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§ 1 .  Introduction.

It is the purpose of this paper to give a simple and topological
proof of the following two theorems [4 ], [3 ].

Theorem of B ott.

7r2.+I(SU(m)) Z f o r  m > n ,
7r2.(SU(m)) =  0 for m >  n .

Theorem of Borel-H irzeburch.

7r2 „(SU(n)) Z„, for 2.

T he CW-complex SU( o c ) ,  V SU(m ) has th e  following pro-
perties:

(U1) it is simply connected,
(U2) it is an H-space with a homotopy-associative multiplication,
(U , )  i t s  in t e g ra l  cohomology r in g  i s  a n  ex terior algebra

A (e „  e„ •••) generated by elements ei  G H 2 1 ± ', i =1 , 2, ••. ,
( U4 ) and there ex ists a  mapping f  of  EM  into it such that the

induced homomorphisms f* of  the cohomology groups are onto,
where M =  V  M „ denotes the infinite dimensional complex projec-

tive space and EM  denotes a suspension of M.
T h e  last property is provided from  Yokota's cellu lar-

decomposition o f SU( 0 0 )  [ 9 ]  in  which EM  is  a  subcomplex of
SU(00) and generates multiplicatively the cells of SU( co).

Denote by n (X )  th e  space o f th e  loops in  X  with a  fixed
o r ig in . Denote by (X , n) an  (n-1)-connective fibre space over X.
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Consider a space X'=f2((12(X), 3))=-(f22 (X), 2), then 2(X )

for i > 1 .
Now our main theorem is stated as  follows.
Main theorem . I f  a  spa ce X  ha s the p ro p e r t ie s  ( U1 )- (U 4 ) ,  then

x/ = nun(X), 3)) h a s a lso  the sa m e p rop er t ie s  ( U1)-(U4).
A s a  corollary we have that (Theorem 4 . 1 ), fo r a  space X

satisfy ing  ( U1 ) - (U 4 ), 7r2n-F1(X)
,z---' Z  and  7r2„(X )= 0 , 1 .  Then it

follows the theorem of Bott.
The proof of the main theorem will be done as follows. First it

will be shown that the homology ring H (X )  is an exterior algebra
A (e „  e 2 ,  • • • ) ,  an d  th e  homology ring  1-4(.f2(x)) i s  a polynomial
algebra P [b „  b 3 ,•••] over some bi  E II".

N ext, by the aid  of the structure of H *(M ), it will be shown
t h a t  th e  cohom ology r in g s  H *(1 2 (X )) a n d  H*(( -2(X ), 3 ) )  are
polynom ial a lg e b ra s  P [a ,, a 2 , a 3 , •••] a n d  P [P *a ,, P * a2, •••],
ai  E H21 (n (X )) . Finally, the property ( U3 )  will be proved for X ' by
the aid  of a new mapping f ' :  E M -X '  satisfy ing  (U4). The pro-
perties ( U ,) and ( U ,) are obvious.

The above new mapping f '  is constructed from  a cellular
mapping

EM

of degree k  at each  (2k+1)-cells such that the double suspension
of f '  is  homotopic to the composition fc, ". The homotopy class of
the composition

0 E2(n - 2) S 2 n - 1 - 1 0 E 2 n - 1 M , M  E A K  S  CC' )

is a generator of 2r2n+I(SU(00)) (Proposition 4. 2), and the degree of
112.1-1(S2 n + 1 ) - ). 1-12,1(EM) is  n ! .  It follows the theorem of Borel-

H irzeburch . In Theorem 4. 3, we shall give a  method to calculate
the groups n-

i (S U (k )) for 2 k < i  4k +1, and Theorem 4.4 shows
th e  resu lts  fo r th e  case  i =2k + 1  an d  i = 2 k + 2 .  F or further
calculations o f 7 ri (S U (k )), in  particular on their p -p rim ary  com-
ponents, we may expect to forthcoming papers.

§ 2 .  Topological preliminaries.

i) Suspension, redu ced  jo in  an d  jo in . B y an  n-fo ld  suspension
E X  o f a  space X  with a base point x * ,  we mean a space obtained
from  X x / n  by shrink ing the susbet X x in x *  x in  to  a point,
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where I "--= .-{(t„ ••• ,t n)1 0 tr1 }  i s  the unit n cube and /.." is the
boundary of /". We represent by {x, t}, x E X, t E P  a point of
E X  corresponding to the point (x, t) o f X x P . W h e n  X  is  a
cell-complex of the cells x*  and 4 , then En X is also a cell-complex
of the cells x * --=-- 0 } and E" e = {{x, t } x  Eec, t  E P— _h .  EX
denotes a suspension ElX of X and we identify E X  with EE" - 1 X by

(t1, • • • , tn)} =  (t1 ,• •  , tn _1 )}, t }.  F o r  a  mapping f :  (X, x * )
(Y, y* ), we denote by

En f : EnX EnY

an n-fold suspsnsion of f ,  given by the formule E n f Ix, =  { f (x ) ,  t } .
Denote that E 'f , = E f ,  then E"f =EEn - 1  f.

