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§1. Introduction.

It is the purpose of this paper to give a simple and topological
proof of the following two theorems [4], [3].

Theorem of Bott.
T SUM)) ~Z  for m>n=1,
7, (SU(m)) =0 for m >n.
Theorem of Borel-Hirzeburch.
7.(SUn)) ~ Z,, for n=2.

The CW-complex SU(oc)=\JSU(m) has the following pro-
perties :

(U) it is simply connected,

(U,) it is an H-space with a homotopy-associative multiplication,

(U,) 1its integral cohomology ring is an exterior algebra
Ae,, e,, ) generated by elements e; € H**', i=1, 2, ---,

(U,) and there exists a mapping f of EM into it such that the
induced homomorphisms f* of the cohomology groups are onto,

where M= \J M, denotes the infinite dimensional complex projec-

tive space and EM denotes a suspension of M.

The last property is provided from Yokota’s cellular-
decomposition of SU(ee) [9] in which EM is a subcomplex of
SU(e0) and generates multiplicatively the cells of SU().

Denote by (X) the space of the loops in X with a fixed
origin. Denote by (X, #) an (n— 1)-connective fibre space over X.
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Consider a space X' =Q(({X(X), 3))=(Q%X), 2), then = (X') =7, (X)
for ¢ >1.
Now our main theorem is stated as follows.

Main theorem. If a space X has the properties (U)-(U,), then
X' =Q(UX), 3)) has also the same properties (U,)-(U,).

As a corollary we have that (Theorem 4.1), for a space X
satisfying (U,)-(U,), 7y (X)=~Z and =,,(X)=0, n=1. Then it
follows the theorem of Bott.

The proof of the main theorem will be done as follows. First it
will be shown that the homology ring H.(X) is an exterior algebra
A(e,, &,,--+), and the homology ring Hy (X)) is a polynomial
algebra P[b,, b,, ---] over some b; € H*,

Next, by the aid of the structure of H*(M), it will be shown
that the cohomology rings H*((X)) and H*((2(X), 3)) are
polynomial - algebras Pla,, a,, a,,---] and P[ p*a,, p*a,, -],
a; € H*((X)). Finally, the property (U,) will be proved for X’ by
the aid of a new mapping f’: EM— X  satisfying (U,). The pro-
perties (U,) and (U,) are obvious.

The above new mapping f’ is constructed from a cellular
mapping

¢:E*M —> EM

of degree k at each (2k+1)-cells such that the double suspension

of f’ is homotopic to the composition fof. The homotopy class of
the composition

Eo=CoE*{0 - o E**™ 2 SN E*™ 'M— -« — E*M — EMC_SU()
is a generator of =,,,,(SU(<0)) (Proposition 4. 2), and the degree of
Cose s Hyp o (ST — H,,,. (EM) is n!. It follows the theorem of Borel-
Hirzeburch. In Theorem 4.3, we shall give a method to calculate
the groups = (SU(k)) for 2k<i<4k+1, and Theorem 4.4 shows
the results for the case :=2k+1 and ¢=2k+2. For further

calculations of =;(SU(k)), in particular on their p-primary com-
ponents, we may expect to forthcoming papers.

§ 2. Topological preliminaries.

1) Suspension, reduced join and join. By an n-fold suspension
E”X of a space X with a base point x,, we mean a space obtained

from XxI” by shrinking the susbet Xx j"\j xxxI" to a point,
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where I"={(¢,, -, ¢,)]0<¢;, <1} is the unit »-cube and I" is the
boundary of I". We represent by {x, ¢}, x€ X, t€I” a point of
E"X corresponding to the point (x,?) of XxI”. When X is a
cell-complex of the cells x4 and ¢, then E"X is also a cell-complex
of the cells x4 = {x4, 0} and E"e,= {{x, t} |x €¢e], tel”—I". EX
denotes a suspension E'X of X and we identify E”X with EE"'X by
{x) (tn !tn)} == {{x’ (tw Tt tn»—x)}» tn}' For a mapplng f: (X, x*)
— (Y, ¥4), we denote by

E'f:E"X — E"Y

an n-fold suspsnsion of f, given by the formule E" f{x, ¢t} = { f(x), t}.
Denote that E'f=Ef, then E"f=FEE"'f.

By a reduced join AXB of two spaces A and B, with base
points a4 and by, we mean a space obtained from A x B by shrink-
ing A\/B=Axbx\JaxxB to a single point. We represent by
{a, b} a point corresponding to (a, )€ AxB. When A=uax+\Je}
and B=b,+ \Je; are cell-complexes then AX B is a cell-complex
of the cells {ay, by} and el Xei={{a, b} |ace,, bces}, In the
case B is an n-sphere S"=y4x+¢", we chose a mapping ¥ :(I”, "
—(S" y4) which is homeomorphism of I["—I" onto ¢"=S"—yx.
Then E”X is homeomorphic to XXS” by the correspondence
{x, 1} & {x, ¥+®)}.

