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Introdaction

In recent years, the general theory of connexions on differ-
entiable fibre bundles has been developed by many authors. The
purpose of this paper is to investigate on the structure of Cartan
connexion and some facts related with it. One of the useful notions
introduced in §1 is the tensorial form on a principal fibre bundle.
In § 2, we define the basic tensorial form of the soldered structure
of bundle, and making its use we give expositions of Cartan con-
nexions. The last section is concerned with the torsion forms of
Cartan connexions. I think that the underlying principle of the
tensor calculus for general Cartan connexion has been made clear
through these debates.

I wish to express my sincere gratitude to Prof. J. Kanitani for
his kind guidance and encouragement during the preparation of
this work.

§1. Preliminaries and notations

1. Throughout this paper we shall denote by 7°(X) and by
T.(X) the tangent vector bundle over any differentiable manifold
X and the tangent vector space of X at a point xeX respectively.
Any differentiable mapping ¢ of X into another differentiable
manifold X’ induces a linear mapping ¢* : T.(X)—T. (X'), where
¥=¢(x).

Let B(M, Y, G, n) be a differentiable fibre bundle, where M,
Y, G, and 7 denote respectively the base space, the fibre, the structure

1), 2) Cf. [10] pp. 37~39. The number in the bracket refers to the biblio-
graphy at the end of the paper.
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group, and the projection. We assume that M and Y are differen-
tiable manifolds and that G is a Lie group of transformations which
operate effectively and differentiably on Y. The associated princi-
pal bundle ¥' of B can be regared as the set of all admissible
maps”. A tangent vector veT(B) is said to be wverlical, if it is
tangent to a fibre Y, over xe M. The principal map® y : B"X Y—-B
is defined by

2(b, y)=by for be¥’, yeY.

In particular, for the associated principal bundle ¥, the principal
map y': B'XG—B" is given by

1’ (b, s)=bs for bed’ seG.

- If we set

p(s)b=bs for seG,

the homeomorphism p(s) : B'—B" which transforms each fibre G,
of B" onto itself is called a right translation of V', and its induced
mapping p*(s) : T(B") -»T (") transforms each vertical vector of
T(¥") on such a vector.

DEFINITION 1-1. Let B"(M, G, G) be a differentiable principal
fibre bundle over a differentiable manifold M with Lie group G,
and let p(s) denote the right translation of %" corresponding to
seG. Let (#* R) be any differentiable representation of G on a
vector space R ; that is, to each seG, corresponds a linear automor-
phism 7*(s) of R such that #*(s;s,™") =r*(s)r*(s,) ™. A kfrom 0 on
B is called a tensorial k-form of type (r*, R), if it satisfies the follow-
ing conditions :

(1) 0 is a kform on B with values in R.”

(i) 6@, -, t) =0, if & is vertical.

(i) Op*(s) =r*(s™")0 for any seG.

In the case k=0, a differentiable mapping 0 . B'—-R is called a tensor
of type (r*, R), if it satisfies the relation :

Op(s)=r*(s™)0 for any seG.
2. Let us consider a Lie group G of transformations which

operate differentiably, transitively, and effectively on a differentiable
manifold F'; namely F is a homogeneous space G/G, where G is

3) CE [12].
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the closed subgroup of G leaving invariant a point oeF. We shall de-
note the transformation on F corresponding to each §¢G by «,(8) :i.e.

a,(§)y=8y for all yeF.

Let a(s) denote the inner automorphism of G corresponding to
each §¢G :

a@)y=8¢gs—" for all geG.

The Lie algebra L of G can be identified with the tangent vector
space Ta(é) at the neutral element &G. The Lie algebra Lof G
can be identified with 7. (G) being a linear subspace of L. More-
over the tangent space E=T,(F) at the point oeF can be identified
with the vector space L/L. Since a(§) for §e¢G leaves invariant
the neutral element & it induces an automorphism a*(§) of
I:=T5(G) which is an element of the so-called linear adjoint group
of G; and since @, (s) for seG leaves invariant the point o¢F, it in-
duces an automorphism «,*(s) of E=T,(F) which is an elemant of
the so-called linear isotropy group of G. Let p denote the canonical
projection: G—F= G/G. We have pa(s) =a,(s)p for seG. Then,
p induces the projection p*: L—E=L/L, and we have p*a*(s)=
a,*(s)p* for seG. The subspace L in L is invariant uqder a*(s)
for seG. Hence, a*(s) induces an automorphism of E=L/L which
coincides with a}¥(s). Throughout this paper, we shall denote by
(a*, L) or (a*, L) the linear adjoint representations of G or G and
by («f, E) the linear isotropy representation of G.