By a reduced join AXB of two spaces A  and B, with base
points a* and b* , we mean a space obtained from A xB  by shrink-
ing AV B= A x b * V a * x B to  a s ing le  po in t. We represent by
{a, b } a point corresponding to (a, b) E A x B. When A= a * + eT,
and B =b * + V e; are cell-complexes then A XB is a  cell-complex
of the cells la * , b* 1 an d  e";)C43--.=  { la, b lIc tE e „  b E et }, In the
case B is an n -sphere Sn = y* + en, we chose a mapping *: (P, i")

(Sn, y* ) which is homeomorphism of i n  onto e"-=-S"—y* .
Then E X  is homeomorphic to XX S " b y  th e  correspondence

t} {x, ', NO} .

A join A*B of two spaces A  and B is obtained from A xB xI
by identifying A xb x0 and a xB x1  with bEB and aEA respec-
tively. We represent by {a, b, t }  a point corresponding to (a, b, t)
E A x B x I .  When A=U e':, and 13= V et1 are cell-complexes, then
A*B is a cell-complex of the cells e, eè and e*4= {{a, b, E

bees,
By setting (Pla, b, =  {{a, b} , t} , we have a mapping

(2.1) (f): A*B E(A )( B)

which shrinks A* b* V a* * B  t o  a point. I f  A= a * + U  e ; and
13---b* + a re  locally finite CW-complexes, then (I) is cellular
and  a homotopy equivalence, because A*b * V a* * B is a  subcom-
plex contractible to a point in itself. Thus there exists a cellular
homotopy equivalence

(2. 1)' : E(A X B) A*B
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More precisely, we may take s u c h  as (f) =4) - ' on the outside of
a neibourhood of the point (1)(A* b* V  a* * B).

ii) Suspensions of  complex projective spsces. Denote by Mk
the k-dimensional complex projective space. M k ,  is naturally
imbedded in  M k  and M k — M k ,  i s  an open 2k-cell e2 1 . Then
M _— e° ueu ••• ek  is a cell-complex, and, as a limit, a CW-complex

M =  V  Mk

is defined. It is well known that the cohomology ring H*(M ) is
a polynomial ring generated by an element u  of H A M ). The cell
e "  is oriented such that e2 k  represents uk. M  is an H-space, i.e.,
there exists a cellular mapping

: Mx M  M

satisfying e°)== x)=-- x for each x E M .  This mapping is
given from  O MV M  by using the fact 7-r1(M )= 0  for irl= 2. In
the induced homomorphism

: H*(M) H *(M x  M ) H *(M ) H *(M ) ,

w e  have a(u )=u  (g  1 + 1  u  and thus a(uk )=E ';= o ( ki ) u1 ® u 1 .
By setting { x ,  y, t} =  { -

0 (x, y), t} , we have a cellular mapping

: M* M EM.

Denote by

(2.2) : E(MX  M) EM

the composition .-
0 0,4), then it is easily verified that

(2. 3) t'*(E e k ) E t:1 ( 1:) E(ej X  e" k  ") ,

where Ee 2 k  and E(e 21 X e " '" )  indicate the cohomology classes
represented by themselves with the natural orientations given from
those o f  ek x I  and e2 1 x e2(k- i) x M , =  e  V  e  is  a  2-sphere S2 ,
thus MX g----- M X S 2 m ay be indentify w ith  E 2M .  Then the
restriction of on E(M X M 1).= E 3 M  is denoted by the same symbol

(2.4) : E 3 M EM,
This mapping is cellular and satisfies the following relation

( 2 . 5 ) - * ( E e 2 k )  =  k  •  E 3
e 2 (k -1 ) for 2.
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iii) S p e c ia l  u n i t a r y  g r o u p s .  Denote by SU(k) k-th special
unitary group. I. Yokota has given a  cellular-decomposition of
SU(k) [9 ], in  which E M ,„ is a subcomplex and the cells o f SU(k)
is generated by the cells o f EM,,„ by means o f product o f cells.
In  his decomposition, SU(k —1) is  a subcomplex of SU(k) and
SU(k—nnEmk_, , E M ,_ ,. Then a CW-complex

SU(00) =  SU(k)

is defined naturally, and we have an injection

(2.6)i  : EM( SU(00) ,

such that i  induces isomorphisms into o f homology groups, or in
duality, i  induces homomorphisms onto of cohomology groups.
Obviously SU(00) is simply connected and has an associative
multiplication. As is well-known ( c f .  [2 ]), the cohomology ring
HNSU(00)) is an exterior algebra A (e „ e2 , • •) over elements e1 o f
H2 1 (SU(00)), i= 1, 2, ••• .

It is known also that H *(SU (n +1)) A ( e „  •  •  •  ,  en ), H*(SU(n +1)1
SU(k)),A (e k , •  •  •  ,  en )  and th e  p ro jec tion  h om om orp h ism
p* : H*(SU(n+1)1SU(k)) ,  H*(SU(n+ 1)) carries e on to  e1 f o r
k . < n .  We remark that the projection p : SU(n+1)—. SU(n +1)1
SU(k) shrinks the subset EM ,„ of EMn to  a point and p  is home-
omorphic at EM„— EM,,.

iv) H-space and Pontrjagin Product. Let X  be an H-space,
i.e., X  has a multiplication (continuous on compacts subsets)
p, : Xx X--)- X such that p(x* , x) x* )-= x  fo r each x E  X  and
a  fixed point x*  (id en tity ). B y  the composition H (X )Ø  H * (X)

11* (Xx X ) 12 1 1 * (X ) ,  Pontrjagin product ce*13,  p * (ce 3 )  is
defined. Obviously the product x is bilinear and has the identity
represented by the point x* . If the multiplication p is homotopy-
associative, then the product * is associative and H (X )  becomes
a ring, Pontrjagin ring. If the multiplication  is homotopy-
commutative, then the product * is anti-commutative.

