_{c}\right) \gamma_{\lambda c r}=0,
\end{aligned}
$$

from which we find $e_{1} \gamma_{\lambda 11}=\cdots=e_{P} \gamma_{\lambda P P}$. If we denote by $-\gamma_{\lambda} / P$ these quantities $e_{P} \gamma_{\lambda p p}$, then (13) are written in the form

$$
\begin{equation*}
H_{p_{q}}^{\lambda}=\gamma_{\lambda} g_{p q}, \tag{14}
\end{equation*}
$$

where $g_{p q}$ are components of the fundamental tensor of V^{P}. It follows that V^{P} is umbilical in V^{n}.

The space V^{P} may be looked upon as a subspace of the enveloping space V^{n+1}. The $n-P+1$ normals of V^{P} in V^{n+1} are B^{α} and $\zeta_{\lambda)}^{\alpha}=\xi_{\lambda,}^{i} B_{i}^{\alpha}$. The second fundamental tensors $\bar{H}_{p,}$ and $\bar{H}_{p q}^{\lambda}$ of V^{P} are given by the equations

$$
B_{p: q}^{\alpha}=e \bar{H}_{p \eta} B^{\alpha}+\sum_{\lambda} e_{\lambda} \bar{H}_{p q}^{\lambda} \xi_{\lambda)}^{\alpha} \quad\left(B_{p}^{\alpha}=\frac{\partial y^{\alpha}}{\partial u^{p}}\right)
$$

Besides, we have from (1) and (12)

$$
B_{p ; ;}^{\alpha}=\left(B_{i}^{\alpha} B_{r p}^{i}\right)_{; \imath}=e H_{i j} B_{p}^{i} B_{i /}^{j} B^{\alpha}+\sum_{\lambda} e_{\lambda} H_{\nu \eta}^{\lambda} \xi_{\Lambda)}^{\alpha},
$$

so that the following relations are obtained.

$$
\bar{H}_{\eta \eta}=H_{i j} B_{p}^{i} B_{q}^{j}, \quad \vec{H}_{\eta \eta}^{\lambda}=H_{\eta \eta}^{\lambda}
$$

from wich we have in consequences of (14) and the definition of ρ_{a}

$$
\begin{aligned}
& \bar{H}_{\mu \eta}=\sum_{a} e_{a f^{\prime} a} \xi_{a i)} \xi_{a) j} B_{r}^{i} B_{r}^{j}=\sum_{r=1}^{r} e_{r} \rho_{r}, \xi_{r) i} \xi_{r) j} B_{r}^{i} B_{q}^{j}=\sum_{r} e_{r} \rho_{r} \eta_{r) p} \eta_{r) \eta}, \\
& \bar{H}_{r q}^{\lambda}=\gamma_{\lambda} g_{\eta \eta} .
\end{aligned}
$$

Substituting from these expressions in

$$
\bar{M}_{\eta \eta}=\bar{H}_{p^{\prime}}-\frac{1}{P} g^{r s} \bar{H}_{r s} \ddots_{\eta \eta}, \quad \bar{M}_{p q}^{\lambda}=\bar{H}_{p^{\prime}}^{\lambda}-\frac{1}{P} g^{r_{s}} \bar{H}_{r s}^{\lambda} g_{p \eta}
$$

we have immediately $\bar{M}_{p}=0, \bar{M}_{p q}^{\lambda}=0$, and hence the conformal curvature tensor $C_{p p r s}$ of V^{P} vanishes by means of (3)

Finally the theorem has been established.

A theorem for hypersurfaces of conformally flat space 223
 REFERENCES

(1) A. Fialkow: Hypersurfaces of a space of constant curvature; Ann. of Math., vol. 39 (1938), pp. 762-785.
(2) K. Yano: Sur les équations de Gauss dans la géométrie conforme des espaces de Riemann; Proc. Imp. Acad. Tokyo, vol. 15 (1939), pp. 247-252.
(3) K. Yano et Y. Mutô: Sur le théorème fondamental dans la géométrie conforme des sous-espaces riemanniens; Proc. Phys.-Math. Soc. Japan; vol. 24 (1942), pp. 437-449.

гэวизязะэя

 UAA-5EA