3. Take a base (e, -, €., €..1, -+, ¢,) of the Lie algebra £ such
that the set (e,.., ---, ¢.) forms a base of L. We have then the
equations of structure:

(1'1) [elh eb’]zk’g{ CAlsieI( (A, ler B 7’),
in which
(1'2) Cff{izo (i:]-, N, ﬂ:n+1’ Ty 7’).

We shall use, throughout the paper, the following ranges of
indices :
A, B, C, :]_‘ 2’ S 7,
ik =12 . m
a, B, 7, =n+l,n4+2, - 7.



202 Seizi Takizawa

By a change of base of L, we shall mean only that of the
following type :

-3 e.=31a%es a;=0, |[a)]#0, |a3|#0.

Denoting by C/ the structure constants with respect to the new
base, we get the relations:

(1-4) = a,,‘C_.,",=§ Ciala}.
. ~

Identifying E with I:/L, we can regard the set (e, ---,e,) as a

base of E. Denote by L* L* E* the dual spaces of L, L, E re

spectively. For a base (e, -, e, €rr1y 7y €) of I:, its dual base

(e, -+, e, e**’, -+, ) can be finded in L*, and the sets (e**', -, €),

(¢', ---, ") can be regarded as the bases of L* E* respectively.

According to the relation (1-4), we see that the element Z}CC:je“
o7

® e’ R e, belonging to the space L* ¥ E* (X E does not depend on
the choice of the base, where ® denotes the tensor product. Taking
a base of L, we can express an elemat a*(§) of the linear adjoint
group of G by a matrix [laz($):

~

1-5) a*@)x=ai(§)a"e, for all x=>x"e,el.
AR A

From the well-known relation

(1-6) [a*(8)x, a*($)y]=a*($)[x, y]
for §¢G and x, yef., it follows that

a-n ;‘“a}‘,(§)czﬁ'a=§ Chai(§)aX(s)" for $§eG.
Above all, since a/(s) =0 for seG, we have

(1-8) >l ai(s) C¢‘j=§ Chal(s)af(s) for seG.

An element a,*(s) of the linear isotropy group of G is given by
the matrix {|«}(s)l, as the base (e, ---,e,) of E is taken: i.e. from
(1-5) it follows that

(1.9 a* (s)xs\% aj(s)x’e; (mod L).

4. We put V=E*Q L and W= (E*AE*)XQE. Referred to

4) Cf. [7], p-3.
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a base (e, -, € €.s1, **, €,), €ach element ¢V can be written as
§=>1§/ R e,
[ 2%]
and each element ¢ W can be expressed by
=311, N e Re,
N
with
7/;";; + 7,'1% =0.

DEFINITION 1-2. Let (e, -, €, €uv1, -+, &) be a base of L. The
linear map @: V—W is defined by

(1-10) D6 Qe) =2 nue’ N & Qe
a, LIV
with
(1-11) 7= 2(CEE—CiE D).

The representations (a*, L), (a,*, E) naturally induce the re-
presentations on the spaces V and W which we denote by (a*, V)
and (a,*, W) respectively. According to the relation (1-4) and
(1-8), we obtain immediately the following proposition.

PROPOSITION 1-1 The linear map @ : V—W does not depend
on the choice of the base, and it holds that

Ga*(s)=a,*(s) @ for any seG.

§2. The soldered fibre bundle and the Cartan connexion

5. In this and following sections we assume that a differenti-
able fibre bundle B (M, F, G) over a differentiable manifold M ful-
fills the following conditions :

(i) The fibre F is the homogeneous space G/G which we have
introduced in the preceding section.

(i) There exists a differentiable cross-section f: M—B.

(1)) The dimensions of F and M are equal.

From the condition (ii), it follows that the associated principal
bundle B(M, G, G) of B is equivalent to a principal bundle 8" (M,
G, G) whose group is the subgroup G leaving invariant a point
oeF, and " is the submanifold of ﬁj.such that y(B', 0) =f(M),
where y denotes the prinicipal map of 8. Identifying any point
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xe M with the point f(x) ¢B, we can suppose the base space M to
be embedded in 8.