Let Ex  be a space of the paths in X  ending at x * . T h e n  Ex

is a fibre space over X  with a projection p  associating the starting
points to each paths, and the fibre p '(x * )  is the loop-space f2(X).
Let (E"?.q) be a homological spectral sequence associated with this
fibering. The multiplication i t  in X  defines naturally a  multipli-
cation in Ex  compatible with the projection p .  Then a multipli-
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cation (P r )  is defined in the spectral sequence ( E .q ) .  IL,. maps
E.' Ø E " '  .E ' e  an d  this induces p r + ,. Under some
conditions, E 2

2"— H p (X )0H,(1 -2(X )) a n d  is equivalent to the tensor
product of Pontrjagin products of H (X )  and W S -2(X)). It is known
that the multiplication P in S2(X) is homotopic to the loop-multiplica-
tion and they are homotopy-commutative. Thus Ws -2(X)) is an anti-
commutative ring if X  is an H-space. For the details, see [6], § 1.

§ 3. Proof of M ain  theorem.

In the followings, all the homology and cohomology groups
are free abelian and finitely generated for each dimensions. So,
there a re  canonical isomorphisms between homology groups H i

and cohomology groups IF =Horn (H i , Z ) .  For an element a  of
IF , we shall denote by a E Hi the corresponding element, the dual
of a.

i) Homology ring of  X .  Let X  be a space satisfying the con-
ditions (Ii i )-(U ,), i n  particular H*(X)=A(e i ', e2

1 , • ••) fo r  some
ei ' E H " " ( X ) .  The multiplication in X  defines a  homomorphism
p* : H*(X )-. H*(X  x  X) = H * (X )  H * (X ) , and H *(X ) becomes an
associative Hopf algebra with respect to  p * .  T he associativity
means that the relation (p*0 1). * (1  0  /mop,* holds.

Lemma 3. 1. T h ere  ex is t p rim itiv e  elements e i  E H "'(X ) ,
i =1, 2, ••• , such that H *(X )=A (e„ e 2 , ••-) and P*(e 1) = e 1 0 1 +1 0 e i .

P roo f. S e t  e1 = e 1 ', then obviously A(e 1 ) =A (e 1
1 ) an d  11* (0

=e 1 0  1+1 0 e,. Assume that it is already proved the existence
o f  ei f o r  i =1 ,• • •  ,k -  1  such that p*(e 1 )=e 1 0 1 + 1 0 e 1 an d
A(e„ • , • , e ). F or a  subset I" o f  {1, 2, •• • ,
we denote by e ,  the element e i i e„•-• e i a  for ••• < i „  and

li„ • T h e n  w e  h a v e  tt*(0 =  E Sgn (J, K )e ., 0 e K ,7,K
where / -= J V K ,  Sgn (J, K )= 0 if JA K ---k(/), and if j f - vc - = 95 then
Sgn (J, K ) indicates the sign of the permutation which rearrange
J+K = { ..7„ ••• jb, k„ ••• , kJ. into the natural order of I. Now the
element 1.6*(ek i)  has a  form ek ' 0 1+1 0 ek ' + E X 1 ,1 e1 0 e j  for some

coefficients X1 ,1 , where I and J  run over the non-empty subsets of
{1, •• • , k -  1}. It is  ca lcu lated  d irectly  that 0  (th * 0  1 ) IL* (e /I)
- (1 0  p * ) itNek i ) = -- E (x /± J.K  Sgn (I, J) -X L J ± K Sgn( J, K)) ei0ejOelf •1,I,K
Thus XIILK S g n  J) =X L .,+ „- Sgn ( J ,  K )  and X / ±  J ,K  Sgn (I+ J, K )
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= Xr.j+K Sgn (I, J+ K ) for non-emply subsets /, J, K  of {1, • • • , k— 1},
since Sgn (/+ J, K )S gn (I, J) =S g n  (I, J+ K ) Sgn ( J ,  K ) .  It follows
easily that X i , j = 0 if  /A L I- (f). A lso  X i . /  vanishes i f  2(i, + •  +

+.ii+ • • • + ib)+ a + b 4=-2h + 1. Denote that X(/, J )= X 1 1  Sgn (I, J),
1 +4 , j=k (f ) , then X (I+J, K )=X (I, J+ K ) an d  X(/, J)---1= 0 only if
mr----4) and / + J  has at least three ind ices. It may be proved
from these properties o f  X(/, J )  that, fo r  fixed I, X (J, K ) are
independent of decompositions J+K--=-I, j fv f ,q , of I ,  and there-
fore it may be denoted by X,. For example, i f  J '+ J "  is  a  non-
trivial decomposition of J ,  then X( J , K ) =X ( f ,  r +K ) =X ( f +K , J" )
:=X (K , J). B y  se ttin g  ek ----ek ' — E Xi el , w e  h ave  easily that

1'6 *  (e k) = e k 1 +1 0 e k . Obviously A(e„ • • • , ek ) =  A ( e :  •  e_,,
,A (e,', ••• , eh '). Consequently the lemma is proved by the induc-
tion on k.

q. e. d.
Using th e  n o tatio n s in  th e  above proof, we have ih*(ej )

E Sgn (J, /— J)e j O e i _j . Since th e  dual o f  , a *  defines the
I c i

Pontrjagin product, it follows e ,* e Sgn (I, J) e . Therefore,

Proposition 3. 2. H * (X ) i s  an  ex terior algebra A (e„ e 2 , ••• ,
ek , ••-) and  e i ,*e i ,*••• i o  =  ei ,e 1 ,••• e i o .

