On holomorphic curves in algebraic torus

By

Masaki Tsukamoto*

Abstract

We study entire holomorphic curves in the algebraic torus, and show that they can be characterized by the "growth rate" of their derivatives.

1. Introduction

Let $z = x + y\sqrt{-1}$ be the natural coordinate in the complex plane \mathbb{C} , and let f(z) be an entire holomorphic function in the complex plane. Suppose that there are a non-negative integer m and a positive constant C such that

$$|f(z)| \le C|z|^m \quad (|z| \ge 1).$$

Then f(z) becomes a polynomial with deg $f(z) \leq m$. This is a well-known fact in the complex analysis in one variable. In this paper, we prove an analogous result for entire holomorphic curves in the algebraic torus $(\mathbb{C}^*)^n := (\mathbb{C} \setminus \{0\})^n$.

Let $[z_0: z_1: \cdots: z_n]$ be the homogeneous coordinate in the complex projective space $\mathbb{C}P^n$. We define the complex manifold $X \subset \mathbb{C}P^n$ by

$$X := \{ [1: z_1: \dots : z_n] \in \mathbb{C}P^n | z_i \neq 0 \ (1 \le i \le n) \} \cong (\mathbb{C}^*)^n.$$

X is a natural projective embedding of $(\mathbb{C}^*)^n$. We use the restriction of the Fubini-Study metric as the metric on X. (Note that this metric is different from the natural flat metric on $(\mathbb{C}^*)^n$ induced by the universal covering $\mathbb{C}^n \to (\mathbb{C}^*)^n$.)

For a holomorphic map $f: \mathbb{C} \to X$, we define the pointwise norm |df|(z) by setting

(1.1)
$$|df|(z) := \sqrt{2} |df(\partial/\partial z)| \text{ for all } z \in \mathbb{C}.$$

Here $\partial/\partial z = \frac{1}{2} (\partial/\partial x - \sqrt{-1}\partial/\partial y)$, and the normalization factor $\sqrt{2}$ comes from $|\partial/\partial z| = 1/\sqrt{2}$.

The first result of this paper is the following.

 $2000\ Mathematics\ Subject\ Classification (s).\ 32 H30$

Received May 18, 2007

Revised November 29, 2007

*Supported by Grant-in-Aid for JSPS Fellows (19·1530) from Japan Society for the Promotion of Science.

Theorem 1.1. Let $f: \mathbb{C} \to X$ be a holomorphic map. Suppose there are a non-negative integer m and a positive constant C such that

$$(1.2) |df|(z) \le C|z|^m (|z| \ge 1).$$

Then there are polynomials $g_1(z)$, $g_2(z)$, \cdots , $g_n(z)$ with $\deg g_i(z) \leq m+1$ $(1 \leq i \leq n)$ such that

(1.3)
$$f(z) = [1 : e^{g_1(z)} : e^{g_2(z)} : \dots : e^{g_n(z)}].$$

Conversely, if a holomorphic map f(z) is expressed by (1.3) with polynomials $g_i(z)$ of degree $\leq m+1$, then f(z) satisfies the "polynomial growth condition" (1.2).

The direction $(1.3) \Rightarrow (1.2)$ is easier, and the substantial part of the argument is the direction $(1.2) \Rightarrow (1.3)$.

If we set m=0 in the above, then we get the following corollary.

Corollary 1.1. Let $f: \mathbb{C} \to X$ be a holomorphic map with bounded derivative, i.e., $|df|(z) \leq C$ for some positive constant C. Then there are complex numbers a_i and b_i $(1 \leq i \leq n)$ such that

$$f(z) = [1 : e^{a_1 z + b_1} : e^{a_2 z + b_2} : \dots : e^{a_n z + b_n}].$$

This is the theorem of F. Berteloot and J. Duval in [2, Appendice]. (I also gave a proof of this result in [4, Section 6].) Holomorphic curves with bounded derivative are usually called "Brody curves" (cf. Brody [3]). Hence the condition (1.2) is an extension of the Brody condition.

