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In our monograph “Introduction to the problem of minimal
models in the theory of algebraic surfaces” (Publications of the
Mathematical Society of Japan, no. 4; this monograph will be
referred to as IMM) we have stated the proposition that each
birational class of mnon-singular varieties satisfies the descending
chain condition (see IMM, Proposition III. 1.3, p. 79), it being under-
stood that the underlying partial ordering of the class is the one
in which V<V’ if V' dominates V. In the quoted monograph we
gave a proof based on the theorem of Neron-Severi. We have
also mentioned the existence, in the case of surfaces, of a sheaf-
theoretic proof due to Serre (a similar sheaf-theoretic proof has
been given recently by Matsumura in an unpublished paper).
Finally we have alluded in IMM to a forthcoming note in Mem.
Col. Sci. of Kyoto University in which we proposed to prove the
above descending chain condition for algebraic surfaces by ele-
mentary algebro-geometric considerations, using properties of
exceptional cycles and the anticanonical system |—K|. This is the
note in which we propose to give this proof.

§1. Exceptional cycles of the first kind.

Let F be a non-singular surface (over an algebraically closed
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ground field k) and let E be an exceptional curve of the 1st kind
on F (E may be reducible). We shall associate with E a well-
defined positive divisorial cycle § whose components are the
irreducible components of E, counted to suitable (positive) multi-
plicities.

Let P be the (simple) contraction of E and let mp be the
maximal ideal of the local ring o, of the point P. If v is any
valuation of the function field £(F) of F and if » is non-negative
on op (ie., if v(2)=0 for all z in op) then from the fact that m,
has a finite basis it follows that min {v(z), z€ mp} exists. We
denote this minimum by w»(mp). It is clear that v(mp)=0 and
that o(imp) >0 if and only if P is the center of v (on the surface
which carries the point P).

Let now I',, I',, .-, I', be the irreducible components of E and
let vy, be the divisorial (discrete) valuation of k(F') defined by the
irreducible curve I';. Since P is the contraction of E, P is the
center of vy, and thus vy, (in,) is defined (and is a positive integer).
We set

(1) & =2V op,(mp)l;,

and we refer to & as the cycle associated with the exceptional curve
E. We say that a divisorial cycle on F is an exceptional cycle
(of the first kind) if it is the cycle associated with an exceptional
curve E of the first kind. If P is the (simple) contraction of E
we shall also refer to P as the contraction of the exceptional
cycle &.

Proposition 1. If E is an irreducible exceptional curve then
the exceptional cycle & associated with E is E itself.

Proof. If E is irreducible then vz is the principal P-adic
divisor (IMM, p. 55 and Corollary II. 3.2, p. 56), and hence
ve(mp)=1.

If X is any divisorial cycle on F' we denote by <X> the sup-
port of X, i.e., the curve whose irreducible components are the
prime components of X.

Proposition 2. Let & be an exceptional cycle, let P be the
contraction of & and let Q be a point of the support <8 of 6.
Then the ideal ogmp is principal, and if g is a generator of this
ideal then g=0 is a local equation of & at Q.
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Proof. Let x and y be regular parameters of the local ring
0p. Since @ >P and Q==P, it follows that either y/x or x/y
belongs 0o (IMM, Theorem II. 1.2, p. 46). If, say y/x €0, then
Do+Mp=n0g-¥. An irreducible curve I' on F' is a component of E
if and only if wvp(mp) >0, hence (and assuming furthermore that
Q €l if and only if vn(x)>0; and for any such curve I' we have
vp(mp)=uon(x). Hence x=0 is a local equation of § at Q. QED.

Let T:G—F be an antiregular birational transformation of a
non-singular surface G onto a non-singular surface F. Let P be
a fundamental point of T (on G). If E=T{P} is the total T-
transform of P (whence E is an exceptional curve on F, with
contraction P), we denote by T(P) the exceptional cycle & asso-
ciated with E.

Proposition 3. Let T,: H—G and T,: G—F be antiregular
birational transformations, the surfaces H,G, F being non-singular,
and let T=T,T,: H=F. If P is a fundamental point of T, then
TP)=T,T(P)) [here T,(T(P)) denotes the T,-transform of the
divisorial cycle T(P)].