Consider the mapping f :  EM—> X o f (U4 ). As is well known,
the cup products are trivial in the suspensions. Thus the image
of f *  is spanned by f*(e i ) ,  and the kernel of f *  is spanned by
th e  decomposable elements. Since f *  is  onto, f *(e i ) = E e "  by
changing the sign of e i  i f  it is necessary. By duality,

(3. 1)f * ( E e 2 1 ) = 0 1

ii) Homology o f  n ( X ) .  The mapping f  defines a  mapping
12f: 12(EM)—>12(X) of loop-spaces. Then the diagram

i* r*rTIM ) ii,(E2(EM)) 
f

 n i(aL (X ))

1 ,(EM)

is  commutative, where E denote the suspension homomorphisms
of contractible fibre spaces. Let (E 2," )  be the homological spectral
sequence associated with a  contractible fibre space over X  with
th e  fib re  n (X ) .  Then E  is  equ iva len t to  t h e  composition :
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d
ES" E 1 4 — •  E i : 2

°
E V - L °  . Denote that

bk  = s 2 f * i*

then by the commutativity of the above diagram, E bk =f * Eek
-,e k , or in words of the spectral sequence,

(3.2)d 2 k + , ( e k  0 1 )= 1 0 b k .

Let P [b „ b 2 ,•••  ,b k , • • • ] be the polynomial ring on the indeter-
minants {bk } a n d  we construct a  form al spectral sequence

2 , having a product, by setting 1E 2=A (e1, ••• ,

P [b i,••• ,b k ,•••], 1cli(ek 0 1 ) = 0  for i = 2 ,  3, • •• 2 k  and ' d 2 k - E , ( e k  01)
= 1 0  bk . T h e n  w e  s e e  t h a t  /E 2k =R 2k t, =A(ek, e k l, •••)
P [b k , b k +i,- - ] and 'E o.„-=-- 0. By (3. 2) and by iv) of § 2, the natural
correspondence gives a  homomorphism (17';'°):( 1E!.q)— >(E;.'") such
that d','•"01117'.•Q=1 4 - 1 . '" - r- lodlr''q  and ler''Q induces h 1 : 1E 1 =1 1 ( 'E 'r). °)
, E;'...,q1 = H ( E ) ,  where the anticommutativity of H*(f2(X)) is need
for the construction of h2 .

L em m a 3 .3 . L e t  H :  1 E --).E  be a hom om orphism  of homological
spectral sequences as abov e. Assume that h r  is  an isomorphism i f
14.° and h 2 " are isom orphism s. I f  h "  and hic).;Q are all isomorphisms,
then h is also an isomorphism (14. 1 a re  all isom orphism s). This is
tu re  for the cohom ological case.

Pro o f . Obviously 172.° is an isomorphism. Assume that 14Q
are isomorphisms for q  S n ,  and then we shall prove that 1 4 .n " is
an isomorphism. First we have that 14•Q a re  isomorphisms for
q r+2  an d  homomorphisms onto for q This is obvious
for r =2. a n d  in  th e  general case  it is proved easily by the
induction on r. The following diagram is commutative and the
horizontal lines are exact.

The first and third h are  onto and the last h is an isomorphism.
Then h : Ker. ' cl;:." - T+1 K e r.  c l ;:" - r+1 is onto by Lemma 4.5 o f  [5].
Next, in the diagram
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K e r .
/d , ,

;•. , r+2 /E0,7z4-1 R70:471+1

i h i h
ihor,n+1 1 I h

Ker. d r -i- z ET.."-r+2 a n + 1 Er).,,,i1 1 0

the first h is onto and second h is an isomorphism. Then by the
five lemma (Lemma 4. 5 and 4. 6 of [5]), it follows that if is
an isomorphism then 14. " is an isomorphism. Since h e n - 1 - 1

is an isomorphism, we conclude that 14 n 4 . 1  is  an isomorphism. By
the induction on q ,  w e have proved that are isomorphisms.
By the assumptions, h" are all isomorphisms and therefore
are all isomorphisms.

For the cohomological case, the lemma is proved similarly, by
interchanging the words "homomorphism onto" and "isomorphism
into" to each other, by reversing the horizontal arrows of the
above two diagrams and by replacing K er. by Coker.

q. e. d.
Applying this lemma to our case, we have isomorphisms

and E 2 k- =  A (°k I  e k 1, • • •) P r6  k ,  b k H , • ":1• For the ideal ' k

generated by , h , ,  1 0 46.v a n i s h e s  b y  f,2k+11 E2k I and••• k_ 
thus 

' k
k  vanishes by the suspension homomorphism E : 1/2k(12 (x))

---. H 2 k ± i ( x ) .  Consequently the following proposition is established.

