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On holomorphic curves in algebraic torus

By

Masaki Tsukamoto∗

Abstract

We study entire holomorphic curves in the algebraic torus, and show
that they can be characterized by the “growth rate” of their derivatives.

1. Introduction

Let z = x + y
√−1 be the natural coordinate in the complex plane C, and

let f(z) be an entire holomorphic function in the complex plane. Suppose that
there are a non-negative integer m and a positive constant C such that

|f(z)| ≤ C|z|m (|z| ≥ 1).

Then f(z) becomes a polynomial with deg f(z) ≤ m. This is a well-known fact
in the complex analysis in one variable. In this paper, we prove an analogous
result for entire holomorphic curves in the algebraic torus (C∗)n := (C \ {0})n.

Let [z0 : z1 : · · · : zn] be the homogeneous coordinate in the complex
projective space CPn. We define the complex manifold X ⊂ CPn by

X := {[1 : z1 : · · · : zn] ∈ CPn| zi �= 0 (1 ≤ i ≤ n)} ∼= (C∗)n.

X is a natural projective embedding of (C∗)n. We use the restriction of the
Fubini-Study metric as the metric on X. (Note that this metric is different from
the natural flat metric on (C∗)n induced by the universal covering Cn → (C∗)n.)

For a holomorphic map f : C → X, we define the pointwise norm |df |(z)
by setting

(1.1) |df |(z) :=
√

2 |df(∂/∂z)| for all z ∈ C.

Here ∂/∂z = 1
2 (∂/∂x − √−1∂/∂y), and the normalization factor

√
2 comes

from |∂/∂z| = 1/
√

2.
The first result of this paper is the following.
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Theorem 1.1. Let f : C → X be a holomorphic map. Suppose there
are a non-negative integer m and a positive constant C such that

(1.2) |df |(z) ≤ C|z|m (|z| ≥ 1).

Then there are polynomials g1(z), g2(z), · · · , gn(z) with deg gi(z) ≤ m + 1
(1 ≤ i ≤ n) such that

(1.3) f(z) = [1 : eg1(z) : eg2(z) : · · · : egn(z)].

Conversely, if a holomorphic map f(z) is expressed by (1.3) with poly-
nomials gi(z) of degree ≤ m + 1, then f(z) satisfies the “polynomial growth
condition” (1.2).

The direction (1.3) ⇒ (1.2) is easier, and the substantial part of the argu-
ment is the direction (1.2) ⇒ (1.3).

If we set m = 0 in the above, then we get the following corollary.

Corollary 1.1. Let f : C → X be a holomorphic map with bounded
derivative, i.e., |df |(z) ≤ C for some positive constant C. Then there are
complex numbers ai and bi (1 ≤ i ≤ n) such that

f(z) = [ 1 : ea1z+b1 : ea2z+b2 : · · · : eanz+bn ].

This is the theorem of F. Berteloot and J. Duval in [2, Appendice]. (I
also gave a proof of this result in [4, Section 6].) Holomorphic curves with
bounded derivative are usually called “Brody curves” (cf. Brody [3]). Hence
the condition (1.2) is an extension of the Brody condition.

Remark 1. Let T (r, f) be the Shimizu-Ahlfors characteristic function
of a holomorphic curve f : C → X:

T (r, f) :=
∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy.

It is easy to see that f(z) can be expressed by (1.3) with polynomials gi(z) of
degree ≤ m + 1 if and only if

(1.4) T (r, f) ≤ const · rm+1 (r ≥ 1).

(See Section 4.) Hence we have to prove (1.4) under the condition (1.2). But
the direct consequence of (1.2) is

T (r, f) ≤ const · r2m+2 (r ≥ 1).

From this estimate, we can only prove that f(z) can be expressed by (1.3) with
polynomials gi(z) of degree ≤ 2m+2. The proof of (1.2) ⇒ (1.4) needs a precise
analysis on the behavior of |df |, and this is the main task of the paper. The
pointwise norm |df |(z) is actually very complicated object (see the beginning
of Section 2), and one of the purposes of this paper is to develop techniques to
handle it.
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Remark 2. If the metric on (C∗)n is the natural flat metric induced
by the universal covering Cn → (C∗)n, then the statement of Theorem 1.1 is
trivial. Our theorem tells us that the same conclusion holds even if we use the
Fubini-Study metric.

Theorem 1.1 states that holomorphic curves in X can be characterized by
the growth rate of their derivatives. We can formulate this fact more clearly as
follows;

Let g1(z), g2(z), · · · , gn(z) be polynomials, and define f : C → X by (1.3).
We define the integer m ≥ −1 by setting

(1.5) m := −1 + max(deg g1(z), deg g2(z), · · · , deg gn(z)).

We have m = −1 if and only if f is a constant map. This integer m can be
obtained as the growth rate of |df |:

Theorem 1.2. If m ≥ 0, then we have

lim sup
r→∞

max|z|=r log |df |(z)
log r

= m.

The order ρf of a holomorphic curve f is usually defined by

ρf := lim sup
r→∞

log T (r, f)
log r

.

It is easy to see that ρf = m + 1 under the condition of this theorem. Hence
this theorem tells us that we can prove a similar result for the pointwise norm
|df |.