Let T (M) be the submanifold of 7'(B) consisting of all vertical
vectors at any point of f(M). Then T (M) becomes an associated
bundle of B" with fibre E=T,(F) and with the linear isotropy
group as its structure group. Each fibre $.(M) of (M) over
xeM is the space of all vertical vectors of 7(B) at f(x).

DEFINITION 2-1. In the above circumstances, the bundle B’ is
said to be soldered with B, if there is given an identification ¢: T (M)
—I(M); namely, ¢ is a bundle homeomorphism: T(M)—-IT M),
and is an isomorphism between T.(M) and £,(M) for each xeM.

It is clear that the condition (iii)is necessary for existence of
a soldered structurs.

Let (:, B") be a soldered bundle with B and let y(b) denote
the admissible map: F—F, of B corresponding to beB':

xD)y=x(b,y)=by for yeF.
We denote by 7 the projection of B". Since y(b) maps the point
o€F to the point f(7b) B, it induces an onto isomorphism y*(b):
E-Z,.,(M). Recall the right translation #(s) of ¥ and the trans-
formation «,(s) on F corresponding to seG:

p(8)b=x"(b,s)=bs for beB",

a,(s)y=sy for yeF.
Obviously it holds that

(2 (8)b) =y () a,(s),

and hence we have the formula:
2-1n x* (0 (s)b) = x* (b) a,*(s).

DEFINITION 2-2. In the above circumstance, the basic form o,
of a soldered bundle (:, B") with B is defined by

(2-2) @, (8) =*7" (b) em*t,

Jor any tangent vector teT, (B").

PROPOSITION 2-1. The basic form o, of a soldered bundle (¢, B)
with B satisfies the following conditions :

(1) w, is a tensorial 1-form on B° of type (a,*, E).

(1) If w,(H) =0, then t is vertical.
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Proof. By the definition, @, becomes a 1-from on B’ with
values in E. For a vertical vector ¢ of T'(®"), we have w,(t) =0
because 7*t=0. Since p(s) transforms each fibre of B’ onto itself,
we see n¥p* (s) =n* for any seG. If teT,(B"), then p*(s)teT, ), (B).
On the other hand, from (2-1) it follows that

¥ (s)b) =a* (sT) y* (D).
Therefore

wy* (s) =*7 (0 () b) em*p* (s)
=a,*(s7") Z*“ ) m*=ay* (s7") @,

This proves that o, is a tensorial 1-form of type («,*, E). Moreover,
since y*(b) and ¢ are one-to-one mappings, w,(¢) =0 implies #* (f) =0.
This means that ¢ is vertical.

We shall show conversely that a soldered structure of bundle
is completely determined by its basic form.

PROPOSITION 2-2. Suppose that the bundle B fulfills the three
conditions introduced at the beginning of this section. If there is given
on the bundle B° a 1-form w, having the properties (i) and (i) in the
Proposition 2-1, there exists one and only one soldered structure (¢, B")
with B having o, as its basic form.

Proof. For any vector veT, (M) there exists a vector teT, (B")
such that 7*¢=v. Let us show that the element y* (b) w,(t) X, (M)
does not depend on the choice of . Let { and ¢ be two vectors
of T(B") such that #*t==*=v. If teT,(B") and t'eT, (B"), there
exists a unique right translation ¢(s) of B such that p(s)b="V,
because #b=nb =x. Since w*p*(s)==* we find 7*{ —p*(s)t) =
n¥f —m*t=0; that is, the vector ¢ —p*(s)teT, (B") is vertical.
Making use of the property (i), we have o,(# —¢*(s)f)=0 and
w,(p*(S) 1) =a,*(s7) w,(t). Tt follows that w,(¥') =a,* (s ) w,(t). On
the other hand the formula (2-1) shows that y*(0') =y*(b) a*,(s).
Consequently we have

1 (B wy (V) =y*(b) 0, (B).
Accordingly, we can define a mapping ¢: T(M)—-3 (M) by
2-3) w=y*b)w,(t) for wveT' (M),

where ter* 'y and teT,(B"). If v#0, then ¢ is not vertical ; and,
from the propery (ii), it follows that w,(#) 20, and so 0. This
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means that ¢ is univalrnt. Since dim T, (M) =dimZT . (M), ¢ becomes
an onto isomorphism between T,.(M) and $,(M) for each xeM.
The desired soldered structure (,, %) is thus defined. Our process
having constructed the identification ¢ assures that there exists one
and only one bundle map ¢ satisfying the relation : w,=y*"" (b)en*,
when a form w, having the two properties is given. The Proposition
2-2 has been proved.