Remark 1. Let T(r, f) be the Shimizu-Ahlfors characteristic function of a holomorphic curve $f : \mathbb{C} \to X$:

$$T(r,f) := \int_{1}^{r} \frac{dt}{t} \int_{|z| \le t} |df|^{2}(z) dxdy.$$

It is easy to see that f(z) can be expressed by (1.3) with polynomials $g_i(z)$ of degree $\leq m+1$ if and only if

$$(1.4) T(r,f) < \operatorname{const} \cdot r^{m+1} \quad (r > 1).$$

(See Section 4.) Hence we have to prove (1.4) under the condition (1.2). But the direct consequence of (1.2) is

$$T(r, f) \le \operatorname{const} \cdot r^{2m+2} \quad (r \ge 1).$$

From this estimate, we can only prove that f(z) can be expressed by (1.3) with polynomials $g_i(z)$ of degree $\leq 2m+2$. The proof of (1.2) \Rightarrow (1.4) needs a precise analysis on the behavior of |df|, and this is the main task of the paper. The pointwise norm |df|(z) is actually very complicated object (see the beginning of Section 2), and one of the purposes of this paper is to develop techniques to handle it.

Remark 2. If the metric on $(\mathbb{C}^*)^n$ is the natural flat metric induced by the universal covering $\mathbb{C}^n \to (\mathbb{C}^*)^n$, then the statement of Theorem 1.1 is trivial. Our theorem tells us that the same conclusion holds even if we use the Fubini-Study metric.

Theorem 1.1 states that holomorphic curves in X can be characterized by the growth rate of their derivatives. We can formulate this fact more clearly as follows;

Let $g_1(z), g_2(z), \dots, g_n(z)$ be polynomials, and define $f: \mathbb{C} \to X$ by (1.3). We define the integer $m \geq -1$ by setting

$$(1.5) m := -1 + \max(\deg g_1(z), \deg g_2(z), \cdots, \deg g_n(z)).$$

We have m = -1 if and only if f is a constant map. This integer m can be obtained as the growth rate of |df|:

Theorem 1.2. If $m \ge 0$, then we have

$$\limsup_{r \to \infty} \frac{\max_{|z|=r} \log |df|(z)}{\log r} = m.$$

The order ρ_f of a holomorphic curve f is usually defined by

$$\rho_f := \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

It is easy to see that $\rho_f = m + 1$ under the condition of this theorem. Hence this theorem tells us that we can prove a similar result for the pointwise norm |df|.

Corollary 1.2. Let λ be a non-negative real number, and let $[\lambda]$ be the maximum integer not greater than λ . Let $f: \mathbb{C} \to X$ be a holomorphic map, and suppose that there is a positive constant C such that

$$(1.6) |df|(z) \le C|z|^{\lambda} (|z| \ge 1).$$

Then we have a positive constant C' such that

$$|df|(z) \le C'|z|^{[\lambda]} \quad (|z| \ge 1).$$

Proof. If f is a constant map, then the statement is trivial. Hence we can suppose that f is not constant. From Theorem 1.1, f can be expressed by (1.3) with polynomials $g_i(z)$ of degree $\leq [\lambda] + 2$. Since f satisfies (1.6), we have

$$\limsup_{r \to \infty} \frac{\max_{|z|=r} \log |df|(z)}{\log r} \le \lambda.$$

From Theorem 1.2, this shows deg $g_i(z) \leq [\lambda] + 1$ for all $g_i(z)$. Then, Theorem 1.1 gives the conclusion.

