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In  our monograph "Introduction to  the problem of minimal
models in the theory o f  algebraic surfaces" (Publications of the
Mathematical Society of Japan , no. 4; this monograph will be
referred to as IM M ) w e have stated the proposition that each
b ira tiona l class of  non-singular v arieties satisf ies the  descending
chain condition (see IMM, Proposition III. 1.3, p. 79), it being under-
stood that the underlying partial ordering of the class is the one
in which V<IP i f  V ' dominates V. In the quoted monograph we
gave a proof based on the theorem o f  Neron-Severi. W e have
also mentioned the existence, in the case of surfaces, of a sheaf-
theoretic proof due to  Serre (a similar sheaf-theoretic proof has
been given recently by M atsumura in  a n  unpublished paper).
Finally we have alluded in IMM to a forthcoming note in Mem.
Col. Sci. of Kyoto University in which we proposed to prove the
above descending chain condition for algebraic surfaces by ele-
mentary algebro-geometric considerations, using properties of
exceptional cycles and the anticanonica l system  I— K I. This is the
note in which we propose to give this proof.

§  1 .  Exceptional c y c le s  o f  th e  first kind.

Let F be a non-singular surface (over an algebraically closed
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ground field k) and let E be an exceptional curve of the 1st kind
on F (E  may be reducible). We shall associate with E  a  well-
defined positive divisorial cycle 8  whose components are the
irreducible components o f E, counted to suitable (positive) multi-
plicities.

Let P  be the (simple) contraction of E  and let nip be the
maximal ideal of the local ring op of the point P .  If y  is any
valuation of the function field k(F) o f F and if y is non-negative
on op (i.e., i f  v(z) 0 for all z in op) then from the fact that nip
has a  finite basis it follows that min {v(z), z E nip} exists. We
denote this minimum by v(in ). It is  c lear that v (n i) 0  and
that v(iii i ,)> 0  if and only if  P  is the center of y (on the surface
which carries the point P).

Let now 171 , 1 2 ,  • • •  ,  r „  be the irreducible components of E and
let v r i  be the divisorial (discrete) valuation of k(F) defined by the
irreducible curve r i . S in ce  P  is  the contraction of E, P is the
center of v r , , and thus v r i (mp) is defined (and is a positiv e integer).
We set

( 1 ) 6  v r , ( 1 1 1 p ) r i

and we refer to 6 as the cycle associated with the exceptional curve
E .  We say that a divisorial cycle on F  is  an exceptional cycle
(of the first kind) if it is the cycle associated with an exceptional
curve E  o f th e first kind. I f  P  is the (simple) contraction of E
we shall also refer to P  as the contraction of the exceptional
cycle 6.

Proposition 1. I f  E  i s  an  irreducible exceptional curve then
the exceptional cycle 6 associated with E is  E itself.

Pro o f . I f  E  is irreducible then vE  i s  the principal P-adic
divisor (IMM, p. 55 and Corollary II. 3. 2, p . 5 6 ), an d  hence
vE (iiip) = 1.

I f  X is any divisorial cycle on F  we denote by <X> the sup-
p o rt o f X , i.e., the curve whose irreducible components are the
prime components o f X.

Proposition 2. L e t  6  be an ex ceptional cy cle , le t P  be the
contraction o f  8 a n d  le t  Q  be  a p o in t  o f  the  support <8> o f  8.
Then the ideal D on, is p rin c ip al, an d  if  g  i s  a  generator o f  this
ideal then g = 0  is  a local equation of  6  at Q .
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P ro o f .  Let x  and  y be regular parameters of the local ring
op. Since Q > P  a n d  Q  P ,  it follows that either y lx  o r xly
belongs oQ  (IM M , Theorem II. 1. 2 , p. 4 6 ) .  I f , say yl x eo,„ then
oQ • m p= o o • x .  An irreducible curve l '  on F  is a  component of E
if  a n d  only i f  vr (111,)> 0 ,  hence (and assuming furthermore that
Q EU) if and only i f  vr (x) > 0  ;  and for any such curve r we have
vr (mi,) = 7 ) ,(x ) . Hence x = 0  is a local equation of at Q. QED.