ReEMARK. Observing dim T.(M)=dim E, we can show easily
that the condition (ii) in the Proposetion 2-1 is equivalent to the
condition :

(1)’ w, maps T,(B") onto E for each beB'.

6. Let sB(M G G) be a dlfferentlable principal bundle. We
denote by x(b) the admissible map of B correspondmg to be% and
by (a*, L) the linear ~adjoint representation of G. A connexion on
the principal bundle B can be defined by a 1-form @ satisfying the
following conditions : ¥

() @ is a 1-form on B with values in the Lie algebra I.

Gi) If a vector teT5 (B) is vertical, then & (1) =7*"(b)1.

(iii)  For any right translation p(8) of SB, it holds that

wp*(§)=a*(§7") a.

We shall call the form & the Pfaffian form of connexion on B,
or, merely the connexion on B for the sake of simplicity.

In general, the bracket product® of forms on a differentiable
manifold X with valus in a Lie algebra A is defined by

[0, ?](tl Tty tlr+h)

_s &(9)

—‘g (k+h) !_ [ﬂ(taﬂ): ’ ta(r,.)),¢ (to(lc+1)) ’ ta(/.v+h))],
where k, h are degrees of forms 0, ¢ respectively, t,, -+, .. T(X)
xeX, the summation is extended over all permutations ¢ of the set
{1, 2, -, k+h}, and E(a) is the sign of o. Then, we have the
relations :

[Sp, 0]= (— 1) kh_l[ﬂa S”],
(=D"0[0[e, $1]1+ (=1 “*Plg, [¢, 0]]+ (=D ***M[¢, [0, ¢]]=0,

5) Cf. [6], [1].
6) Cf. [12].
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where k, h, [ are degrees of 0, ¢, ¢ 1espectlvely
The curvature form £ of a connexion & on B is given by the
equation of structure”

(2-4) di=—13[w, &]+2,

and Bianchi’s identity® is written as
(2-5) d2=[2, &).

The following proposition is well-kown.

PROPOSITION 2:3.”  The curvature from D is a tensovial 2 -form
on B of type (a*, L)

DErFINITION 2-3. Let B"(M,G, G) be a soldered bundle with
B(M, F, G), and let BM, G, G) denote the associated principal
bundle of B. A connexion & on B is said to be a Cartan connexion
of type F on B with respect to the soldered structure, if the vestriction
of p* & on B° coincides with the basic form w, of the soldered structure,
where p: G—F= G/G denotes the canonical projecton.

PROPOSITION 2-4."  Suppose that the bundle B fulfills the three
conditions introduced at the beginning of §2. A Cartan connexion &
of type F on B can be defined, if there is given on B a 1form o
satisfying the following conditions : A

(i) o is a 1form on B with values in L.

(1) If a vector teT,(B") is vertical, then w(t) =y"*""(b)t.

(iii) For any right translation o(s) of B, it holds that

wp*(s) =a* (s w.

iv) If w(t) =0, then t=0.

In this case, w is the restriction of ® on B'.

We shall call o the restricted Pfaffian form of the Cartan con-
nexion on V', or, merely the Cartan connexion on B" for the sake
of simplicity.

Proof. Since any element be *B can be written as b= /»(s)b
where §¢G and be®’, any vector teT (B) can be given by t—
r*(S)t+t, where teT, ("), and {, is a vertical vector of T% (%).
Extend » to a form & over the whole B by

7) Cf [1].
8) Cf. [12].
9) Cf. [1].
10) Cf. [6], p. 43.
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(2-6) b =a*E N o® +5* ),

Since the conditions (ii) and (iii) assure that & (f) does not depend
on the choice of elements §, ¢, and {, such that fzp* ) t+1, the
c}eﬁnition (2-6) of ® has a sense, and & becomes a connexion on
B. Moreover, it is easy to see that the form w,=p*w satisfies the
conditions in the Proposition 2-1; and so, by the Proposition 2-2, the
seldered structure (;, B") with B can be determined. Our proposi-
tion has been thus proved.