Proof. Since T,(P) is a positive cycle, the support of the T,-
transform of T,(P) coincides with the total T,-transform of the
support of T.(P) (IMM, Proposition II.5.1, p. 69). Hence T(P)
and T, T,(P)) have the same support. Let now R be any point
of <T(P)>, let @ be the point of {T,(P)> which corresponds to R,
let x,y be uniformizing parameters at P and let, say, y/x€o,.
By Proposition 2, x=0 is a local equation of T(P) at R. By the
same proposition, x=0 is also a local equation of T,/(P) at @,
and hence, by the definition of the T,-transform of a cycle on G
(IMM, Definition II. 5.2, p. 70), x =0 is also the local equation of
TAT,(P)) at R. Thus T(P) and T,T,(P)) have the same local
equation at each point R of their common support. QED.

If P and @ are points of birationally equivalent surfaces, we
write P<Q if op is a proper subring of vy; and if X and Y are
two divisorial cycles on a surface F' we write X< Y if Y-X is a
strictly positive cycle. In the latter case we say that X is a proper
sub-cycle of Y.

Proposition 4. Let 8, and 8, be exceptional cycles of the 1st
kind on a non-singular surface F and let P,, P, be their contractions.
Then the following relations are equivalent.
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(a) 8,<8,;
(b) <8,><<K8>;
(c) P1>Pz-

Proof. If (a) is satisfied, then clearly <§,>C<8,>, and we
cannot have <{8,> =<§,> since any exceptional curve determines
uniquely the exceptional cycle associated with it. Thus (a) im-
plies (b).

That (b) and (c) are equivalent has been proved in IMM (Lemma
II. 3.7, p. 58).

Now assume (c). If I' is any prime component of &, then P,
is a center of v, and hence also P, is a center of v.. Further-
more, we have vp(p ) <vn(np,) since mp,Cmp,. This shows that
8,<68,, and since equality is clearly impossible, the proof is
complete.

With the notations of Proposition 4 we say that &, is a maximal
exceptional sub-cycle of &, if §,< 8, and if there exist no excep-
tional cycles & such that §,<6<§,.

Corollary 4.1. §, is a maximal exceptional sub-cycle of 8, if
and only if P, is a quadratic transform of P,.

This follows from Proposition 4 and Theorem II. 1.1 of IMM,
p. 44.

Corollary 4.2. Let T: H—F be an antiregular birational
transformation of an non-singular surface H onto a non-singular
surface F, let P be a fundamental point of T and let &= T(P).
Let T,: H>G be a locally quadratic transformation of H, with
center P, let E, be the (irreducible) curve T,{P} on G, and let
T,: G—F be the antiregular birational transformation of G such
that T, T,=T. If & is not a prime cycle (or equivalently: if T,
has fundamental points on E;) and if P/, P/, ---, P,/ denote the
Sundamental points of T, on E,, then the g exceptional cycles T,(P;)
are the only maximal exceptional sub-cycles of 6.

Obvious.

Proposition 5. If & is an exceptional cycle on a non-singular
surface F then p(8)=0 and (&)= —1. If VL is any prime component
of &, different from the principal component of <8, then (§-1')=0.

Proof. Let P be the contraction of § There exists a non-
singular surface H which carries the point P and such that §=T(P),
where T: H—F is an anti-regular birational transformation of H
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onto F (for instance, take H=F—<{>+P). Let T,: H—-G and
T,: G— F have the same meaning as in Corollary 4. 2. Using the
notations of that corollary, we have, by Proposition 3: §=T,(E,).
Since p(E,)=0 and (E%)=—1 (E, being an irreducible exceptional
curve of the first kind) and since anti-regular transformations
preserve the arithmetic genus and the self-intersection number of
any divisorial cycle, it follows that also p(§)=0 and (€*)=—1.

To prove the second part of the proposition we fix some
proper exceptional sub-cycle §, of § such that 1' is a component
of 8§, (the existence of &, follows from IMM, Proposition II. 3. 3,
p. 57). We replace in the preceding part of the proof & by §,.
Let P, H’, T’ have the same meaning in relation to &, as P, H and
T had in relation to 8. Since &, is a proper exceptional sub-cycle
of & we have H< H’ (assuming, as we may, that H=F—<{6>+P,
H' =F—(8>+P’). Let & be the exceptional cycle on H’ which
is the transform of the point P. By Proposition 3 (as applied to
the surfaces H, H’, ') we have §=7T"(§’). From Proposition II. 5. 4
of IMM, p. 71, it now follows directly that (§.1')=0.