L et T :G - .F  be an antiregular birational transformation of a
non-singular surface G  onto a  non-singular surface F .  Let P  be
a  fundamental point of T  (on G ) .  I f  E =  T  {P } is  th e  to ta l T-
transform o f  P  (whence E  is  a n  exceptional curve on  F , with
contraction P), we denote by T (P ) th e  exceptional cyc le  8 asso-
ciated with E.

Proposition 3 .  L e t  T 1 : H-->G an d  T 2 : G---)- F  b e  antiregular
birational transform ations, the surfaces H,G,F being non-singular,
an d  le t  T = T 1 T 2 : H -i-F .  I f  P  is  a f undam ental p o in t o f  T , then
T(P)=T2(T1(P)) [h e re  7. 2 ( T 1 (P ) )  denotes th e  T 2 -transform of  the
divisorial cycle T,(P)].

P ro o f . Since T i (P )  is a positive cycle, the support of the  T 2 -
transform of T 1 (P ) coincides with th e  to ta l 7'2-transform of the
support o f T ,(P ) (IM M , Proposition II. 5. 1, p. 69). Hence T(P)
and  T2( Ti(P)) h ave  th e  same support. L et now R be any point
of <T(P)>, le t Q be the point of <T,(P)> which corresponds to R,
le t  x , y  be uniform izing parameters at P  an d  le t, say , y/x E O o .

By Proposition 2, x = 0  is  a local equation of T (P ) at R .  By the
same proposition, x =  0  is also a  lo ca l equation of T 1 (P )  a t Q,
and hence, by the definition of the 7'2-transform of a cycle on G
(IMM, Definition II. 5. 2, p. 7 0 ) , x  = 0  is also the local equation of
T ,(T i(P )) at R .  Thus T (P ) an d  T ,(T i(P )) h av e  th e  same local
equation at each point R of their common support. QED.

If P  and Q are points of birationally equivalent surfaces, we
write P < Q  i f  op is a  proper subring of ° Q ;  a n d  if  X  and Y are
two divisorial cycles on a surface F  we write X < Y  i f  Y -X  is a
strictly  positive cycle . In  the latter case we say that X is a proper
sub-cycle o f  Y.

Proposition 4 .  L et g, an d  g, be exceptional cy c les o f  the  1st
k ind o n  a non-singular surface F and let P„ P, be their contractions.
T hen the follow ing relations are equivalent.
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(a) 81 < 8 2 ;
(b) <6  <  2 > ;
(c) P i >  P, .

P ro o f. I f  ( a )  is satisfied, then clearly <81> < 6 2>, and we
cannot have <6f> =  <62 > since any exceptional curve determines
uniquely the exceptional cycle associated with it. Thus (a ) im-
plies (b).

That (b) and (c) are equivalent has been proved in IMM (Lemma
II. 3. 7, p. 58).

Now assume (c). I f  r is any prime component o f 8, then P,
is a center o f vr , , and hence also P , is a  center o f  vr . . Further-
more, we have vn (mpi )S vr (inp,) since m 2 ( m 1 . This shows that
6, .S 6, , and since equality is clearly impossible, the proof is
complete.

With the notations of Proposition 4 we say that 8, is a maximal
exceptional sub-cycle of  8, i f  61 <6 2 a n d  if there exist no excep-
tional cycles 6 such that 6 1< 6 < 62.

Corollary 4. 1. 8, is  a m ax im al exceptional sub-cycle of 6 2 i f
and only if P, is a  quadratic transform of  P 2 .

This follows from Proposition 4 and Theorem II. 1. 1 of IMM,
p. 44.

Corollary 4.2.  L e t  T :  H , F  be  an antiregular birational
transform ation of  an non-singular surf ace H  onto a  non-singular
su rf ac e  F, le t P be a  fundamental poin t o f  T  and  le t 6= T (P).
L et T ,: H— >G  be a  locally quadratic transformation o f  H , with
center P , le t E 0 b e  the  (irreducible) curve T, {P} o n  G , an d  le t
T 2 : G---->F be the antiregular birational transform ation of  G such
that T 1 T,  T .  I f  6  is not a  prime cy cle (or equivalently: if  T ,
has fundamental points on E o )  a n d  i f  P i ', P2 ', --• , Pg '  denote the
fundamental points of T , on E 0 ,  then the  g  exceptional cycles T2(P1')
are the only maximal exceptional sub-cycles of 8.