A join AxB of two spaces A and B is obtained from AxBxI
by identifying Axbx0 and axBx1 with b€ B and a€ A respec-
tively. We represent by {a, b, t} a point corresponding to (a, b, £)
€AxBxI. When A=\Je, and B=\Je; are cell-complexes, then
AxB is a cell-complex of the cells ¢, e and ejxe;= {{a, b, t} |a€e,
bees, tel—I}.

By setting ${a, b, t} = {{a, b}, t}, we have a mapping

2.1) ¢: AxB —— E(AXB)

which shrinks Axbyx\/ax*B to a point. If A=ax+\Je; and
B=b,+\J¢e} are locally finite CW-complexes, then ¢ is cellular
and a homotopy equivalence, because Axby\Ja.*B is a subcom-
plex contractible to a point in itself. Thus there exists a cellular
homotopy equivalence

2.1y ¢:E(AXB) —> AxB.
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More precisely, we may take ¢ such as ¢=¢ ' on the outside of
a neibourhood of the point ¢(A* b\ Jas* B).

il) Suspensions of complex projective spsces. Denote by M,
the k-dimensional complex projective space. M,_, is naturally
imbedded in M, and M,—M,_, is an open 2k-cell e¢*. Then
M=¢"Ve*V ... Ye* is a cell-complex, and, as a limit, a CW-complex

M = \_/ Mk
k
is defined. It is well known that the cohomology ring H*(M) is
a polynomial ring generated by an element u# of H(M). The cell

¢** is oriented such that ¢** represents u*. M is an H-space, i.e.,
there exists a cellular mapping

& MxM — M

satisfying &, (x, ¢")=2¢,(¢’, x)=x for each x € M. This mapping is
given from &,|MV M by using the fact =, (M)=0 for /==2. In
the induced homomorphism

& H¥(M) — H¥(Mx M) = H¥(M)® H*(M),

we have {F(u)=u®1+1Q®u and thus F(u*)= ’;:0<?> FRQuk i,

By setting ¢, {x, ¥, t} = {{,(x, »), t}, we have a cellular mapping
& MxM — EM.
Denote by
(2.2 ¢:E(MXM) — EM

the composition &0, then it is easily verified that
(2.3) F¥(Ee™) = Z";;}(f) E(e¥ X ¢%k~D) |

where E¢* and E(¢% Xe** ) indicate the cohomology classes
represented by themselves with the natural orientations given from
those of e¢**XI and e Xxe** PxI. M,=¢\Je* is a 2-sphere S?
thus MXM,=MXS® may be indentify with E?M. Then the
restriction of ¢ on E(MX M,)=E*M is denoted by the same symbol
(2. 4) ¢:E*M — EM,

This mapping is cellular and satisfies the following relation

(2.5) C¥(Ee*) = k-E*e**™ P for k=2.
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iii) Special unitary groups. Denote by SU(k) k-th special
unitary group. I. Yokota has given a cellular-decomposition of
SU(k) [9], in which EM,_, is a subcomplex and the cells of SU(k)
is generated by the cells of EM, , by means of product of cells.
In his decomposition, SU(k—1) is a subcomplex of SU(k) and
SUk—1)N\EM, ,=EM,_,. Then a CW-complex

SU() =\J SU(k)
is defined naturally, and we have an injection
(2.6) 1: EMCSU(o0),

such that 7 induces isomorphisms into of homology groups, or in
duality, ¢ induces homomorphisms onto of cohomology groups.
Obviously SU(e0) is simply connected and has an associative
multiplication. As is well-known (c¢f. [2]), the cohomology ring
H*(SU(0)) is an exterior algebra A(e,, e,, ---) over elements e; of
H**(SU(0)), i=1,2, .

It is known also that H¥*(SU(n+1)) = A(e,, -+, e,), H¥*SUn+1)/
SU(k))=A(e, -+, e,) and the projection homomorphism
P H¥(SU(n+1)/SUKk))— H*(SU(n+1)) carries e; onto e; for
k<i<mn. We remark that the projection p:SU#n+1)—-SUn+1)/
SU (k) shrinks the subset EM,_, of EM, to a point and p is home-
omorphic at EM,—EM,_,.

iv) H-space and Pontrjagin product. Let X be an H-space,
ie., X has a multiplication (continuous on compacts subsets)
#: XX X— X such that wp(xy, x)=p(x, x4) =x for each x€ X and
a fixed point x4 (identity). By the composition Hx(X)Q® Hx(X)

C Hy(Xx X) 2 H(X), Pontrjagin product axB=p (R L) is
defined. Obviously the product x is bilinear and has the identity
represented by the point x,. If the multiplication # is homotopy-
associative, then the product = is associative and Hu(X) becomes
a ring, Pontrjagin ring. If the multiplication g is homotopy-
commutative, then the product % is anti-commutative.