Corollary 5.1. If 8, and 8, are distinct exceptional sub-cycles
of 8 then (8,-6,)=0.

By Proposition 5 it is sufficient to consider the case in which
both &, and &, are proper sub-cycles of &, for if, say, §, =§& then
§, is a proper exceptional sub-cycle of § and therefore no prime
component of &, is the principal component of § (IMM, Corollary
I1.3.8, p. 58). Since the corollary is vacuous if <8 is irreducible,
we use induction with respect to the number of prime components
of §. We use the notations of the proof of Proposition 5 and we
denote by P/, P, ---, P,/ the fundamental points of T, on E,.
By Corollary 4.1, each of the exceptional cycles §,, &, is a sub-
cycle of one of the exceptional cycles T,(P/). Let, say &, be a
sub-cycle of T,(P,) and &, a sub-cycle of T,(Py). If a==8, then
{TLP,)> and {T,(P)> have no common points, and the relation
(8,-8,)=0 is proved. If a«=2, then we observe that the number
of prime components of T,(P,) is less than that of & and hence
(8,-8,)=0, by our induction hypothesis.

If T: H—F is an antiregular birational transformation of a
non-singular surface H onto a non-singular surface F and if
X=>Y_1m;l'; is any divisorial cycle on H whose distinct prime
components are L', 1, ---, '), then we denote by T[X] the
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divisorial cycle >, m;T[I';], where T[I';] denotes the proper T-
transform of I';. This cycle T[X] does not, in general, coincide
with the T-transform T(X) of X as defined in IMM, p. 70.

Proposition 6. Let T: H—F be an anti-vegular birational
transformation of a non-singular surface H onto a non-singular
surface F, let P,, P,, ---, P, be the fundamental points of T (on H)
and let §;=T(P;), i=1,2,---, h. If {§;,,8;,, -, 8.} is the set
of all proper exceptional sub-cycles of &;, then for any divisorial
cycle X on H we have

T(X)=T[X]+ 2008+ 200, Z;j=1 N i8id;,

where the coefficients \;, N; j, are integers and where \; is the mul-
tiplicity of X at P;. If X>0 then the \;, \;, are non-negative.

Proof. 1t is obviously sufficient to prove the proposition under
the assumption that 2=1. The transformation T has in that
case only one fnndamental point P. We set §=T(P) and we let
{8,, 8,, -, &} be the set of all proper exceptional sub-cycles of §.
By IMM, Proposition II.5.8 (p. 73) the proposition is true if 7 is
a locally quadratic transformation. We shall therefore use induc-
tion with respect to the number of prime components of § We
use the notations of Corollary 4.2. We have, by IMM, Proposition
II.5.8 (p. 73),

T.(X)=TJ[X]+\E,,
where A is the multiplicity of X at P, and hence, by Proposition 3,
T(X) = T(T(X)) = T,(T[X])+26E.

The fundamental points of 7, are the points P/, P/, ---, P/, and
their T,-transforms represent all the maximal exceptional sub-
cycles of § (Corollary 4.2). Hence, by our induction hypothesis,
the proposition is applicable to T, and to any divisorial cycle on
G (and, in particular, to the cycle T,[X]). Since T,[T,[X]]=
T[X7], the proposition is proved.

Corollary 6.1. Let & be an exceptional cycle of the first kind
on a non-singular surface and let E, be the principal component of
& If §,,8,, -, 8 are the proper exceptional sub-cycles of 8, then

6 =E,+ 25108,
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where the \; are non-negative integers and \; is positive if §; is a
maximal exceptional sub-cycle of §.

In the notation of the proof of Proposition 6 we have §=T(P)
=T,(E,), and the corollary follows by applying Proposition 6 to
the transformation 7, and the cycle E,.

§2. The anticanonical system and exceptional cycles

Proposition 1. If K is a canonical divisor on a non-singular
surface F and & is an exceptional cycle on F, of the first kind,
then (K-8)= —1.

Proof. The proposition follows directly from Proposition 5,
§1, in view of the equality (K.X)=2p(X)—2—(X? which holds
for any divisorial cycle X on F.

Proposition 2. If an anti-regular birational transformation
T:F' —F of a non-singular surface F’ onto a non-singular surface
F is a product of n quadratic transformations then the dimension
of the anticanonical system |—K’| on F’ satisfies the inequality

dim |—K'| = n+(K)+P, ;

where K is a canonical divisor on F and where P, is the avithmetic
genus of F’ (and of F).