Proposition 3. 4. The Pontrjagin  ring H 40 2 (x ) )  i s  the poly-
nomial ring P [b „  b 2 ,••• ,b k , - . ]  over bk -- -= f 2 f 4 0 2 k ,  where n f o i :
H2 k (M )  1 1 2 0 2 (EM )) 112k(f 2 (X)). The suspension homomorphism

E  maps bk onto 0  k  and it v anishes on the ideal generated by  the
decomposable elements, i.e., the ideal is the kernel of E.

iii) Cohomology ring of n ( X ) .  Let (M ) = M x x M  be the
iterated k-fold product of M The loop-multiplication in 1-2(x)
defines a mapping

( f )k : (MY n(X )

and this induces a homomorphism

(f2 1-4 : H O M ) k ) 11*(12(X))

such that (f2 (e21i x • • • x  -e2 i k) f2 f* 02i i* • • • *12f* k b i * • • • *-bi k

(b0 = 1 ) .  By the duality, it follows

(3. 3) (f2f)k*(bii* ••• *b i d E ( e " , a) x • • • x e2i,r(k ))
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fo r (nl)k* : H * (n (X )) ,H * ((M )k ) , where the summation E  runs
over all the permutation 0- o f {1, 2, •• • ,14.

Proposition 3. 5. D e n o te  b y  a, E H " ( n ( X ) )  t h e  d u a l  of
th e  iterated  k - f o ld  P o n trjag in  product b,* ••• 4 , o f  61 . Then
H * (n (X ))  i s  the poly nom ial ring P [a„ a„ • - •  ,a k , • • • ] ov er lakl•
L e t ID  b e  th e  ideal generated by  th e  decomposable elements of
H *(n(X )) then bk --- = ( - 1 ) 'k • a k  mod. ID.

'  Pro o f . For the simplicity, denote that e'1 1 • • • x e" k = xli • • • .41 e,

then H*((M ) k )  is a polynomial ring over k  indeterminants x ,,•••
E H 2 ((M )k ) . (3. 3) shows that ( 2 f ) k *  i s  an  isomorphism into for
dimensions less than 2(k+1) and the im age of (n r f ) k *  i s  the set
o f the symmetric functions. Then, as is well-known, for dimen-
sions less than 2(k+ 1), each image is represented uniquely by a
polynomial over the elementary symmetric functions o-, = x,x, • • • x i

+ •• • , i = 1 , • • •  , k .  B y  (3. 3), 0- i (n f )k *  a t , B y  tak in g  k
la rge , it  fo llo w s th a t H *(n (X )) i s  the polynom ial ring over

N ext, (1- 2f )k *bk =--- x t +  • • •  + x k k  b y  (3. 3) an d  this equals to
F(0- „••• ,crk _,)+x o - k  for a polynomial F  and a coefficient x .  To
determine the coefficient x , we take that x,, • • • x k  are the roots
of the equation xk— 1 =O. Then xt = • • = = 1, 0- i = • • • =o- k _, = 0
and o-k  = (—  1 ) ' .  Thus 4+ • • +x:=---- -- F(0- ,,••• ,o - k _,)+x o - k  implies
k =x ( - 1 ) k - '. Since ( I f ) *  i s  an isomorphism into, it follows that
bk =F ( a„• • •  ,a k _ , ) + ( - 1 ) " k • a k

--=---- ( -1 )k - 'k •a k  m od  ID•
q. e. d.

i v )  Cohomology o f  (12(X), 3). Let (n(X), 3) be a  2-connective
fibre space over n (X ) .  The fibre i s  an  Eilenberg-MacLane space
of the type (n- 2(12(X)), 1). Since 71- 2(1-2(X)) , - , ----'. H,(X ),---,Z , the
fibre has the same homology as 1-sphere S ' .  Thus there is Gysin's
exact sequence [7 ]

.
Hi(n(X)) 1-1‘"(1-2(X)) Hi "((n(X ), 3))

H 1 - 1 1 (1I(X))

where p  is  the projection of the fibering and h satisfies the equality
h ( c ) = h ( 1 ) • c .  Since 112 ((12(X), 3)) =0, h  is  o n to  fo r  1= 2  and
h (1 ) =  a „  an d  thus h(ce)_--± a,•cf . It follows from Proposition
3. 5 that h  i s  an  isomorphism into an d  th e  im age i s  a n  ideal
generated by a , .  Therefore we have
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Proposition 3. 6. H*((n(X ), 3)) is the p o ly n o m ial rin g
P[P *  a2, • • • P *  ak, • • .].

Next, we shall prove
Lemma 3.7. There exists a  m apping : E 2 M -- -(0(X ), 3) such

that poC  i s  homotopic to the  composition njc.14'oi : E 2 M 1 - 2(E 3 M)
--.S-2(EM )-->n(X ). These mappings e  are  homotopic to each other.
For the induced homomorphism e* : H*((f2(X ), 3))--> H*(E 2 M ), we have

ak) ( — 1)* 2E  e 2ck- k  = 2, 3,

P ro o f. Since E 2 M  has no 2-cells and since 7r1(p - '(x * )) = 0  for
i +  1, there are no obstructions to lift the mapping E2.1-01-4 - o i up
to C. Thus e exists. Similarly these e are homotopic to each other.

For the simplicity, we set then and the
following diagram is commutative.