Obvious.
Proposition 5 .  I f  6  is an exceptional cy cle on a non-singular

surface F then p(s)= o and (8 2 )= — 1 . I f  r is any prime component
of  8 , different from the principal component of  <6>, then (8-1') = 0.

P ro o f. Let P  be the contraction o f  6. There exists a  non-
singular surface H which carries the point P and such that 8= T(P),
where T: H— >F is an anti-regular birational transformation of H
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onto F  (for instance, take H =F— (8>-1-P). L e t T,: 11— .G and
T ,: F  have the same meaning as in Corollary 4. 2. Using the
notations of that corollary, we have, by Proposition 3 : 8 = T 2(E0 ).
Since p(E0 )=O and (E)= — 1 (E o being an irreducible exceptional
curve o f the first kind) and since anti-regular transformations
preserve the arithmetic genus and the self-intersection number of
any divisorial cycle, it follows that also p(s)=o and (62 ) ,  —1.

To prove the second part of the proposition we fix some
proper exceptional sub-cycle 6, of 6 such that 1 ' is  a  component
o f 6, (the existence of 6, follows from IMM, Proposition II. 3. 3,
p. 57). We replace in the preceding part of the proof 6 by 6,.
Let P', H ', T ' have the same meaning in relation to 6, as P, H and
T  had in relation to 6. Since 8 , is a proper exceptional sub-cycle
o f 6, we have H < H ' (assuming, as we may, that H--, -F—<6>-1--P,
H' =F— <6,>-1.-P'). Let 6' be the exceptional cycle on H ' which
is the transform of the point P .  By Proposition 3 (as applied to
the surfaces H, H', F) we have 6 = T'(6'). F ro m  Proposition II. 5. 4
o f IMM, p . 7 1 ,  it now follows directly that (6.r) = O.

C o ro lla ry  5. 1. If  6 , and 6, are distinct exceptional sub-cycles
o f  8  then (6 1 .6 2 )= O.

By Proposition 5 it is sufficient to consider the case in which
both 8 , and 62 are proper sub-cycles of 6, for if, say, 6, =6 then
62 i s  a  proper exceptional sub-cycle of 6 and therefore no prime
component o f 62 is  the principal component o f 8  (IMM, Corollary
II. 3. 8, p. 58). Since the corollary is vacuous if  <6> is irreducible,
we use induction with respect to the number of prime components
o f 6. We use the notations of the proof of Proposition 5 and we
denote by P 1 ', P2 ' ••• , Pg '  the fundamental points of T , on E o .
By Corollary 4. 1, each o f the exceptional cycles 8,, 8 2 is  a sub-
cycle of one of the exceptional cycles T ,(P,') . Let, say 61 b e  a
sub-cycle of 7.

2 (/3 „') and 82 a sub-cycle of T 2 (P0 '). I f  a 4-= then
<T,(Po,')> and <T,(Pa ')> have no common points, and the relation
(61• 0 = 0  is proved. I f  a = 3 , then we observe that the number
of prime components o f  T ,(P„') is less than that o f 6 , and hence
(61 62) =O, by our induction hypothesis.

I f  T: is  an antiregular birational transformation of a
non-singular surface H  onto a  non-singular surface F  and if
X =E ;z _ im ,l', is any divisorial cycle on H  whose distinct prime
components a re  r „  12 , ••• , 1 ,  then we denote by T [X ] the
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divisorial cycle E!=on, Tr," where T[Pi] denotes the proper T -
transform of r 1 .  This cycle T [ X ]  does not, in general, coincide
with the T-transform  T (X ) of X  as defined in IMM, p. 70.

Proposition 6. L e t  T : H ---)•F  b e  a n  anti-regular b ira tion a l
transform ation of  a non-singular su rf ac e  H  onto a  non-singular
surface F , let P 1 ,  P 2 , • • • P h  be the fundam ental points of  T  (on H)
and  le t Si =  T (P i ), i = 1 ,  2, •  ,  h .  I f

 
g1,2, ••• g }  is  the set

o f  all proper ex ceptional sub-cycles of 6i ,  then f o r any  d iv is o r ia l
cycle X  on H  we have

T (X )= T [ X ] +

where the coefficients are integers and where Xi i s  the mul-
tiplicity  o f  X  a t  P .  I f  X > 0  then the a r e  non-negative.