2. Proof of $(1.3) \Rightarrow (1.2)$

Let $f: \mathbb{C} \to X$ be a holomorphic map. From the definition of X, we have holomorphic maps $f_i: \mathbb{C} \to \mathbb{C}^*$ $(1 \le i \le n)$ such that $f(z) = [1: f_1(z): \cdots: f_n(z)]$. The norm |df|(z) in (1.1) is given by (2.1)

$$|df|^2(z) = \frac{1}{4\pi} \Delta \log \left(1 + \sum_{i=1}^n |f_i(z)|^2 \right) \quad \left(\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}} \right).$$

Suppose that f is expressed by (1.3) with polynomials $g_i(z)$ of degree $\leq m+1$. Then $f_i(z) = e^{g_i(z)}$ $(1 \leq i \leq n)$, and we have

$$|df|^{2} = \frac{1}{\pi} \left[\frac{\sum_{i} |f'_{i}|^{2}}{(1 + \sum_{i} |f_{i}|^{2})^{2}} + \frac{\sum_{i < j} |g'_{i} - g'_{j}|^{2} |f_{i}|^{2} |f_{j}|^{2}}{(1 + \sum_{i} |f_{i}|^{2})^{2}} \right],$$

$$\leq \frac{1}{\pi} \left[\sum_{i} \frac{|f'_{i}|^{2}}{(1 + |f_{i}|^{2})^{2}} + \sum_{i < j} \frac{|g'_{i} - g'_{j}|^{2} |f_{i}|^{2} |f_{j}|^{2}}{(|f_{i}|^{2} + |f_{j}|^{2})^{2}} \right],$$

$$= \frac{1}{\pi} \left[\sum_{i} \frac{|f'_{i}|^{2}}{(1 + |f_{i}|^{2})^{2}} + \sum_{i < j} \frac{|(f_{i}/f_{j})'|^{2}}{(1 + |f_{i}/f_{j}|^{2})^{2}} \right],$$

$$= \sum_{i} |df_{i}|^{2} + \sum_{i < j} |d(f_{i}/f_{j})|^{2}.$$

Here we have set

$$|df_i| := \frac{1}{\sqrt{\pi}} \frac{|f_i'|}{1 + |f_i|^2}$$
 and $|d(f_i/f_j)| := \frac{1}{\sqrt{\pi}} \frac{|(f_i/f_j)'|}{1 + |f_i/f_j|^2}$.

These are the norms of the differentials of the maps f_i , $f_i/f_j : \mathbb{C} \to \mathbb{C}P^1$. (We will repeatedly use the above (2.2) in this paper.)

We have $f_i(z) = \exp(g_i(z))$ and $f_i(z)/f_j(z) = \exp(g_i(z) - g_j(z))$, and the degrees of the polynomials $g_i(z)$ and $g_i(z) - g_j(z)$ are at most m + 1. Then, the next lemma gives the desired conclusion:

$$|df|(z) \le C|z|^m \quad (|z| \ge 1)$$

for some positive constant C.

Lemma 2.1. Let g(z) be a polynomial of degree $\leq m+1$, and set $h(z) := e^{g(z)}$. Then there is a positive constant C such that

$$|dh|(z) = \frac{1}{\sqrt{\pi}} \frac{|h'(z)|}{1 + |h(z)|^2} \le C|z|^m \quad (|z| \ge 1).$$

Proof. We have

$$\sqrt{\pi} |dh| = \frac{|g'|}{|h| + |h|^{-1}} \le |g'| \min(|h|, |h|^{-1}) \le |g'|.$$

Since the degree of g'(z) is at most m, we easily get the conclusion.

3. Preliminary estimates

In this section, k is a fixed positive integer. The following is a standard fact in the Nevanlinna theory.

Lemma 3.1. Let g(z) be a polynomial of degree k, and set $h(z) = e^{g(z)}$. Then there is a positive constant C such that

$$\int_1^r \frac{dt}{t} \int_{|z| \le t} |dh|^2(z) \, dx dy \le Cr^k \quad (r \ge 1).$$

Proof. Since $|dh|^2 = \frac{1}{4\pi}\Delta \log(1+|h|^2)$, Jensen's formula gives

$$\int_{1}^{r} \frac{dt}{t} \int_{|z| \le t} |dh|^{2} dx dy = \frac{1}{4\pi} \int_{|z| = r} \log(1 + |h|^{2}) d\theta - \frac{1}{4\pi} \int_{|z| = 1} \log(1 + |h|^{2}) d\theta.$$

Here (r, θ) is the polar coordinate in the complex plane. We have

$$\log(1+|h|^2) \le 2|\text{Re } g(z)| + \log 2 \le Cr^k \quad (r:=|z| \ge 1).$$

Thus we get the conclusion.