Taking account of the condition (iv) and observing that
dim T, (B") =dim f, we have the following :

PROPOSITION 2-5.""  Let w be a Cartan connexion on B'. Then
w is an onto isomorphism between T,(B') and L for each be®'. It
Jollows that the tangent vector bundle T (B") over B° is equivalent to
a product bundle B°x L.

Accordingly, we can define the absolute parallelism on T(‘B")

DEFINITION 2:4. Let w be a Cartan connexion on ¥B'. Two
vectors t,, t,eT(B") are said to be parallel with respect to the Cartan
connexion, if w(f)=w(t,). A tangent vector ficld ¢z on 8" is called
a parallel field it w(x)=constant.

ProPOSITION 2-6. If t is a parallel field, then so is p*(s)y,
where p(s) denotes a rvight translation of B".

The homogeneous space F is said to be reductive,® if there
exists in L a linear subspace complementary with L and invariant
under a*(s) for all seG. Then this linear subspace can be idetified
with E, and the vector space L is decomposed by the direct sum:
L=E+L. And, for any seG, the restriction of a*(s) on E is
nothing but «,*(s).

PROPOSITION 2:7. Assume that F is reductive and a decom-
position L=E+L is given. Let p*:L—L be the projection with
respect to the given decomposition. Then p* gives the one-to-one cor-
respondence between the set of all Cartan connexion of type F on B
and the set of all connexion on B' having a solderved structure with B.

Proof. Let o be a Cartan connexion on B°. It is obvious that
p*o and p*o define respectively a soldered structure of B° with 8
and a connexion on ¥B’. Conversely, if the basic form w, of a
soldered structure of B’ with B and a connexion o, on B° are

11) Cf. [6], p. 43.
12) Cf. [8].
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given, then o=w,+ o, being a form on B* with values in L defines
a Cartan connexion of 2.

DEFINITION 2-5. A Cartan connexion o on B° is said to be
reductive, if the homogeneous space F is reductive and a decom-
podition L=E+L is given.

The proposition 2-7 asserts that a reductive Cartan connexion
o can be decomposed as w=w,+,, where w,=p*w is the basic
form of the soldered structure and w,=p,*w is a connexion on ¥’

7. As to the existence of Cartan connexions, we have known
the following proposition.

PROPOSITION 2-8. Let B be a soldered bundle with B. Then,
there exists a Cartan connexion of type F on B with respect o the
soldered structure.

Let » and ' be two Cartan connexions on a same soldered
bundle ¥°. Setting 0=« —w, we have p*¢=0; and if a vector
teT (B’ is vertical, then 6(t)=0. Hence ¢ is a tensorial 1-form
on B’ of type (a*, L). We have thus the following proposition :

PROPOTITION 2-9. Let o be a Cartan connexion on a soldeved
bundle ¥B'. Define the transformation ©* on the set of all 1-forms
on B with values in L by

*h=¢—aw.

Then t* gives the one-to-one correspondence between the set of all
Cartan connexions on the soldered bundle B' and the set of all
tensorial 1-forms on B’ of type (a*, L).

§3. The torsion of the Cartan connexion

8. Let £ be curvature form of a Cartan connexion & of type
Fon B. We call the restriction of £ on 9" the restricted curvature
Jform of the Cartan connexion and denote it by £. Then ¥ is given
by the equation

3-1) do=—13 o, o]+ £,
where o denotes the Cartan connexion on %°.

DEFINITION 3-1. Let & be the restricted curvature form of a
Cartan connexion. The torsion form %, of the Cartan connexion is

13) Cf. [6], p. 43.
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defined by
(3-2) Q,=p*0.

Since ¢ is a tensorial 2-form on B of type (a*, L), we have:

PROPOSITION 3-1. The torsion form £, is a tensorial 2-form of
type (a*, E).

A Cartan connexion on ¥B° is said to be without torsion, if its
torsion form vanishes.

PRrROPOSITION 3-2. If and only if a Cartan connexion on B° is
without torsion, its restricted curvature form becomes a tensorial
2-form on B" of lype (a*, L).