Pro o f . It is obviously sufficient to prove the proposition under
the assumption that h = 1 .  The transformation T  has in  that
case only one fnndam ental point P .  We set 6 =  T (P )  and we let
1
6

1 , 
8

2 • • • 6,1 be the set of all proper exceptional sub-cycles of 6.
By IMM, Proposition II. 5. 8 (p. 73) the proposition is true i f  T  is
a locally quadratic transformation. We shall therefore use induc-
tion with respect to  the number of prime components o f 6. We
use the notations of Corollary 4. 2. We have, by IMM, Proposition
II. 5. 8 (p. 73),

T,(X)=-- T 1[X ]± X E 0 ,

where X is the multiplicity of X at P , and hence, by Proposition 3,

T (X ) =  T ,(T ,(X ))=  T 2 ( T .

The fundamental points of T . are the points P , '  P 2
1 , • -• , ,  and

their T 2-transforms represent all the maximal exceptional sub-
cycles o f 6  (Corollary 4. 2). Hence, by our induction hypothesis,
the proposition is applicable to  T , and to any divisorial cycle on
G  (and, in particular, to  the cycle T I X ] ) .  Since =
T [ X ], the proposition is proved.

Corollary 6. 1. L et g  be an  exceptional cycle of  the f irst k ind
on a non-singular surface and let E , be the principal component of
8. I f  81,82, ••• ,g s  are  the  proper exceptional sub-cycles of g ,  then

6 .---- E ,± E ;= .1X igi,
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where the Xi are non-negative integers and X , is positive if 8i  i s  a
maximal exceptional sub-cycle of S.

In the notation of the proof of Proposition 6 we have 8 =T (P)
=T ,(E ,) , and the corollary follows by applying Proposition 6  to
the transformation T , and the cycle E,.

§ 2. The anticanonical system and exceptional cycles

Proposition 1. I f  K  is  a canonical divisor on  a  non-singular
surface F  and 8  i s  an exceptional cycle on  F ,  of the f irst k ind,
then (K .8 ) = - 1 .

Pro o f . The proposition follows directly from Proposition 5,
§ 1, in view of the equality (K .X )=2p(X )—  2—(X 2 )  which holds
for any divisorial cycle X  on F.

Proposition 2. I f  a n  anti-regular birational transformation
T : F' -->F of a  non-singular surface F ' onto a non-singular surface
F  is  a product o f n  quadratic transformations then the dimension
of the anticanonical system  I— K ' on F ' satisf ies the inequality

dim 1— K '  n+ (K 2 )+  ;

where K  is a canonical divisor on F  and where Pa  i s  the arithmetic
genus o f F ' (and of F).

Pro o f . Assume first that n =  1 .  Let P ' be the center of the
locally quadratic transformation T  and let E = T  { P'}  . Then it is
known (see IM M , Proposition II. 5. 6, p. 7 2 )  that T (K /)+E  is a
canonical divisor K  on F .  Hence (K 2 ) ,  (K " ) - 1 ,  since (T (X ')-E)

0  fo r any divisorial cycle X ' o f F '  (Proposition II. 5. 5, IMM,
p. 71) and since (E 2 ) =  —1. B y induction with respect to  n  we
find that i f  T  is  a  product o f  n  quadratic transformations then
(K " ) , ( K 2 )+ n .  Since p ( -  K ')= 1  our proposition follows from the
Riemann-Roch theorem on F'.

Theorem  1. On a non-singular surface F  there cannot exist an
inf inite strictly  ascending chain 61 <8 ,<• • • <8 , ,<• • •  o f exceptional
cycles of the f irst k ind.