Let I be a closed interval in \mathbb{R} , and let u(x) be a real valued function defined on I. We define its \mathcal{C}^1 -norm $\|u\|_{\mathcal{C}^1(I)}$ by setting

$$||u||_{\mathcal{C}^1(I)} := \sup_{x \in I} |u(x)| + \sup_{x \in I} |u'(x)|.$$

For a Lebesgue measurable set E in \mathbb{R} , we denote its Lebesgue measure by |E|.

Lemma 3.2. There is a positive number ε satisfying the following: If a real valued function $u(x) \in C^1[0,\pi]$ satisfies

$$(3.1) ||u(x) - \cos x||_{\mathcal{C}^1[0,\pi]} \le \varepsilon,$$

then we have

$$|u^{-1}([-t,t])| \le 4t$$
 for any $t \in [0,\varepsilon]$.

Proof. The proof is just an elementary calculus. We choose $\delta > 0$ so that $\sin x \geq 3/4$ for all $x \in [\pi/2 - \delta, \pi/2 + \delta]$. (Note that $\sin(\pi/2) = 1$.) We choose a positive number $\varepsilon < 1/4$ sufficiently small so that for any $u \in \mathcal{C}^1[0, \pi]$ satisfying (3.1) and for any $t \in [0, \varepsilon]$

$$u^{-1}([-t,t]) \subset [\pi/2 - \delta, \pi/2 + \delta].$$

Let x_1 and x_2 be any two elements in $u^{-1}([-t,t])$. From the mean value theorem, there exists $y \in [\pi/2 - \delta, \pi/2 + \delta]$ such that

$$u(x_1) - u(x_2) = u'(y)(x_1 - x_2).$$

We have $|u'(y)| \ge |\sin y| - |\sin y + u'(y)| \ge 3/4 - \varepsilon \ge 1/2$. Hence

$$|x_1 - x_2| \le 2 |u(x_1) - u(x_2)| \le 4t.$$

Thus we get

$$|u^{-1}([-t,t])| \le 4t.$$

Using a scale change of the coordinate, we get the following.

Lemma 3.3. There is a positive number ε satisfying the following: If a real valued function $u(x) \in C^1[0, 2\pi]$ satisfies

$$||u(x) - \cos kx||_{\mathcal{C}^1[0, 2\pi]} \le \varepsilon,$$

then we have

$$|u^{-1}([-t,t])| \le 8t$$
 for any $t \in [0,\varepsilon]$.

Proof.

$$u^{-1}([-t,t]) = \bigcup_{j=0}^{2k-1} u^{-1}([-t,t]) \cap [j\pi/k, (j+1)\pi/k].$$

Applying Lemma 3.2 to u(x/k), we have

$$|u^{-1}([-t,t]) \cap [0,\pi/k]| \le 4t/k.$$

In a similar way,

$$|u^{-1}([-t,t]) \cap [j\pi/k, (j+1)\pi/k]| \le 4t/k \quad (j=0,1,\dots,2k-1).$$

Thus we get the conclusion.

Let E be a subset of \mathbb{C} . For a positive number r, we set

$$E(r) := \{ \theta \in [0, 2\pi] | re^{i\theta} \in E \}.$$

In the rest of this section, we always assume $k \geq 2$.

Lemma 3.4. Let C be a positive constant, and let $g(z) = z^k + a_1 z^{k-1} + \cdots + a_k$ be a monic polynomial of degree k. Set

$$E := \{ z \in \mathbb{C} | |\operatorname{Re} g(z)| \le C|z| \}.$$

Then there exists a positive number r_0 such that

$$|E(r)| \le 8C/r^{k-1} \quad (r \ge r_0).$$

Proof. Set $v(z) := \operatorname{Re}(a_1 z^{k-1} + a_2 z^{k-2} + \dots + a_k)$. Then we have $|\operatorname{Re} q(re^{i\theta})| < Cr \iff |\cos k\theta + v(re^{i\theta})/r^k| < C/r^{k-1}$.