Take a base (e, -, e,, €y.1, -+, &) of L such that (e,.,, -, e,)
and (e, ---, ¢,) become bases of L and E respectively. A Cartan
connexion w and its restricted curvature form & can be expressed
by

o=>w"QRe, and L=>12"QRe,,
A A
where o and £4 are forms on B" with real values. Then, the

basic form o, of the soldered structure and the torsion form £,
are written as

o,=3lo'@e; and L=32Qe,

Using the condition (ii) in the Proposition 2-1, we can show that

the forms o', ---, o™ are linearly independent; and taking account
of the Propofition 3-1 we can set
3- 3) Q’=j2[} S;,.‘(uj N (u",
where Sj, are functions on 8" with real values satisfying the relation
(3-4) Sii+ Si,=0.
If we put
3-5) S=>155e’ N e R e,

iygy ke

then S becomes a tensor on B’ of type (a,*, W). We shall call S
the forsion tensor of the Cartan connexion. The equation (3-1)
is now written as

do'=1 Z': Cioo® N w4 24,
B

and hence we have
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(3-6) P'=dw’—3 >) Chad N =3 CHo® A o,
3k o,k

Let «’ be another Cartan connexion on 8’ having the common
soldered structure with ». For the curvature form, the torsion
form, their components referred to the base, ctc. of ', we shall
use the same notation with primes as those of w. It follows that
o'’=0o'. Setting ¢*°=0'*—0*, we have =o' —w=>)0°Re, Since

0 is a tensorial 1-form on B’ of type (a*, L), we can set
3-7) =3I,
]

where I are functions on ' with real values. Setting
(3-8) r=>ryeQ e,
a,j

we see I" is a tensor on B’ of type (a* V) and that the Cartan
connexion «’ is determined when the tensor /' is assigned. From
(3-6) we obtain the relation :

(3-9) ' = SV CL% A o

a, k

Since o', -+, »* are lincarly independent, this relation is translated
to the equation :

2(S5—Sj) =XUCLl = CLl'f),

that is,
(3-10) 2(=-S)=9r,

where @ is the linear map: V—W introduced in the Definition
1-2. Finally we get the following:

ProOPOSITION 3-3. Take a fixed Cartan connexion on ¥°, and
let S denote its torsion tensor. Then, any Cartan connexion on the
soldered bundle B" is defined, when a tensor I' of type (a*, V) is
given ; and ils torsion tensor S is obtained from the formula :

(3-11) S=10r'+S.

9. The exterior derivative of 1-form ¢ is given by the well-
knwon formula '

(3-12) de(x, ) =3 e W) —ve ) —e (1, v]),

14) Ct. [1], [9].
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where g, v denote vector fields.

Take parallel fields g, y with respect to a Cartan connexion
o. Since (x) and w(y) are constant, rw(y) =yho(r) =0. From
(3-1) and (3-12), it follows that

(3-13) 0,9 =1(o@®), o) ]—ox, v]).

Accordingly, as regards the torsion form ¥, and the basic form w,
of the soldered structure, we have

(3-14) 2,6, 9 =3 e@®, e ]—o,(x, v])).

Since [w(r), @(y)] is constant we obtain the following propositions.

PROPOSITION 3-4 Let ¢, vy be parallel fields with respect to a
Cartan connexion. Then [x, v] becomes a parallel field if and only
if £(x,v) is constant.

PROPOSITION 3-5. Assume that the curvature form of a Cartan
connexion vanishes. If x, vy are parallel field, then so is (1, y].

"PROPOSITION 3-6. Assume that a Cartan connexion is without
torsion. If x, vy are parallel fields, then o,([x, vy]) is constant, where
w, denotes the basic form of the soldeved structure.

10. We are going to consider the case that the Cartan con-
nexion is reductive.

DEFINITION 3:2. Let o=wy+ »,, be a reductive Cartan connexion
on B'. The torsion form O of the connexion w, is defined by
(3-15) O=dw,+|[o,, v,

PRrROPOSITION 3:7. Let w=w,+w,, be a reductive Cartan con-
nexion on B'. The torsion form 6 of the connexion w, is a tensorial
2-form on B' of type (a,*, E), and is given by the relation

(3'16) !")u:(.)'*'?gﬁ*[")m "’u]r
where L, denotes the torsion form of the Cartan connexion o.
Proof. Since the linear subspace E in L is invariant under

a*(s) for seG, [w, w,] is a 2-form on B’ with values in E; there-
fore, so is #. We have

Y=d(w,+ ) + 3w+ o, o+ o]=0+1[m, o]+ 2,

where ¥, is the curvature form of the connexion »,. Since p*¢=4#6

15) 0 is the so-called covariant derivative of w, with respect to the connexion
w;. Cf. [4], [1].
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“and p*2,=0, we obtain the relation:
Q.= 0+3p* w,, )