Pro o f . W e shall assume that such a  chain exists and we
shall show that this assumption leads to a contradiction. Let
F ,= ( F - 8 1 )+P 1 ,  where P i is  the contraction of 8 , .  Then F , is a
non-singular surface and we have F> F ,> F 2 > • • - >F„> • • • . We
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also have P 1 > P 2 > ••• > P a >  • • ,  and each F„ carries an infinite
strictly ascending chain o f exceptional cycles of the first kind :
namely, the cycles on F„ which are the transforms of the points

P a ,„ • • •  form such a  chain. We therefore may replace in
our proof the surface F  by any of the surfaces Fa . Since the
anti-regular birational transformation of F„ onto F  is the product
o f at least n  locally quadratic transformations, the dimension of
the anticanonical system 1— K„1 on  Fa satisfies the inequality :
dim 1 —Ka l n +( lf 2 )+P 0

,  where K  is a canonical divisor on F and
Pa i s  the arithmetic genus o f  F .  Thus dim I —K„1.1 i f  n  is
sufficiently large, and we may therefore assume that dim1

Let E i  b e  the principal component o f Si . Then E , is not a
component of 6 ,  j < i  (IMM, Corollary II. 3. 8, p. 58), and hence
the irreducible curves E 1 , E2 ,  , E „,••• are distinct.

By Corollary 6. 1, § 1, we have that 6 i is  the sum of E .  and
a certain number v;  o f  exceptional cycles of the first kind. Here
vi 1  except i f  6i i s  a prime cycle (which can happen only for
i = 1 ) .  Hence we may assume that v; 1  for all i. By Proposition
1 it follows that

(1 )  ( — K - E i )  = 1 — v ,  0 .

Let N  be an integer such that no E i ,  i N, i s  a  fixed com-
ponent of  the  linear sy stem  I— K I .  Then (— K-E i ) 0 if
and hence by (1) we conclude that

( 2 ) ( —  E i ) -= 0 , i  N

This shows that each E i , is a fundamental curve of
i.e., that the cycles in 1— K  I which have E .  a s  component form
a  (linear) subsystem L i o f  1—K1 the dimension of which is one
less than the dimension of 1 Thus 1 — K I has infinitely many
fundamental curves. This implies that the rational transformation
of F  which is defined by the linear system j —  K  (IM M , p. 10) is
necessarily a curve. In other words, i f  we denote by B  the fixed
cycle  o f 1—K {, then the linear system obtained by deleting B
from the members o f  1—K1 is  composite with some irreducible
pencil H .  Since H  contains at most a  finite number of cycles
which are not prime and since each E i , is a component of
some member o f H , it follows that some E i i s  a member o f H
(actually, all but a finite number of the E i must be members of
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H ).  However, we now show  th at (E )  is negativ e and therefore no
E. can be a member of a  pencil. This contradiction will complete
the proof.

Let, then, quite generally, 6  be an exceptional cycle of the
first kind and let E ,  be the principal component o f 6 .  We have
then, by Corollary 6. 1, §1 :

( 3 ) 6  = E ,+  xisi ,
where the Xi a r e  non-negative integers and the 6 i  a re  proper
exceptional sub-cycles of 6. Since (6•6 i ) = 0  (Corollary 5. 1 , §1)
and (62 ) ,  — 1, it follows from (3) that

( 4 ) (6•E 1) =  — 1.

For a fixed j ,  we intersect both sides o f (3) with 6, and we note
that (6i •6 i ) = 0  i f  i-1=j (Corollary 5 .  1 ,  § 1 ) .  We thus obtain

( 5 ) ( 6 J - E , )  =  X; •

Intersecting both sides o f (3) with E , we find in  view o f (4) and
(5) : ( E ) =  — 1— E,_, x i < 0 .  This completes the proof of the
theorem.

Rem ark . After the relation (2) has been obtained, the rest of
the proof admits another variation. From (1 ) and (2 )  it follows
that v ,  = 1  i f  i  N. It follows therefore from Corollary 6. 1, §1,
that each h a s  o n l y  one maximal exceptional sub-cycle,
say 6 / ,  and that 6 i = E 1 +6 1 '. By a  refinement of the original
sequence 6