Set $u(\theta) := \cos k\theta + v(re^{i\theta})/r^k$. It is easy to see that

$$\|u(\theta) - \cos k\theta\|_{\mathcal{C}^1[0,2\pi]} \le \mathrm{const}/r \quad (r \ge 1).$$

Then we can apply Lemma 3.3 to this $u(\theta)$, and we get

$$|E(r)| = |u^{-1}([-C/r^{k-1}, C/r^{k-1}])| \le 8C/r^{k-1} \quad (r \gg 1).$$

Here we have used $k \geq 2$.

The following is the key lemma.

Lemma 3.5. Let $g(z) = a_0 z^k + a_1 z^{k-1} + \cdots + a_k$ be a polynomial of degree k $(a_0 \neq 0)$. Set

$$E := \{ z \in \mathbb{C} | | \operatorname{Re} g(z) | \le |z| \}.$$

Then there exists a positive number r_0 such that

$$|E(r)| \le \frac{8}{|a_0|r^{k-1}} \quad (r \ge r_0).$$

Proof. Let $\arg a_0$ be the argument of a_0 , and set $\alpha := \arg a_0/k$. We define the monic polynomial $g_1(z)$ by

$$g_1(z) := \frac{1}{|a_0|} g(e^{-i\alpha}z) = z^k + \cdots$$

Then we have

$$|\operatorname{Re} g(re^{i\theta})| \le r \iff |\operatorname{Re} g_1(re^{i(\theta+\alpha)})| \le r/|a_0|.$$

Hence the conclusion follows from Lemma 3.4.

Lemma 3.6. Let g(z) be a polynomial of degree k, and we define E as in Lemma 3.5. Set $h(z) := e^{g(z)}$. Then we have

$$\int_{\mathbb{C}\backslash E} |dh|^2(z)\,dxdy < \infty.$$

Proof. Since $|h| = e^{\text{Re } g}$, the argument in the proof of Lemma 2.1 gives

$$\sqrt{\pi} |dh| \le |g'| \min(|h|, |h|^{-1}) = |g'| e^{-|\text{Re } g|}.$$

Note that g'(z) is a polynomial of degree k-1 and that we have $|\operatorname{Re} g| > |z|$ for $z \in \mathbb{C} \setminus E$. Hence we have a positive constant C such that

$$|dh|(z) \le C|z|^{k-1}e^{-|z|}$$
 if $z \in \mathbb{C} \setminus E$ and $|z| \ge 1$.

The conclusion follows from this estimate.

4. Proof of $(1.2) \Rightarrow (1.3)$

Let $f = [1: f_1: f_2: \cdots: f_n]: \mathbb{C} \to X$ be a holomorphic map with $|df|(z) \leq C|z|^m$ ($|z| \geq 1$). Since $\exp: \mathbb{C} \to \mathbb{C}^*$ is the universal covering, there exist entire holomorphic functions $g_i(z)$ such that $f_i(z) = e^{g_i(z)}$. We will prove that all $g_i(z)$ are polynomials of degree $\leq m+1$. The proof falls into two steps. In the first step, we prove all $g_i(z)$ are polynomials. In the second step, we show $\deg g_i(z) \leq m+1$. The second step is the harder part of the proof.