Let Ex be a space of the paths in X ending at xx. Then Ex
is a fibre space over X with a projection p associating the starting
points to each paths, and the fibre p7'(xy) is the loop-space Q(X).
Let (E?% be a homological spectral sequence associated with this
fibering. The multiplication # in X defines naturally a multipli-
cation g in Ey compatible with the projection p. Then a multipli-
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cation (p,) is defined in the spectral sequence (E?'%. w, maps
E?*@QEY " into Ez*?" 9" and this induces ,,,. Under some
conditions, E3?=H HX YR H,((X)) and p, is equivalent to the tensor
product of Pontrjagin products of Hy(X) and Hy(£2(X)). Itis known
that the multiplication z in (X) is homotopic to the loop-multiplica-
tion and they are homotopy-commutative. Thus H4(£2(X)) is an anti-
commutative ring if X is an H-space. For the details, see [6], §1.

§3. Proof of Main theorem.

In the followings, all the homology and cohomology groups
are free abelian and finitely generated for each dimensions. So,
there are canonical isomorphisms between homology groups H;
and cohomology groups H=Hom (H;, Z). For an element a of
Hi, we shall denote by @€ H; the corresponding element, the dual
of a.

i) Homology ring of X. Let X be a space satisfying the con-
ditions (U)-(U,), in particular H*(X)=A(e/, ¢/, ---) for some
e/ € H¥"'(X). The multiplication in X defines a homomorphism
pwr i H¥(X) > H*¥(X x X)=H*(X)® H*(X), and H*(X) becomes an
associative Hopf algebra with respect to u*. The associativity
means that the relation (u* @ 1)op* = (1 Q pw*)op* holds.

Lemma 3.1. There exist primitive elements e; € H¥(X),
i=1,2, -+, such that H¥*(X)=A(e,, e,, ---) and p*(e;)=¢;Q1+1Re;.

Proof. Set e,=e/, then obviously A(e)=A(e,) and pg*(e,)
=¢,®1+1Xe,. Assume that it is already proved the existence
of e; for i=1,---,k—1 such that g*(e;)=¢;1+1Qe; and
Aey, -+, e,_))=A(e/, -+ ,ei_,). For a subset I of {1,2,-.--,k—1},
we denote by e, the element e;e;, -+ e;, for i,<i,< - <4, and
I={,, i, --,i,}. Then we have /L*(e,):IZA_Sgn (J, K)e;Qex,

where I=J\JK, Sgn (J, K)=0if J\K==¢, and if J/\K=¢ then
Sgn (], K) indicates the sign of the permutation which rearrange
J+K= {4, 7s, ki, -+, k.} into the natural order of I. Now the
element p*(e,’) has a form ¢,/ ®1+1R e, + 7‘,;‘}7\,,]@,®e, for some

coefficients A, ;, where I and J run over the non-empty subsets of
{1,--,k—1}. It is calculated directly that 0= (s*Q®1)p*(e,)
— (1@ p*) p*(ey”) =, ; Aoy Sgn(l, J)— A yr9gn( ], K)) e,Qe;Qex.

Thus >\'Ir|-,].K Sgn(l, J)= 7\‘1.]+K Sgn ( J, K) and >\'I+].K Sgn (I+ ], K)
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=N 4k 980 (I, J+ K) for non-emply subsets I, J, K of {1, ---,k—1},
since Sgn (I+ ], K)Sgn (I, J)=Sgn (I, J+ K) Sgn (], K). It follows
easily that A, ;=0 if I/\J=1-$. Also N\, , vanishes if 2(/,+ --- +
ly+Ji+ - +jy)+a+b=+2k+1. Denote that MI, J)=X\,,Sgn ([, J),
I4=¢, J==¢, then MI+ ], K)=MI, J+ K) and MU, J)==0 only if
INJ=¢ and I+ has at least three indices. It may be proved
from these properties of A(J, J) that, for fixed I, M(J, K) are
independent of decompositions J+K=1, J[N\K=¢ of I, and there-
fore it may be denoted by ;. For example, if J'+J’ is a non-
trivial decomposition of J, then M J, K)=MJ, J"+K)=)\J +K, J)
=X\K, J). By setting e¢,=e,/— lee,, we have easily that

we)=e¢,®1+1Qe,. Obviously Ae, -+, e,)=Ale’, - ,¢,_,, e
=A(e/, -+, ¢,’). Consequently the lemma is proved by the induc-
tion on k.

q.e.d.