Accordingly, in order to prove that # is a tensorial 2-form of type
(a*,, E), it is sufficient to show that so is p*[w, »,]. In this case,
we have

[‘”0» (’)u] (i, ty) = [")0 (), w, (tz) ]1
wt* (8) =a,* (s w,=a* (s, for seG;

and from (1-6), it follows that [a*(s™*) m,, a*(s™") w,|=a* (s7") [@,, ®,].
Hence, [@,, ®,]0* (s) =a*(s™")[w,, ®,]; and so

p*[wo; ‘Uo]f’* (s) =a,* (3—1)19*[100, ‘"o]‘

Moreover, if ¢ is vertical, [w,, w,](t, t,) =0 because w,(#,) =0. This
proves that p*[w,, w,] is a tensorial 2-form of type (a,*, E).

PROPOSITION 3-8. If the homogeneous space F is symmetric,
then the torsion form £, of the Cartan connexion w,+ e, coincides
with the torsion form O of the connexion w,.

Proof. Since F is a symmetric space, [a, b] €L provided a, beE.
Hence we have p*[w, »,]=0, and from (3-16) it follows that
2,=6.

Let w=w,+®;, be a reductive Cartan connexion. The subset
o '(E) in T(B") constitutes the set of all horizontal vectors'® of
the connexion w,, because o, (f) =0 if and only if w(f) ¢eE. A parallel
field ¢ with respect to the Cartan connexion o will be called a
horizontal parallel field, if o(x) (=const.)€E.

- PROPOSITION 3-9. Let w=w,+w, be a reductive Cartan con-
nexion. The connexion o, is without torsion : ie. #=0, if and only
if every vector field (x,v] for horizontal parallel field x, Yy is vertical.

Proof. For any (e¢T(¥"), we can take a unique horizontal
parallel field g such that w(x) =w,(¢). It follows that there exist
horizontal parallel fields 1, x, such that @ (x,(b), x.(b)) =6 (¢, t,) for
arbitrary t,, t,eT, (B").

Suppose r, vy to be horizontal parallel fields. Then w(x)=
w,(r), ®(y) =w,(y). Hence, from (3-13) we have

'(")—“12[(’)01 ")0]) (gr 1)) = _%")([Ev ‘)]) .
Applying the projection p* to the both sides and employing (3-16),

16) Cf. [1].



214 Seizi Takizawa

we get the relation

0@, 9) =—30, ([, Y] -
This implies that #(y, y) =0 if and only if [g, y] is vertical. The
Proposition 3-9 has been proved.

Taking the base (e, -+, e,, €,,1, -*-, €,), we can set
O=3Tjw’No* Qe
with "
T+ TE=0.
If we put
T=[;QT,’;.e" ANeERe,

then T becomes a tensor B’ of type (a*, W), and is called the
torsion tensor of the connexion w»,. By the Proposition 3-3 and the
relation (3-16), the following proposition is obvions.

PROPOSITION 3-10. Assume that there is given a fixed reductive
Carlan connexion &= w,+ o, on B" and let T denote the torsion tensor
of ®,.. Then, for any reductive Cartan connexion o=w,+o, on B’
the torsion tensor T of o, is obtained from the formula

3-17) =301+ T.

We can deduce directly a formula for the torsion form analogous
to Bianchi’s identity.

ProposITION 3-11. Let w=w,+ o, be a reductive Cartan con-
nexion. Denote by £, and O vespectively the curvature form and the
torsion form of the connexion o, Then it holds that

(3-18) dO+{w,, O]=[£,, »,].
In general, if ¢ is a k-form on B" with values in L, we have
(3-19) d(de+[oy, ¢]) +[w, de+o, ¢]l=[2,, ¢].

The formula (3-18) means that the covariant derivative of 6 with
respect to the connexion o, is equal to the tensorial 3-form [£,, w,]
of type (a,*, E), while Bianchi’s identity

(3-20) dﬂl"‘[‘"u 91]=0

for the connexion «, shows that the covariant derivative of %
vanishes.