Schwarz's formula (see Ahlfors [1, p. 168]) gives*1

$$g_i(\zeta) = \frac{1}{\pi} \int_{|z|=r} \frac{z}{z-\zeta} \operatorname{Re}(g_i(z)) d\theta + \operatorname{const}, \text{ where } |\zeta| < r \text{ and } \theta = \arg z.$$

Differentiating this equation, we get $(k \ge 1)$

$$\pi r^k g_i^{(k)}(0) = k! \int_{|z|=r} \text{Re}(g_i(z)) e^{-k\sqrt{-1}\theta} d\theta = k! \int_{|z|=r} \log|f_i(z)| e^{-k\sqrt{-1}\theta} d\theta.$$

We have

$$|\log |f_i|| \le \log(|f_i| + |f_i|^{-1}) = \log(1 + |f_i|^2) - \log|f_i| \le \log(1 + \sum |f_j|^2) - \log|f_i|.$$

Hence

$$\pi r^k |g_i^{(k)}(0)| \le k! \int_{|z|=r} \log(1+\sum |f_j|^2) d\theta - k! \int_{|z|=r} \log|f_i| d\theta.$$

Since $\log |f_i| = \text{Re } g_i(z)$ is a harmonic function, the second term in the right-hand side is equal to the constant $-2\pi k! \, \text{Re } g_i(0)$. Since $|df|^2 = \frac{1}{4\pi} \Delta \log(1 + \sum |f_j|^2)$, Jensen's formula gives

$$\frac{1}{4\pi} \int_{|z|=r} \log(1+\sum |f_j|^2) d\theta - \frac{1}{4\pi} \int_{|z|=1} \log(1+\sum |f_j|^2) d\theta,$$

$$= \int_1^r \frac{dt}{t} \int_{|z| \le t} |df|^2(z) dx dy.$$

Thus we get

(4.1)
$$\frac{r^k}{4k!} |g_i^{(k)}(0)| \le \int_1^r \frac{dt}{t} \int_{|z| < t} |df|^2(z) \, dx dy + \text{const.}$$

Since $|df|(z) \leq C|z|^m$ ($|z| \geq 1$), the right-hand side is $O(r^{2m+2})$. Hence $g_i^{(k)}(0) = 0$ for $k \geq 2m + 3$, and all $g_i(z)$ are polynomials (cf. Remark 1).

^{*1}I learned the idea of using Schwarz's formula from Berteloot-Duval [2, Appendice]. I gave a different approach in [4, Section 6].

Next we will prove $\deg g_i(z) \leq m+1$. We define $E_i, E_{ij} \subset \mathbb{C}$ $(1 \leq i \leq n, 1 \leq i < j \leq n)$ by setting

$$\begin{split} \deg g_i(z) &\leq m+1 \Longrightarrow E_i := \emptyset, \\ \deg g_i(z) &\geq m+2 \Longrightarrow E_i := \{z \in \mathbb{C} | |\operatorname{Re} g_i(z)| \leq |z| \}, \\ \deg(g_i(z) - g_j(z)) &\leq m+1 \Longrightarrow E_{ij} := \emptyset, \\ \deg(g_i(z) - g_j(z)) &\geq m+2 \Longrightarrow E_{ij} := \{z \in \mathbb{C} | |\operatorname{Re} (g_i(z) - g_j(z))| \leq |z| \}. \end{split}$$

We set $E := \bigcup_i E_i \cup \bigcup_{i < j} E_{ij}$. Then we have $E(r) = \bigcup_i E_i(r) \cup \bigcup_{i < j} E_{ij}(r)$ for r > 0. From Lemma 3.5, we have positive constants r_0 and C' such that

$$(4.2) |E(r)| \le C'/r^{m+1} (r \ge r_0).$$

We have

$$\int_{1}^{r} \frac{dt}{t} \int_{|z| \le t} |df|^{2}(z) dxdy
= \int_{1}^{r} \frac{dt}{t} \int_{E \cap \{|z| \le t\}} |df|^{2}(z) dxdy + \int_{1}^{r} \frac{dt}{t} \int_{E^{c} \cap \{|z| \le t\}} |df|^{2}(z) dxdy.$$

Using (4.2) and $|df|(z) \le C|z|^m$ ($|z| \ge 1$), we can estimate the first term in the right-hand side of (4.3) as follows:

$$\int_{E \cap \{1 \le |z| \le t\}} |df|^2(z) \, dx dy \le C^2 \int_{E \cap \{1 \le |z| \le t\}} r^{2m+1} \, dr d\theta,$$
$$= C^2 \int_1^t r^{2m+1} |E(r)| dr.$$