Using the notations in the above proof, we have p*(e)
=>'Sgn(/J,I-])e;®e; ;. Since the dual of p* defines the
JTel

Pontrjagin product, it follows eé,=Sgn (I, J)é,.,. Therefore,

Proposition 3.2. H*(X) is an exterior algebra Ale,, e,, -,
ey, -) and e;xé.x -+ xe; =é; e, e .

Consider the mapping f: EM— X of (U,). As is well known,
the cup products are trivial in the suspensions. Thus the image
of f* is spanned by f*(e;), and the kernel of f* is spanned by
the decomposable elements. Since f* is onto, f*(e;)=FEe¢* by
changing the sign of ¢; if it is necessary. By duality,

(3. 1) f«(Ee¥)=ge; .
i) Homology of (X). The mapping f defines a mapping
Qf . UAEM)—Q(X) of loop-spaces. Then the diagram

HAM) —2> H(QEM) 22 H00)

\E‘ 12 [2
T HL(EM) I H LX)

is commutative, where > denote the suspension homomorphisms
of contractible fibre spaces. Let (E?'?) be the homological spectral
sequence associated with a contractible fibre space over X with
the fibre Q2(X). Then ) is equivalent to the composition:
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d
EYt— E% «— E:ﬂ"’—>E§“'°. Denote that
b, = Qf*ite,

then by the commutativity of the above diagram, 3 b, =fyEe*
=é,, or in words of the spectral sequence,

3.2) A6, ®@1) = 1R, .

Let P[b,, b,, - ,b,, -] be the polynomial ring on the indeter-
minants {b,} and we construct a formal spectral sequence
(E?%, r=2, having a product, by setting 'E,=A(e,, -+, &, ") ®
P[b,, -+, by, -], 'di(e,®1)=0 for i=2,3, --,2k and d,.,(¢, 1)
=1®b,. Then we see that 'E,,='E, =A@, ¢4, ) ®
P[b,, by, -] and ‘E.=0. By (3.2) and by iv) of §2, the natural
correspondence gives a homomorphism (429 : (E? ")—»(E’,"") such
that d2%nrt=hr""1od?® and h>° induces k2% :'E2% =H(E?"9)
— E24 =H(E"™?%, where the anticommutativity of H*((X)) is need
for the construction of #,.

Lemma 3.3. Let H:'E—E be a homomorphism of homological
spectral sequences as above. Assume that h%°® is an isomorphism if
h3° and hy® are isomorphisms. If h3° and h%° are all isomorphisms,
then h is also an isomorphism (h** are all isomorphisms). This is
ture for the cohomological case.

Proof. Obviously 43° is an isomorphism. Assume that 43¢
are isomorphisms for ¢ <#, and then we shall prove that #3"*! is
an isomorphism. First we have that A?? are isomorphisms for
g<n—r+2 and homomorphisms onto for ¢ <#n. This is obvious
for »=2. and in the general case it is proved easily by the
induction on . The following diagram is commutative and the
horizontal lines are exact.

/Efr,qt—2r+3 R Ker. /d:,n—r+2 /E;,.:zl—z'+2 0

[h lh lh lh
Efr.n—2r+3 ) Ker. d;r'.n—r+2 E;Z:Lfr+2 5 O .
The first and third %# are onto and the last % is an isomorphism.

Then £ : Ker.’d;" "' — Ker.d""*' is onto by Lemma 4.5 of [5].
Next, in the diagram
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‘d,
Ker. 'd:'"_r+2 —-)’E;-"—r-w __’_>/Eg.n+1 'Ei’l'fl -0

lh lh , lhg'"“ lhgfl“ lh

Ker. d:.n-—r-a-z E:,n—r+2 r Eg.n+1 Eg.lziu 0

the first 2 is onto and second # is an isomorphism. Then by the
five lemma (Lemma 4.5 and 4.6 of [5]), it follows that if A2Pt is
an isomorphism then A2"*! is an isomorphism. Since AS75! = h%"*!
is an isomorphism, we conclude that 43™*! is an isomorphism. By
the induction on ¢, we have proved that k3? are isomorphisms.
By the assumptions, #%? are all isomorphisms and therefore A2°
are all isomorphisms.