H2k (E 2 M) 1-12hP(X ))
IE
112k+ i(E3( f oC )'> 112k+i(X) •

B y  Proposition 3. 4, e ( E 2 e2(k- ") x  k + FCb • • • , _ I ) fo r a
coefficient x and a polynomial F .  By (2. 5) and by Proposition 3. 4,

X e k = E ( x .b k +F (b „ • • • bh_i)) -= 1_1 4 ( E 2 e k - 1 ) )
=  f ( ( E 3 e2 k̀  ")) = f *(I ? • E e") = k •ek  •

Thus x = k .  B y  th e  duality, ei*b k =k -E 2 e2 k- 1 ) . Since th e  cup
product is t r iv ia l  in  H*(E 2 M ), e1* / ,= 0 .  B y  Proposition 3. 5,

1)k - ' k • a k =e'*b k • E2 e k - '). Since H 2 k(E 2 M )  is f r e e , it
follows that *(.p>,  ah ) =e '*  a k =(— 1) k  E 2 e2(k- "

q. e. d.
y ) C ohom ology  o f  X ' =f2((n(X ), 3)). S im ilarly  to  ii), we

consider a  cohomological spectral sequence (E• 1) associated with a
contractible fibre space over (n(X), 3) such that = TP((f2(X), 3))
0 1 -1' (V ),  E "  = 0  for ( p ,  q)+ (0, 0) and the suspension homomor-
phism E : H1±1((s2)x), H i(X ') is equivalent to E'2 4 - "—.E1..°

d . The following diagram is commutative.

1F+1 ((f2(X), 3)) 
e

' ( E 2  M )

IY2

E

Hi  (X ') u ' ( n ( E 2  M ) ) (EM) .
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S e t  E p *a„, = e ;  E H 2 k + 1 (X ' )  an d  f ' : E M S -2(E 2 M) - * X',
then

(3. 4) f '*ek ' (-1)k  Eek  ,

by Proposition 3. 6  and the commutativity of the above diagram.
Proposition 3. 7. H * (X ')  i s  the ex terior algebra A (e,', e2',•••

ek ',•••)  over {ern.
P ro o f  Ep* a k + i = e k  means that ek ' is transgressible, i.e.,

d i (1 ek ') =--0 for 2  i 2k + 1 and d2k+2(1 ek') =-P*  ak+i 0 1. Con-
struct a  formal cohomological spectral sequence ( ' E r )  by setting
E 2 = P [P* p* a3 • ••] A(e i ', e2', • • • ), i d1(1 e 0 . 0  f o r  2
2k + 1 an d  'd2k+2(1 ek') --=p* ak+, 0  1 .  Then  w e see  that 'E2k+2
= P [P* ak +, P *  ak+2, • • •] A (eZ , ek  +1  f •  •  • ) and ' E c o . O .  The natural
correspondence defines a  homomorphism o f 'E  into E  satisfying
the condition of Lemma 3. 3. Thus this homomorphism is  an
isomorphism, in particular H*(X ') =ES.* .A (e ,', e3 ',•••).

q. e. d.
v i )  Proof  of M a in  theorem . Since (12(X), 3) is 2-connected,

X ' =--1-2((1.2(X ) , 3 )  is sim ply connected. Thus X '  satisfies ( U1 ).
Since X ' is a  space of loops, the condition ( U2 )  is satisfied. (3. 4)
and Proposition 3. 7 show that X ' satisfies the conditions (114 )  and
(U,) respectively. Consequently the proof of the main theorem is
accomplished.

§  4 .  Applications.

Let X  be a  space which has the properties (U,)-(U4).
From the definition of X '.(2 ( (1 2 0 0 , 3)), we have the following

isomorphism.
(4. 1) v i(X ') 7r1+0 2(X ), 3)) 7ri+1(12 (X)) 7r14-2(X )

f o r  i+ 1> 2 .

Set X' = X ( "  and X("=--- (X(" -1 ) ) ' inductively. Then 'Cc"' has
th e  properties (U1 )-(U 4 ) b y  the m ain theorem. Then, by (4. 1),
O = H 2 (X('̀ ) ),,,--- 7r2 (X(")) 7 r 4 (X ('").-:-.--, • 7 r2 ,,+ 2 (X )  a n d  Z .,-,..-1 1 ,(X ')

••• "------7 1 .2.+3(X ). Thus we have
Theorem 4 .  1 .  I f  a space has the properties (U1)-( U4), then

Z
f o r o d d  i 3,

7ri (X ) 
= 0f o r  even i .
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In particular, this is t u r e  fo r  X =SU (co).
Since the d im ension  of SU( co )— S U ( m )  is greater than

2m , v i (SU(00), S U (m ) ) ,  0  fo r i < 2 m .  From the hom otopy exact
sequence of the pair (SU(09), SU (m )), it follows isomorphisms

i * : n- i (SU (m)) ASU (00)) f o r  i < 2 m  .

Therefore we have
Theorem of Bott.

7r2 .(SU (M )) =  O f o r  m >  n ,
7r2.-F,(SU (m)) Z f o r  m >  n 1  .

Define a mapping

(4. 2) : S2n+1E M , K S U ( n +  1) (S U (0 0 ))

by the composition oE2, o • • • 0E 2 ( n- 2 )  : • •
—> E3 M„,—>EMn. ( -

1 .=. identity).
Proposition 4. 2. Let X  be a  space satisfy ing (U1 )-(U 4 ), then

the composition f o  :  S 2 "+' --> EM ---> X represents a  generator of
7 r 2 n + 1

(X ) .  In  p artic u lar, n represents a generator of  7r2.4-1(SU (m)),
m >  n .