Proof. Assume first that n=1. Let P’ be the center of the
locally quadratic transformation 7 and let E=T{P’}. Then it is
known (see IMM, Proposition II.5.6, p. 72) that T(K)+E is a
canonical divisor K on F. Hence (K*=(K"*)—1, since (T(X")-E)
=0 for any divisorial cycle X’ of F’ (Proposition II.5.5, IMM,
p. 71) and since (E?)=—1. By induction with respect to » we
find that if T is a product of » quadratic transformations then
(K*)=(K*+mn. Since p(—K’)=1 our proposition follows from the
Riemann-Roch theorem on F”.

Theorem 1. On a non-singular surface F there cannot exist an
infinite strictly ascending chain 8 < 8,< ---<8§,< -+ of exceptional
cycles of the first kind.

Proof. We shall assume that such a chain exists and we
shall show that this assumption leads to a contradiction. Let
F;,=(F—§;)+ P;, where P; is the contraction of §;. Then F; is a
non-singular surface and we have F >F, >F, >.-- >F, >---. We
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also have P,>P,>--- >P,>---, and each F, carries an infinite
strictly ascending chain of exceptional cycles of the first kind:
namely, the cycles on F, which are the transforms of the points
P,.., P,.,, -~ form such a chain. We therefore may replace in
our proof the surface F by any of the surfaces F,. Since the
anti-regular birational transformation of F, onto F is the product
of at least »n locally quadratic transformations, the dimension of
the anticanonical system |—K,| on F, satisfies the inequality :
dim | —K,|=n+(K*+P,, where K is a canonical divisor on F and
P, is the arithmetic genus of F. Thus dim|—K,|=1 if » is
sufficiently large, and we may therefore assume that dim|—K|=1.

Let E; be the principal component of &;. Then E; is not a
component of &;, j<i (IMM, Corollary II. 3.8, p. 58), and hence
the irreducible curves E,, E,, ---, E,, --- are distinct.

By Corollary 6.1, §1, we have that §; is the sum of E; and
a certain number v; of exceptional cycles of the first kind. Here
v;=1 except if §; is a prime cycle (which can happen only for
i=1). Hence we may assume that »; >1 for all ;. By Proposition
1 it follows that

(1) (—K-E)=1—v; <0.

Let N be an integer such that no E;, i=N, is a fixed com-
ponent of the linear system |—K|. Then (—K-E;)=0 if i=N,
and hence by (1) we conclude that

(2) (—K-E;)=0, i=N.

This shows that each E;, i=N, is a fundamental curve of | — K|,
i.e., that the cycles in |—K| which have E; as component form
a (linear) subsystem L; of |—K| the dimension of which is one
less than the dimension of | —K|. Thus |— K| has infinitely many
fundamental curves. This implies that the rational transformation
of F which is defined by the linear system |— K| (IMM, p. 10) is
necessarily a curve. In other words, if we denote by B the fixed
cycle of |—K|, then the linear system obtained by deleting B
from the members of | —K| is composite with some irreducible
pencil H. Since H contains at most a finite number of cycles
which are not prime and since each E;, i= N, is a component of
some member of H, it follows that some E; is a member of H
(actually, all but a finite number of the E; must be members of
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H). However, we now show that (E?) is negative and therefore no
E; can be a member of a pencil. This contradiction will complete
the proof.

Let, then, quite generally, § be an exceptional cycle of the
first kind and let E, be the principal component of §. We have
then, by Corollary 6.1, §1:

(3) §=FE,+ 2.1 M6,

where the A; are non-negative integers and the §; are proper
exceptional sub-cycles of §. Since (§-8,)=0 (Corollary 5.1, §1)
and (8= —1, it follows from (3) that

(4) (6-E)=—1.

For a fixed j, we intersect both sides of (3) with &;, and we note
that (6;-8;)=0 if i=1=j (Corollary 5.1, §1). We thus obtain

(5) (6,-E) =X, .

Intersecting both sides of (3) with E, we find in view of (4) and
(B5): (E})=—1—%_,7;<0. This completes the proof of the
theorem.