For the cohomological case, the lemma is proved similarly, by
interchanging the words “homomorphism onto” and “isomorphism
into” to each other, by reversing the horizontal arrows of the
above two diagrams and by replacing Ker. by Coker.

qg.e.d.

Applying this lemma to our case, we have isomorphisms E~'E
and E,,=FE. =A@, €41, ") @ P[by, byyy, -], For the ideal I,
generated by b,,--,b,_,, 1®1I, vanishes by «3**':E,—E,,., and
thus I, vanishes by the suspension homomorphism >3: H,,(22(X))
—H,,..(X). Consequently the following proposition is established.

Proposition 3.4. The Pontrjagin ring H((X)) is the poly-

nomial ring P[b,, b,, - ,b,, -] over b,=LQfyixe%*, where Qfyoiy:
H,(M)— H,(QEM)) — H,(2(X)). The suspension homomorphism

SY maps b, onto &, and it vanishes on the ideal generated by the
decomposable elements, i.e., the ideal is the kernel of 2.

iii) Cohomology ring of Q(X). Let (M)*=Mx --- xM be the
iterated k-fold product of M. The loop-multiplication in 2(X)
defines a mapping

Qf)F: (M) — QX)
and this induces a homomorphism

(Qf)s : Hye((M)*) —— Hy (X))
such that (Qf)k (@1x - x &%) =Q 8%k - % Q fr8k =0, % - xb;,
(b,=1). By the duality, it follows

(3.3)  (QF)Hbi - #b;,) = 3 (o x - X Frow)
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for (Qf)**: H¥*(Q(X))— H*((M)*), where the summation > runs
over all the permutation ¢ of {1, 2, -+, k}.

Proposition 3.5. Denote by a,€ H*(AX)) the dual of

the iterated k-fold Pontrjagin product b* ---*b, of b,. Then
H*(Q(X)) is the polynomial ring Pla,, a,, -, a,, ]| over {a,}.
Let I, be the ideal generated by the decomposable elements of
H*(Q(X)) then b,=(—1)*"'k-a, mod. I,.

* Proof. For the simplicity, denote that e*1x --- x e*e=xi1--- x}k,
then H*((M)*) is a polynomial ring over k indeterminants x,, -+, x,
€ H*((M)*). (3.3) shows that (2f)®* is an isomorphism into for
dimensions less than 2(k+1) and the image of (Qf)** is the set
of the symmetric functions. Then, as is well-known, for dimen-
sions less than 2(k+1), each image is represented uniquely by a
polynomial over the elementary symmetric functions o;==x,x, - x;
+ -, i=1,-,k By (3.3), o;=(2f)* q;,, i<k. By taking £k
large, it follows that H*((X)) -is the polynomial ring over
al) a2’ e , ak) R

Next, (Qf)*b,=x%+ - +xf by (3.3) and this equals to
F(o,, -+ ,0,_)+x0, for a polynomial F and a coefficient x. To
determine the coefficient x, we take that x,,:--, x, are the roots
of the equation x*—1=0. Then x{=: =x}=1, ¢;=- =0,_, =0
and ¢,=(—1)*"'. Thus x{+ -+ +xi=F(o,, =+, 04_,) + X0, implies
k=x(—1)*"'. Since (2f)* is an isomorphism into, it follows that
bk':F(al’ o ’ak—1)+(—l)k—lk'akE(_l)k_lk'ak mod ID'

q.e.d.

iv) Cohomology of (LX), 3). Let (£2(X), 3) be a 2-connective
fibre space over (X). The fibre is an Eilenberg-MacLane space
of the type (7,(22(X)), 1). Since 7, (X))~ 7(X)~ H,(X)~Z, the
fibre has the same homology as 1-sphere S'. Thus there is Gysin’s
exact sequence [7]

e HAQU(X)) — H(X) 2 B (Q(X), 3))
> HPYUX)) —> oo,

where p is the projection of the fibering and / satisfies the equality
) =h1)-a. Since H*(A(X), 3))=0, & is onto for i=2 and
h(1)==a,, and thus A(e)=+xa,-a. It follows from Proposition
3.5 that /% is an isomorphism into and the image is an ideal
generated by a@,. Therefore we have
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Proposition 3.6. H*(({XX), 3)) s the polynomial ring
P[ﬁ*dzy o ,p*ak, "‘].
Next, we shall prove

Lemma 3.7. There exists a mapping &: E*M— ((X), 3) such
that po& is homotopic to the composition QfoQ¢or: E*MC QE*M)
—>QUEM)—>QX). These mappings & are homotopic to each other.
For the induced homomor phism &% : H*((Q(X), 3)) - H*(E*M), we have

Ex(p*a,) = (—1)F 1 E?e®* D k=23, --.
Proof. Since E*M has no 2-cells and since 7z,(p *(x4))=0 for
i==1, there are no obstructions to lift the mapping QfoQ¢&oi up
to & Thus £ exists. Similarly these & are homotopic to each other.