Pro o f . First we see that t'
n . °E 2 : S2 n + 1 — >E 3 Mn _1 --> EM n

In the case n = 1 ,  the proposition is proved without difficulties.
Assume that the proposition is proved fo r  n < k  ( k > 1 ) .  Let
X' = 1 -2((f2 (X ), 3 )) , then X '  satiefies ( U 1 )-(U4 ) an d S2n-1

---. EM„„—> X ' represents a  generator o f 7r2 1 (X ' ) .  Then • „ :
S 2 " —> E2( f 2 ( X ) ,  3 )  represents a  generator o f  7r2n((1I(X), 3))
since f ' = a s  i n  1 7 )  o f  §  3 .  Also the composition poc.E . „_,

represents a  generator o f  ir 2 „(S2(X)).
Finally fot- n  -= f 0  represents a  generator o f 7 r 2 n + I ( X ) .  B y
the induction, the proposition is proved.

q. e. d.
The fibering  p: SU (n +1) ----> SU (n +1)1 SU (k ) shrinks the sub-

complex EMk _ , o f E M „ to  a point. The im age p(E M n )  will be
denoted by

EM,,! EMk_i

and the composition pot-„ by
k  s 2n-F1 EM,,/E M ,



i*

i*H*(EMnIEM )

H *(S U (n+ 1 ))= e„ ••• , en )

IP *

H *(SU (n+ 1)ISU (k))=  A (ek, ,en).

H*(EM„)

ÎP *
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Let g,,, k 1  denote the subgroup of 7r2 f l ,,(EM JEM „_ 1)  generated
b y  the homotopy class of k •

Theorem 4. 3. W e have isomorphisms

7r2„(SU(k)) 7r2„+,(EM„IEIVIk-1)1{ . ..k} f o r  k n12 ,
7r2„(EM JEM k _1) f o r  n > k ( n - 1 ) / 2 .

Pro o f . Consider the following commutative diagram

From i i i)  of § 2 ,  p * ( e , ) , e i  fo r k < i < n .  Since i* (e i ) =  ± E e"
in  th e  upper homomorphism i * ,  it fo llow s easily  that the lower
i *  maps each e i , k i n, o n to  a  generator of H" + '(EM„/EMk _i ).
T herefore i* : Hf(SU(n+1)1SU(k))—>Ht(EM„IEM,,_,) a r e  isomor-
p h ism s f o r  t <(2k+1)+ (2k +3)=4k + 4. T h is  i s  t r u e  for the
homological case and thus we have isomorphisms i*:71 - ,(EM„IEMk_i)
,-- ,_7r,(SU(n+1)1SU(k)) for t < 4 k + 3  b y  J.H.C. Whitehead's theorem.
Next consider the following exact sequence.

7r2n+,(SU(n+1)) 7r2.+I(SU(n+1)/SU(k)) 7r2.(SU(k))
P*7r2 „(SU(n+1)) 7r2„(SU(n+1)1SU(k)) 7r2n_i(SUR))

i* P *
7r2„_1(SU(n+1)) 7r2.-1(SU(n+1)1SU(k)).

B y  Proposition 4. 2, the image P * 7 r 2 n + I ( S U ( n + 1 ) )  is generated
b y  the class of PO f l = f l k . B y  T h eo rem  4 . 1 , n-

2 ,,(SU(n +1)) =O.
T h u s  7r2 „(SU(k)) , --- 7r2n+I(SU(n - P1)/SU(k))/ B y  th e  isomor-
p h ism  i * :7-(-

2 ,,,,(EM„IEM ---k_1) --z--7 r2 .* ,(SU (n+ 1)1SU (k )) fo r  2 n  + 1 ‹
4k+2, th e  first isomorphism of this theorem is established.

B y  (2 . 5) an d  b y  th e  definition of ,  w e h ave  '',,(.E2 n- 1 e 2 )
= n !E e 2 ". Thus (n k)

(4. 3) n , k *  H  2 n +i(S 2 "  + 1 ) 1 1 2 n +i(E M ,,I EA k _ 1) i s  a  hom om or-
p h i s m  o f  degree n!.

This shows that the homotopy class o f  - „, k in  7 .  2n+ 1(EM n I E M k  -1 )

does not vanish by the natural homomorphism of 7r2.+I(EMJEMk_i)
into 1/2.+I(EX /E M k_i). Thus the class of - „, k has an infinite order for

B y  the isomorphism i,, : 7r2 „_,(EMn /E )Mk_i 77-2 t t  I (SU(n+1)1



Homotopy groups o f  unitary groups 117

SU (k )) for 2n - 1 <4k +2, it follows that P*7t2._1(SU(n+1))=
i s  a n  infin ite cyclic subgroup. Then p* - i(o) =0 =4 7 , 2._,(su(k)).
Since 7r2n (S U (n + 1 ))= 0 , it follows from the exactness of the above
sequence that 7r2 ,(EM„I EMk  _1) 7r,n(SU (n +1)1 SU (k)) 2n -1 (SU  (k ))
for n , l z  and 2 n < 4 k + 2 . This proves the second isomorphism.

q. e. d.
It follows from this theorem and from (4. 3)
Theorem o f Borel-Hirzeburch.

7r2„(SU (n )) Z n , f or 2.

Finally we shall prove the following theorem as an application
of our theory.

Theorem 4. 4.

2 „, ( S (n ))
Z2

0

f o r even n 2,
f or odd n ,

7-r 2(S U(n ) )
'7■-" ,  Z2 ± Z O ,±  )

1. - 1) V2

f o r even 4 ,

f o r odd n 3.