On Cartan connexions and their torsions 215

11. At the end we give some remarks on the covariant
derivative which was used in preceding articles of this paper.

When a connexion  is given on a principal bundle 8°(M, G),
each tangent space 7, (8% is decomposed in the direct sum of the
horizontal space H,(¥") and the vertrical space V,(8"); and for
any be®° the natural projections

h: T,B)—>H,(¥) and v: T,(B)—-V, ()

are defined.
The covariant derivative of a p-from ¢ on 8" is defined by
(3-21) DO=don™ .

However, when the form 0 is of special type, another covariant
derivative may be defined.

Let (»*, R) be a representation of G and (7"_“, R) be its induced
representation of the Lie algebra L of G. For any acL, r*(a) is
an endomorphism of the vector space R. Let ¢ be a p-form on ¥°
with values in R satisfying the following condition :

©) Oo* (s) =r*(s™)0  for any right translation p(s).
Then the covariant derivative of another kind is defined by
(3-22) DO=di+7* () 0,
where 7*(w)0 is a (p+1)-form given by
(3-23) ¥ (@) 0ty s bpe)
=3 T @0 By )

for £, -+, 1,41 €T, (B").

It can be proved that D'# also satisfies the condition (C)." In
the case that (#* R) is the linear adjoint representation (a*, L)
of G we have r*(v)t=[w, 0].

ProproOSITION 3:-12. If a p-form 6 on B° with values in R satis-
fies the condition (C), then dOh is a tensorial p-from of iype (r*, R).

Proof. Since the right translation p*(s) preserves the decom-
position T, (B") =H,.(B") + V. (B"), we have p*(s)h=ho*(s). It
follows that, if a form ¢ on ¥° with values in R satisfies the condi-
tion (C), ¢k becomes a tensorial form. According to the relation

17) .Cf. [1]
18) Cf. [4]
19) Cf. [4]
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wh=0, we have
(3-24) dOh= (dO0+7r*(w)O) h;

and since dfl+7*(w)f satisfies the condition (C), dfk is a tensorial
form.
ProPOSITION 3-13. If U is a tensorial p-form of type (r*, R), then

(3-25) dOh=db+v*(w)0 .

Proof. To any element ael, corresponds a unique vertical
vector field 3 on ¥ such that «(3) =a for all be¥’. We denote
this correspondence by ¢ and set g(L)=<. Then £ becomes an
algebra consisting of vertical vector fields of B° and ¢ is an
isomorphism of L onto Q.

Since df0h= (d!!+7*(w)0) h, in order to prove our proposition it
is sufficient to show that

di+7*(w)0) t,, -, t,..) =0 provided ¢, is vertical.
We take vector fields x.(i=1, ---, p+1) such that (b)) =t and g,e2Q.

By the well-known formula®-

d{)(gl, Y EH—I)—]‘-H( 1)" - Et( (Eh °ty gi, Y EP-H))
7 p 1 o

(=™, e Ry
% p+1 (D‘” EJ] Liy: s Ljs , ;l,,+1).

Taking into account that ¢(y,---.b,) =0 provided one of y/s is
vertical, we have

(326) d”(z:,b Tty J_:IH-I) :—p_]i_‘l‘—},x ((/(),:2, ) ):7:+1))

»Hl ~
+é( D7 0([?u xa] Loy 5y Ljp ooy L) -
Moreover we have

7_’* (lU)U(Eu Tty 1?714—1) = ;* (‘”(21))0(&’2, Tty 2::“) .

p+1

The field r,€Q generates the 1-parameter group p*(g) of right
translations, where g is the 1-parameter subgroup of G generated by
the element w(yx,) €L.

20) Cf. [1], [9]
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According to the relation #*(g~')0=0p*(g), we have
r*(—o@))0=Lx)0,
where L(x) denote the Lie derivation with respect to the field x,.
Hence, it holds that

B-20) =1 @0, o) =7;1L1—(L @0 Qo - o).
On the other hand, by a formula®™ for the Lie derivative, we have
(3-28) (L@E)O) (Lo s Lper) =8 (0(Ls 75 Bpi))

+§(_“1)J+10([§1 J;j], J;a, Ty ij, ) E;:H)-
From (3-26), (3-27) and (3-28) it follows that

(dd'*_;* ((t)) ﬂ) (Ely"';gﬂﬂ) =0 .

Accordingly, if 6 is a tensorial form, so is df+7*(v)0, and we
have

df+7* (o) 0= (d0+7r* () 0) h=dbh .
Our proposition has been thus proved.
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