For the simplicity, we set & =Q foQ{oi, then poé =& and the

following diagram is commutative.
4

E
H(E*M)  —— H, (X))
E =

Hor M) L% [, (X0

By Proposition 3.4, &(E?¢* °)=x.b,+F(,, - ,b,_,) for a
coefficient x and a polynomial F. By (2.5) and by Proposition 3. 4,
X6, =2} (x'Bk+F(7)1) Tty Ek—x)) =3 E;(Ezez(’e_l))
= filEE’* V) = fylk-Ec™) =k-e, .

Thus x=k. By the duality, £*b,=k-E*¢**™. Since the cup
product is trivial in H*(E*M), §*I,=0. By Proposition 3.5,
EX¥(—1)keq,=E%b,=k-E?*e**™», Since H*(E*M) is free, it
follows that &*(p*a,) =&*a,—=(—1)F"'E?e**™>,

qg.e.d.

v) Cohomology of X =Q(((X),3)). Similarly to ii), we
consider a cohomological spectral sequence (E2?) associated with a
contractible fibre space over (2(X), 3) such that E??= H*(2(X), 3))
QHYX'), E»*=0 for (p, ¢)==(0, 0) and the suspension homomor-
phism >3: H*'((2)X), 3)) > H(X’) is equivalent to E}*'°—Ejil°

d . . . .
«— E?h—E%*. The following diagram is commutative.

H*(QX), 3)) —» HE* M)
) > \\E_
H(X') 2 QECM)) — HY(EM).
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Set >p*a,,,=e,/ € H*(X’') and f' =Q&ci: EMCUE*M)—X/,
then

(3. 4) f*e)/ =(—1)*Ee*,

by Proposition 3.6 and the commutativity of the above diagram.

Proposition 3.7. H*(X') is the exterior algebra Ae/, e, -+,
e, ) over {e,}.

Proof. >p*a,.,—e,’ means that e, is transgressible, ie.,
d(1®¢,/)=0 for 2<i<2k+1and d,,.,(1RQe¢,/)=p*a,..,®1. Con-
struct a formal cohomological spectral sequence (E?% by setting
IE2=P[p*a2: P*aa, "']@A(ell’ 62/, ), /di(1®ek/)=0 for zglg
2k+1 and 'd,,.,(1Qe/))=p*a,.,,®1. Then we see that 'E,.,
=P[p*ap.., p* s, - 1R Ale, €441, ) and 'E.,=0. The natural
correspondence defines a homomorphism of ‘E into E satisfying
the condition of Lemma 3.3. Thus this homomorphism is an
isomorphism, in particular H¥(X') =E}*~'EY*=A(e/, ¢/, -**).

q.e.d.

vi) Proof of Main theorem. Since ((X), 3) is 2-connected,
X' =(((X), 3) is simply connected. Thus X’ satisfies (U).
Since X’ is a space of loops, the condition (U,) is satisfied. (3.4)
and Proposition 3.7 show that X’ satisfies the conditions (U,) and

(U,) respectively. Consequently the proof of the main theorem is
accomplished.

§4. Applications.

Let X be a space which has the properties (U,)-(U,).
From the definition of X' =Q(((X), 3)), we have the following
isomorphism.

4.1) 7 X') =~ 7;,,(UX), 3)) = 7, , (X)) = 7;,(X)
for i+1>2.

Set X’=X® and X" =(X") inductively. Then X has
the properties (U,)-(U,) by the main theorem. Then, by (4.1),
0=H (XM =7 (X))~ (X" V)~ -+ ~7m,,(X) and Z=~H,(X™)
~m(XP)~rw (X" V)~ - ~m,,,,(X). Thus we have

Theorem 4.1. If a space has the properties (U)-(U,), then
~Z  forodd i=3,
=0 for even 1.

7, (X) {
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In particular, this is ture for X=SU().

Since the dimension of SU(w)—SU(m) is greater than
2m, 7wy (SU(o0), SU(m))=0 for i<2m. From the homotopy exact
sequence of the pair (SU(e0), SU(my)), it follows isomorphisms

Iy : w(SU(m)) =~ = (SU(o0)) Sfor i< 2m.

Therefore we have
Theorem of Bott.

7,u(SU(m)) =0 for m>n,
Toni(SU(m)) =~ Z Jfor m>n=1.