Pro o f . First w e consider th e  homotopy typ e  an d  homotopy
groups of E M ,,/ E M 1 = S " 'V e 2 n+3 . The homotopy type is deter-
mined by the homotopy class a n  E 7 r2n+2(S 2 n + 1 ) Z 2(n 2) of attaching
mapping o f  e2 n+3 . I t  is  k n o w n  th a t  a n + 0  if  a n d  on ly if the
squaring operator Sq2 is  e ssen tia l in  E M ,. 11 B y  Cartan's
formula, it is calculated easily that S e e ' =n•e 2 "  in  M  and thus
Sq2 Ee 2 " = n •E e "n ± " i n  E M . + 1 1 E M n _ 1 .  I t  f o l lo w s  th a t  a n -PO for
odd n  and a n = 0  for even n.

For even n, E M . + 1 1 E M . _ i  h a s  the same homotopy type as the
union S"+iv S 2 n+3 of two spheres having a point in common. Thus
7r2.+2(EM,IEM„_,) ,-- - ,:.7r2n4-2(S2 n ' ) +  2.+2(S2 ' )  Z ,  a n d  7r2n+3(EM.+1/
EM„-,) - - - e  „ , ( S 2 n+l) + 7r2n+3(S2 ' )  Z 2 + Z.

For odd n, we consider the following diagram.

• • •  ' 7ri+,(EMn+,/ EM ,„ „  S 2 ' )

Î g *

i + ,(E " ' ,  S " )

( S  '  —  (EM. ,  / Em y  ) • •

(g I S2 "+ 2 ) *

a

a

where g is a characteristic mapping of e2 ' .  Obviously (g IS "± 2 ) * 0
=ce n ot6. g *  a r e  isomorphisms fo r  i + 1 < (2n + 2)+ 2n =4n+ 2 by
[ 1 ] .  Since a n  a n d  cen .Ea n a r e  generators o f 7r 2„,(S 2 ' )  Z 2  and
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Z ,  respectively, it follows that a : 7ri+ ,(Em.+1/Emn_i,
a r e  homomorphisms on to  f o r  i 2n  +2  and

3. Then from the exact sequence in the above diagram,
it follows that 7 r 2 n + 2 ( E M , 1 1  EM„_,) = 0  and 7r2n+3(EM.1-1/EM„_,),--,e Z
and that Hurewicz hom om orphism  7r2n+3(EMn+ilEMn-i)
—

›1 1 2 n + 3 ( E M n ± 1 / E M n _ 1 )  Z  is of degree 2.
By the second isomorphism of Theorem 4. 3, it follows from the

above results that 7r2n-F1(SU(n)) ,'-- -- 7r2.+2(EM.-1-1/EMn-i , Z 2  for even
n and 2 1  (SU (n)) = 0  for odd n..+

Next consider the mapping fo r odd n .  From (4. 3) it
follows that

T  4 ' 71+1. ft} =  (n+1)! 1 1 2.+3(EM.+11 EMn_i)
= 7- (n +1) !/27r2.+3(EM„,/EMi)

for Hurewicz homomorphism T  :  7r
2n 4-3 (E M n -F 1/E M n -1 ) — ).112n+ 3(E M n+ 1l

E M ,). S in ce  th is  T  is  a n  isomorphism in to , it follows that
=  (n+1)!127r2. + 3(E M „ ,1  E M ,).  Therefore by Theorem 4.3,

7 r 2 n + 2 ( S U ( n ) ) 7r2n-I-3(E M ts + 1 / E M n - 1 )/  { ‘ ts-F1, n} Z (n i-1 )!/ 2

f o r  odd 3.

Let n  be even. In this case, we may replace E M , / E M ,  by
S 2 n+1 S ' + 3 in  t h e  sense of homotopy equivalence. Let S n +7„,
!Si

n  E 7r 2 n + 3 ( S 2 n + 1 ) ,  ry„ E 7r2 „ 3(S 2" 3)  be the class represented by „.„,„.
From (4. 3), it follows that ry„ -=(n+1)! 12„+ 3  for a generator t2,±3 of
7r2,,+3(S2 ' + 3 ). N ow  assum e that n  4  an d  consider a  mapping

S2 "+3 =  E 4 (E M „_ ,1  E M ,) S 2 " 1 y  S 2 "+ '-=EM.+11EMn_, de-
fined by 

2
o E 2 . B y  (2. 5), 2 I S 2 " 1  represents n (n —  t2tI+1 and

S 2 " + 3  represents 19',+ (n +1)n 
t 2 t t - F 3

 for some 0", E 7r2n+3(S2n+i). Since

n-2 7 it follows that ,e..---- g 0 E 4 7„_2+ n(n— 1) 12n+1°

E 4 / 3 , 2 ( n - 1 ) !  g+ n (n -1 )E 4 R,_ 2 . Since n  4 a n d  since
27z-2„± 3 (S 2" 1) = 0 ,  it  fo llow s  /3,, =0. Therefore represents
(n+1)! t 2 n + 3 . By Theorem 4. 3,

7r2.-1-2(SU(n)) ir2n+3(EM,2+1/EM„_,)/ n} Z2 ± Z (,,,1-1) ,

f o r  even 4.

Remark. For n --= 2, 7r2.+2(SU(n))-=7r6(SU(2))=7T6(S 3) Z 12 . I n
this case, the isomorphism ir6(SU(2))-- =, 7r7(EM3/EMN {t-3,2} still holds
and we see that g2+0.
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