Remark. After the relation (2) has been obtained, the rest of
the proof admits another variation. From (1) and (2) it follows
that »;=1 if /= N. It follows therefore from Corollary 6.1, §1,
that each §;, 7= N, has only one maximal exceptional sub-cycle,
say &/, and that §,=E;+§;/. By a refinement of the original
sequence §,< 8,< --- we may arrange matters so that each §; is a
maximal exceptional sub-cycle of its successor §;,,. Then §;,,=§;.
We have then 0=(8;-6,.,)=(E;-E; )+ (E;-8,)+(8;_,8,.,)=(E;-E;.,)
+(E;-8;). By relation (4), applied to §=28§;, we have (E;-§;)=—1.
Hence (E;-E;.,)=1. Now let {=N and let L; be the above sub-
system of |—K | whose members contain E; as component. If D
is any member of L;, D=E;+D;, then 0=(D-E;.,)=1+(D;-E;,)),
ie. (D;-E;;)=—1. Hence E;,, is a component of D;, and if we
set D,=FE;, ,+D;.,, then from (E;,-E;,,)=0, (E;;,-E;;,)=1 and
(D-E;;,)=0 follows at once that (D,,,-E;;,)< 0 and that con-
sequently E;,, is a component of D;,,. Proceeding in this fashion
we see that all the curves E;, E,,,, -~ are components of D, and
this is absurd.
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§3. The descending chain condition in the birational class of F'

We now come to our main object, i.e. to the proof of the
following theorem :

Every strictly descending chain F_>F _>F, > --- of birationally
equivalent non-singular surfaces is necessarily finite.

Proof. We shall assume that there exists an infinite strictly
descending chain

F>F >F, > >F, >

of non-singular surfaces (each F; dominating its successor Fj,,)
and we shall show that this assumption leads to a contradiction.

We fix on each F, (#>=1) a fundamental point P, of the
antiregular birational transformation of F, onto F,_, and we denote
by 8, the exceptional cycle of the first kind on F which corresponds
to the point P, in the antiregular birational transformation of F,
onto F. By Theorem 1, §2, the infinite set {&,, §&,, -, &,, -}
contains an infinite subset {§;,§,,, -:-,§;,, -~} consisting of maxi-
mal elements of the set. I assert that {§;> [\<8i3>=0 if a==4.
For assume the contrary and let @ be a common point of <§;>
and <8,~B>. Then @ corresponds to both points P; , P,-H, and since
Q>P;, and Q>P,~5 it follows that P;, and P;, are corresponding
points in the birational transformation between F;, and Fiﬂ. If,
say, @<, then it follows that Piw>P£B, whence 8;,<8;,, which
is impossible. This proves our above assertion.

Any minimal exceptional sub-cycle of an exceptional cycle of
the first kind is a prime cycle. We fix a minimal exceptional
sub-cycle E, of §;, for each a. Then the E, are irreducible
exceptional curves of the first kind, and

(1) Ea/\Ea=0-

We may assume that the anticanonical system |—K| on F
has dimension =2 (see §2). We fix a linear subsystem L of | —K|
which has dimension 2. If D is any member of L we have

(2) (D-E,)=1, all «.

Let B be the fixed cycle of L (if such a cycle exists) and let
L,=L—B. If B meets a given E, then (D,-E,)=0 for any D, in
L, in view of (2), and thus E, is a fundamental curve of L,.
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The assumption that L has infinitely many fundamental curves E,
would lead to the same contradiction as was reached in the proof
of Theorem 1 (in view of (EZ)= —1). Hence B meets at most a
finite number of E,. Omitting if necessary a finite number of
the E, we may therefore assume that B meets no E, and that
consequently (D,-E,)=1 for all «. We replace L by L,, and we
may therefore assume that L has no fixed components without
violating (2), and also that no E, is fundamental for L. Since
dim L =2, it follows from (2) that for each « there exists one and
only one cycle D, in L such that E, is a component of D,. This
cycle D, cannot be E, itself since (E2) is negative. Hence D, is
not a prime cycle. Let M/k be the smallest algebraic sub-system
of L/k which contains all the cycles D, and let N be an irreducible
component of M/k such that N contains infinitely many of the
cycles D,. Then it is clear that if D* is a general member of
N/E (the coordinates of the Chow point of D* belonging to a
universal domain), infinitely many of the curves E, (regarded as
cycles) will be specializations, over k, of one and the same prime
component of D*. Since this is a contradiction with the fact that
the E, have a negative self-intersection number, the proof of the
theorem is complete.
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