Define a mapping
4. 2) &, S —— EM(CSUn+1)CSU(0))

by the composition §oE?*go -+ o EX* ™ 2f ;S =F*H M s ...
— E*M,_,—EM,. (¢,=1identity).

Proposition 4.2. Let X be a space satisfying (U)-(U,), then
the composition fof,:S*"*"'—EM,— X represents a generator of
o X).  In particular, &, represents a generator of =,,.(SU(m)),
m_>n.

Proof. First we see that {,=¢-E*¢, ,:S*""'"—-E*M, ,—~EM,.
In the case n=1, the proposition is proved without difficulties.
Assume that the proposition is proved for n<k (k_>1). Let
X' =Q((X), 3)), then X’ satiefies (U)-(U,) and f'of, ,:S*!
—EM,_,— X’ represents a generator of =,, ,(X’). Then &E¢,_,:
S*” -E*M,_,—((X), 3) represents a generator of =,,((2(X), 3))
since f'=Q&i as in v) of §3. Also the composition po&-E¢,_,
=FoE¢, ,=QfcQ¢-Ef, , represents a generator of 7,,(Q(X)).
Finally fo{,=fo{-E?{, , represents a generator of =,,,,(X). By
the induction, the proposition is proved.

q.e.d.

The fibering p:SUn+1)—->SU(m+1)/SU(k) shrinks the sub-
complex EM,_, of EM, to a point. The image p(EM,) will be
denoted by

EMn/EMk—l
and the composition po¢, by
Cnr: S — EM,/EM,_, .
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Let {¢,,} denote the subgroup of =,,,,(EM,/EM,_,) generated
by the homotopy class of ¢, .

Theorem 4.3. We have isomorphisms

T (SUR) =~ 7o (EM,[EM,_)/{$,.}  for kz=n/2,
Ton-1(SU(R)) ~ 7, (EM,| EM,_,) for n>k=(n—1)/2.

Proof. Consider the following commutative diagram

H*EM,) L HKSUMm+1) = Ale,, €, -, )
b* . p*
H*(EM,/EM,_,) — H*(SU(n+1)/SU(k)) = Ae,, -+ ,&,) -

From iii) of §2, p*(e;)=e; for k<i<mn. Since i*(¢;)= t E&*
in the upper homomorphism i*, it follows easily that the lower
#* maps each ¢;, k<<i<n, onto a generator of H**(EM,/EM,_,).
Therefore ¢*: H(SU(n+1)/SU(k))— H(EM,/EM,_,) are isomor-
phisms for ¢<(2k+1)+(2k+3)=4k+4. This is true for the
homological case and thus we have isomorphisms 7y : z(EM,|EM,_))
~ 7 (SU(n+1)/SU(k)) for t< 4k+3 by J.H.C. Whitehead’s theorem.
Next consider the following exact sequence.

ZonilSU(+1)) 255 7, (SU(n+1)/SUk)) — 7,(SU(E))
s 1 (SUM+1) 225 7, (SUm+1)/SUR)) — 7, (SUK)
s 2 (SUm+1) -2 7, (SU(n+1)/SUR)) .

By Proposition 4.2, the image py7,,..(SU((n+1)) is generated
by the class of pof{,=¢,,. By Theorem 4.1, =, (SU(n+1))=0.
Thus =,(SU(k)) =~ 7, (SUn+1)/SUk))/{¢,.:}. By the isomor-
phism iy 7, (EM,/EM,.,) ~m,, (SUn+1)/SU(k)) for 2n+1<
4k +2, the first isomorphism of this theorem is established.

By (2.5) and by the definition of &,, we have { (E*'¢?)
=n!Ee?*. Thus (n=k)

4. 3) En o s Hypr (S**YY — H,, . (EM,/EM, ) is a homomor-
phism of degree n!.

This shows that the homotopy class of ¢, , in =,, (EM,/EM,_))

does not vanish by the natural homomorphism of =,,, (EM,/EM,_,)

into H,,,,(EM,/ EM,_,). Thus the class of ¢, , has an infinite order for
n=k. By the isomorphism iy:=,, (EM,/EM,_)=~m,, (SUn+1)/
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SU(k)) for 2n —-1<4k+2, it follows that py7,, (SUm+1))={C, .}
is an infinite cyclic subgroup. Then p* *(0)=0=1iy,7,, ,(SU(k)).
Since 7,,(SU(n+1))=0, it follows from the exactness of the above
sequence that =, (EM,/EM,_ )=~ =, (SUn+1)/SU(k)) = =,,_(SU (k))
for n=k and 2n<4k+2. This proves the second isomorphism.
q.e.d.
It follows from this theorem and from (4. 3)

Theorem of Borel-Hirzeburch.
7, (SUM)) =~ Z,,, for n=2.