If $t \geq r_0$, then

$$\int_{r_0}^t r^{2m+1} |E(r)| dr \leq C' \int_{r_0}^t r^m dr = \frac{C'}{m+1} t^{m+1} - \frac{C'}{m+1} r_0^{m+1}.$$

Thus

$$(4.4) \qquad \int_{1}^{r} \frac{dt}{t} \int_{E \cap \{|z| \le t\}} |df|^{2}(z) \, dx dy \le \operatorname{const} \cdot r^{m+1} \quad (r \ge 1).$$

Next we will estimate the second term in the right-hand side of (4.3) by using the inequality (2.2) given in Section 2:

$$|df|^2 \le \sum_i |df_i|^2 + \sum_{i \le j} |d(f_i/f_j)|^2.$$

If deg $g_i(z) \leq m+1$, then Lemma 3.1 gives

$$\int_{1}^{r} \frac{dt}{t} \int_{E^{c} \cap \{|z| \le t\}} |df_{i}|^{2}(z) \, dx dy \le \int_{1}^{r} \frac{dt}{t} \int_{|z| \le t} |df_{i}|^{2}(z) \, dx dy \le \operatorname{const} \cdot r^{m+1}.$$

If $\deg g_i(z) \geq m+2$, then Lemma 3.6 gives

$$\int_{E^c \cap \{|z| \le t\}} |df_i|^2(z) \, dx dy \le \int_{E_i^c \cap \{|z| \le t\}} |df_i|^2(z) \, dx dy \le \text{const.}$$

The terms for $|d(f_i/f_j)|$ can be estimated in the same way, and we get

(4.5)
$$\int_{1}^{r} \frac{dt}{t} \int_{E^{c} \cap \{|z| \le t\}} |df|^{2}(z) \, dx dy \le \operatorname{const} \cdot r^{m+1} \quad (r \ge 1).$$

From (4.3), (4.4), (4.5), we get

$$\int_1^r \frac{dt}{t} \int_{|z| < t} |df|^2(z) \, dx dy \le \operatorname{const} \cdot r^{m+1} \quad (r \ge 1).$$

From (4.1), this shows $g_i^{(k)}(0) = 0$ for $k \ge m+2$. Thus $g_i(z)$ are polynomials with deg $g_i(z) \le m+1$. This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 needs the following lemma.

Lemma 5.1. Let $k \ge 1$ be an integer, and let δ be a real number satisfying $0 < \delta < 1$. Let $g(z) = a_0 z^k + a_1 z^{k-1} + \dots + a_k$ be a polynomial of degree k $(a_0 \ne 0)$. We set $h(z) := e^{g(z)}$ and define $E \subset \mathbb{C}$ by

$$E := \{ z \in \mathbb{C} | |\operatorname{Re} g(z)| \le |z|^{\delta} \}.$$

Then we have

$$\int_{\mathbb{C}\backslash E} |dh|^2(z)\,dxdy < \infty,$$

and there is a positive number r_0 such that

$$|E(r)| \le \frac{8}{|a_0|r^{k-\delta}} \quad (r \ge r_0).$$

Proof. This can be proved by the methods in Section 3. We omit the detail. $\hfill\Box$

Let $g_1(z), g_2(z), \dots, g_n(z)$ be polynomials, and define the holomorphic map $f: \mathbb{C} \to X$ and the integer $m \geq -1$ by (1.3) and (1.5). Here we suppose $m \geq 0$, i.e., f is not a constant map. We will prove Theorem 1.2.