1
< 6 2 < • • •  we may arrange matters so that each 6 i is  a

maximal exceptional sub-cycle of its successor 6 i , .  Then C A ,  gi •
We have then 0 =(6 i•S i+i)=(E i•E ,)± (E i•g i)4 -(8 i- i•S i-Fi)=-(E i•E i,)
+( E 1 •6 1). By relation (4), applied to 6 = 6 i ,  we have (E • 6 1 ) = — 1.
Hence (E 1 •E 1 + ) = 1 .  Now let i N  and let L i b e  the above sub-
system o f  —If whose members contain E .  component. I f  D
is any member o f L i , D = E i +D i ,  then 0_, (D .E, ± i) =  1 +  (D i•E i,) ,
i.e., (D,•E,-F1)--= .-  — 1 . Hence i s  a component o f D i , and if we
set D ,= E t , i +D t , „  then from (E1•E1+2) 0 ,  (E1_I1-E1+2) -- - - 1  and
(D -E 1 2 ) = 0  follows at once that (D1+1-E1+2)<0 and that con-
sequently E t ,  is a component o f D 1 + 1 . Proceeding in this fashion
we see that all the curves E t , E I F I , • • •  are components o f D, and
this is absurd.
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§ 3. The descending chain condition in the b ira tio n a l class of F

We now come to our main object, i.e. to the proof of the
following theorem :

Every strictly descending chain F > F ,> F 2 >  •-• of b ira tiona lly
equivalent non-singular surfaces is necessarily finite.

P ro o f.  We shall assume that there exists an infinite strictly
descending chain

F >  F , ›  F 2 > ••• > F „>  • ••

of non-singular surfaces (each F i dominating its successor F 1 + 1 )
and we shall show that this assumption leads to a contradiction.

W e fix  on each F „  ( n . 1 )  a  fundamental point P „  of the
antiregular birational transformation of F„ onto F n _, and we denote
b y  n  the exceptional cycle of the first kind on F  which corresponds
to the point P „ in the antiregular birational transformation of F„
onto F .  By Theorem 1, § 2, the infinite s e t V I , g2, • , en, • • •}
contains an infinite subset Ig i ,, 812 ,••• ,g i n ,•••} consisting o f maxi-
mal elements of the set. I assert that < >r\ <gis>=  0  i f  a =I= R.
For assume the contrary and let Q  be a common point of <gi n >
and <S O . Then Q  corresponds to both points P i a , Pi s , and since
Q > P i a  and Q > P i o  it follows that P , ,  and P i o  are corresponding
points in the birational transformation between F 1 , , and F i o . If,
say, ce < le ,  then it follows that P i c ,> P i s ,  whence g i a < g i o ,  which
is impossible. This proves our above assertion.

Any minimal exceptional sub-cycle of an exceptional cycle of
the first kind is a prime cycle. W e  fix  a minimal exceptional
sub-cycle E .  o f  g i n ,, fo r  each  a . Then  the E .  are irreducible
exceptional curves of the first kind, and

( 1 ) E „ ,r \ E =  .

We may assume that the anticanonical system  — K  on F
has dimension (see § 2). We fix a linear subsystem L  of
which has dimension 2. If D is any member o f L  we have

( 2 ) (D.E.) = 1 , a ll a .

L e t B  be the fixed cycle of L  ( i f  such a cycle exists) and let
L ,= L — B . I f  B  meets a given E . then (D1 •E .)= 0  for any D , in
L ,  in  v iew  of (2), and thus E .  is  a  fundamental curve o f L,.
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The assumption that L  has infinitely many fundamental curves E„
would lead to the same contradiction as was reached in the proof
o f Theorem 1 (in view o f (W )= —1). Hence B meets at most a
finite number o f  E0, . Omitting i f  necessary a  finite number of
the Eco we may therefore assume that B  meets no E a  and that
consequently (D,• E„), 1 for all a .  We replace L  by L „  and we
may therefore assume that L  has no fixed components without
violating (2), and also that no Eo,  is fundamental fo r L .  Since
dim L = 2 , it follows from (2) that for each a there exists one and
only one cycle Do, in L  such that E„ is a component o f D „ . This
cycle Do,  cannot be E 0,  itself since (E!) is negative. Hence Do, is
not a prime cycle. Let MI k be the smallest algebraic sub-system
of Llk  which contains all the cycles D„ and let N be an irreducible
component o f M/k such that N  contains infinitely many of the
cycles Da,. Then it is clear that i f  D * is  a  general member of
N I k  (the coordinates o f the Chow point of D *  belonging to a
universal domain), infinitely many of the curves E„ (regarded as
cycles) will be specializations, over k, of one and the same prime
component o f D * .  Since this is a contradiction with the fact that
the Eo, have a negative self-intersection number, the proof of the
theorem is complete.
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