Finally we shall prove the following theorem as an application
of our theory.

Theorem 4. 4.

~ Z, or even n=2,
”2»+1(SU(n)) { f

=0 for odd n,
~ Zy+ Ly for even n=4,

s SUO) |
Taneo(SU (1) ~ Lipsi)2 for odd n=3.

Proof. First we consider the homotopy type and homotopy
groups of EM,..,/EM,_,=S"""\Je&*"". The homotopy type is deter-
mined by the homotopy class @, € =,,,,(S7"") =~ Z,(n = 2) of attaching "
mapping of ¢”**. It is known that «,==0 if and only if the
squaring operator Sg® is essential in EM,,,/EM, ,. By Cartan’s
formula, it is calculated easily that S¢*¢*" =n-¢*"*> in M and thus
SGEe” =n-Ee*™™ in EM,,,/EM,_,. It follows that «,=4=0 for
odd # and «,=0 for even #.

For even n, EM,../EM,_, has the same homotopy type as the
union S¥**'v S§¥*% of two spheres having a point in common. Thus
Tons ol EMui|[ EM, ) = 705, (S + 70, (S ) = Z, and 7,,,(EM,,,,/
EM, ) = 73 (S 4+ 74 (ST ) = Z,+ Z.

For odd », we consider the following diagram.

5 \
> T (EMoyys | EM,_,, ST —> m (ST —> 7 (EM,.,/EM,, ) -+

8Ex (g]S#"+2)y
9
(B, ST — (S,
where g is a characteristic mapping of ¢"**. Obviously (g|S**) 4«3
=, 0B, g4 are isomorphisms for (+1<(2n+2)+2n—=4n+2 by
[1]. Since «, and «,cEc, are generators of =,, (S*")=~Z, and
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omes( S ) ~ Z, respectively, it follows that 9:=,,(EM,.,/EM,_,,
S 7,(S**') are homomorphisms onto for i=2xr+2 and
i=2n+3. Then from the exact sequence in the above diagram,
it follows that =,,,,(EM,.,/EM, )=0 and =,,,(EM,,,/EM, )~Z
and that Hurewicz homomorphism 7:7,, (EM,,,/EM,_))
—-H,,.(EM,. ./]EM, )~Z is of degree 2.

By the second isomorphism of Theorem 4. 3, it follows from the
above results that =,,.,(SU(n)) =~ 7,,.(EM,,,/EM,_,)~Z, for even
n and 7,,, (SU#))=0 for odd n.

Next consider the mapping &,.,, for odd n. From (4.3) it
follows that

T{€n+l.n} = (n+1)! Hzn+3(EMn+1/EMn—1)
=7(n+1) !/2”2n+3(EMn+1/EMn-1)
for Hurewicz homomorphism 7 :7,,,(EM,,,/EM,_)— H,,.(EM,../
EM,_)). Since this = is an isomorphism into, it follows that
{Cairn} =(m+1)!/27,,, (EM,,./EM,_). Therefore by Theorem 4.3,

7o SUN)) = 7,y (EM,, | EM, )] {8 pir, n} = Zinidr2
- for odd n=3.

Let » be even. In this case, we may replace EM,,,/EM,_, by
S#*+1v S+ in the sense of homotopy equivalence. Let B,+v,,
B, € Ty (ST, v, € 7,,,(S”"H) be the class represented by &,i1u-
From (4. 3), it follows that vy,=(n+1)! ¢,,,, for a generator ¢,,,; of
Tos(S??). Now assume that =4 and consider a mapping
§,: Sy 8 — EYEM,_,/ EM,_))— S*"*'v §*"**=FEM,,,,/EM,_, de-
fined by ¢, =¢oE*. By (2.5), £,|S™" represents n(n—1)¢,,,, and
£,]S™** represents B+ (n+ 1)4,,,, for some B, € z,,.(S™*). Since
Ewinn=C0E*C0 1, ., it follows that B,=RBhoE*y, ,+nn—1)ty,°
E‘B, ,=mn—-1)! Bi+nn—1)E*'B,_,. Since n=4 and since
27, o(S*") =0, it follows RB,=0. Therefore ¢,,,, represents
(n+1)!e,,,,. By Theorem 4.3,

Tonsol(SUM)) = 7,0 ( EM,yi[EM,, ) [ {Enir.n} =~ YAS AT
for even n=4.

Remark. For n=2, =,,, (SU#)==n(SUQ2)==(S*)~Z,,. In
this case, the isomorphism 7 (SU(2)) = = (EM,/EM,)/{¢,,} still holds
and we see that B3,=0.
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