From Theorem 1.1, we have

$$|df|(z) \le \operatorname{const} \cdot |z|^m \quad (|z| \ge 1).$$

It follows

$$\limsup_{r \to \infty} \frac{\max_{|z|=r} \log |df|(z)}{\log r} \le m.$$

We want to prove that this is actually an equality. Suppose

$$\limsup_{r \to \infty} \frac{\max_{|z|=r} \log |df|(z)}{\log r} \leqq m.$$

Then, if we take $\varepsilon > 0$ sufficiently small, there exists a positive number r_0 such that

$$(5.1) |df|(z) \le |z|^{m-\varepsilon} (|z| \ge r_0).$$

Schwarz's formula gives the inequality (4.1):

(5.2)
$$\frac{r^k}{4k!} |g_i^{(k)}(0)| \le \int_1^r \frac{dt}{t} \int_{|z| \le t} |df|^2(z) \, dx dy + \text{const} \quad (k \ge 0).$$

Let δ be a positive number such that $0 < \delta < 2\varepsilon$. We define E_i and E_{ij} $(1 \le i \le n, 1 \le i < j \le n)$ by setting

$$\deg g_i(z) \le m \Longrightarrow E_i := \emptyset,$$

$$\deg g_i(z) = m + 1 \Longrightarrow E_i := \{ z \in \mathbb{C} | |\operatorname{Re} g_i(z)| \le |z|^{\delta} \},$$

$$\deg(g_i(z) - g_j(z)) \le m \Longrightarrow E_{ij} := \emptyset,$$

$$\deg(g_i(z) - g_j(z)) = m + 1 \Longrightarrow E_{ij} := \{ z \in \mathbb{C} | |\operatorname{Re} (g_i(z) - g_j(z))| \le |z|^{\delta} \}.$$

We set $E := \bigcup_i E_i \cup \bigcup_{i < j} E_{ij}$. Then, if we take r_0 sufficiently large, we have (from Lemma 5.1)

$$(5.3) |E(r)| \le \operatorname{const}/r^{m+1-\delta} (r \ge r_0).$$

We have

$$\begin{split} \int_{1}^{r} \frac{dt}{t} \int_{|z| \le t} |df|^{2}(z) \, dx dy \\ &= \int_{1}^{r} \frac{dt}{t} \int_{E \cap \{|z| \le t\}} |df|^{2}(z) \, dx dy + \int_{1}^{r} \frac{dt}{t} \int_{E^{c} \cap \{|z| \le t\}} |df|^{2}(z) \, dx dy. \end{split}$$

From (5.1) and (5.3), the first term in the right-hand side can be estimated as in Section 4:

$$\int_1^r \frac{dt}{t} \int_{E \cap \{|z| \le t\}} |df|^2(z) \, dx dy \le \operatorname{const} \cdot r^{m+1-(2\varepsilon - \delta)} \quad (r \ge 1).$$

Using Lemma 5.1 and the inequality $|df|^2 \leq \sum_i |df_i|^2 + \sum_{i < j} |d(f_i/f_j)|^2$, we can estimate the second term:

$$\int_1^r \frac{dt}{t} \int_{E^c \cap \{|z| < t\}} |df|^2(z) \, dx dy \le \operatorname{const} \cdot \log r + \operatorname{const} \cdot r^m \quad (r \ge 1).$$

Thus we get

$$\int_{1}^{r} \frac{dt}{t} \int_{|z| < t} |df|^{2}(z) \, dx dy \le \operatorname{const} \cdot r^{m+1-(2\varepsilon - \delta)} \quad (r \ge 1).$$

Note that $2\varepsilon - \delta$ is a positive number. Using this estimate in (5.2), we get

$$g_i^{(k)}(0) = 0 \quad (k \ge m+1).$$

This shows deg $g_i(z) \leq m$. This contradicts the definition of m.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYOTO UNIVERSITY
KYOTO 606-8502
JAPAN
e-mail: tukamoto@math.kyoto-u.ac.jp

References

- [1] L. V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable, Third edition, International Series in Pure and Applied Mathematics, McGraw-Hill Book Company, New York (1978).
- [2] F. Berteloot and J. Duval, Sur l'hyperbolicité de certains complémentaires, Enseign. Math. 47 (2001), 253–267.
- [3] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219.
- [4] M. Tsukamoto, A packing problem for holomorphic curves, preprint, arXiv: math.CV/0605353.