Corollary 1.2. Let λ be a non-negative real number, and let [λ] be the
maximum integer not greater than λ. Let f : C → X be a holomorphic map,
and suppose that there is a positive constant C such that

(1.6) |df |(z) ≤ C|z|λ (|z| ≥ 1).

Then we have a positive constant C ′ such that

|df |(z) ≤ C ′|z|[λ] (|z| ≥ 1).

Proof. If f is a constant map, then the statement is trivial. Hence we
can suppose that f is not constant. From Theorem 1.1, f can be expressed by
(1.3) with polynomials gi(z) of degree ≤ [λ]+2. Since f satisfies (1.6), we have

lim sup
r→∞

max|z|=r log |df |(z)
log r

≤ λ.

From Theorem 1.2, this shows deg gi(z) ≤ [λ] + 1 for all gi(z). Then, Theorem
1.1 gives the conclusion.
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2. Proof of (1.3) ⇒ (1.2)

Let f : C → X be a holomorphic map. From the definition of X, we have
holomorphic maps fi : C → C∗ (1 ≤ i ≤ n) such that f(z) = [1 : f1(z) : · · · :
fn(z)]. The norm |df |(z) in (1.1) is given by
(2.1)

|df |2(z) =
1
4π

∆ log

(
1 +

n∑
i=1

|fi(z)|2
) (

∆ :=
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z̄

)
.

Suppose that f is expressed by (1.3) with polynomials gi(z) of degree ≤ m+1.
Then fi(z) = egi(z) (1 ≤ i ≤ n), and we have

|df |2 =
1
π

[ ∑
i |f ′

i |2
(1 +

∑
i |fi|2)2 +

∑
i<j |g′i − g′j |2|fi|2|fj |2

(1 +
∑

i |fi|2)2
]

,

≤ 1
π


∑

i

|f ′
i |2

(1 + |fi|2)2 +
∑
i<j

|g′i − g′j |2|fi|2|fj |2
(|fi|2 + |fj |2)2


 ,

=
1
π


∑

i

|f ′
i |2

(1 + |fi|2)2 +
∑
i<j

|(fi/fj)′|2
(1 + |fi/fj |2)2


 ,

=
∑

i

|dfi|2 +
∑
i<j

|d(fi/fj)|2.

(2.2)

Here we have set

|dfi| :=
1√
π

|f ′
i |

1 + |fi|2 and |d(fi/fj)| :=
1√
π

|(fi/fj)′|
1 + |fi/fj |2 .

These are the norms of the differentials of the maps fi, fi/fj : C → CP 1. (We
will repeatedly use the above (2.2) in this paper.)

We have fi(z) = exp(gi(z)) and fi(z)/fj(z) = exp(gi(z) − gj(z)), and the
degrees of the polynomials gi(z) and gi(z) − gj(z) are at most m + 1. Then,
the next lemma gives the desired conclusion:

|df |(z) ≤ C|z|m (|z| ≥ 1)

for some positive constant C.

Lemma 2.1. Let g(z) be a polynomial of degree ≤ m+1, and set h(z) :=
eg(z). Then there is a positive constant C such that

|dh|(z) =
1√
π

|h′(z)|
1 + |h(z)|2 ≤ C|z|m (|z| ≥ 1).

Proof. We have

√
π |dh| =

|g′|
|h| + |h|−1

≤ |g′|min(|h|, |h|−1) ≤ |g′|.
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Since the degree of g′(z) is at most m, we easily get the conclusion.

3. Preliminary estimates

In this section, k is a fixed positive integer.
The following is a standard fact in the Nevanlinna theory.

Lemma 3.1. Let g(z) be a polynomial of degree k, and set h(z) = eg(z).
Then there is a positive constant C such that∫ r

1

dt

t

∫
|z|≤t

|dh|2(z) dxdy ≤ Crk (r ≥ 1).

Proof. Since |dh|2 = 1
4π ∆ log(1 + |h|2), Jensen’s formula gives∫ r

1

dt

t

∫
|z|≤t

|dh|2 dxdy =
1
4π

∫
|z|=r

log(1 + |h|2) dθ − 1
4π

∫
|z|=1

log(1 + |h|2) dθ.

Here (r, θ) is the polar coordinate in the complex plane. We have

log(1 + |h|2) ≤ 2 |Re g(z)| + log 2 ≤ Crk (r := |z| ≥ 1).

Thus we get the conclusion.

Let I be a closed interval in R, and let u(x) be a real valued function
defined on I. We define its C1-norm ||u||C1(I) by setting

||u||C1(I) := sup
x∈I

|u(x)| + sup
x∈I

|u′(x)|.

For a Lebesgue measurable set E in R, we denote its Lebesgue measure by |E|.
Lemma 3.2. There is a positive number ε satisfying the following: If a

real valued function u(x) ∈ C1[0, π] satisfies

(3.1) ||u(x) − cos x||C1[0, π] ≤ ε,

then we have

|u−1([−t, t])| ≤ 4t for any t ∈ [0, ε].

Proof. The proof is just an elementary calculus. We choose δ > 0 so that
sin x ≥ 3/4 for all x ∈ [π/2−δ, π/2+δ]. (Note that sin(π/2) = 1.) We choose a
positive number ε < 1/4 sufficiently small so that for any u ∈ C1[0, π] satisfying
(3.1) and for any t ∈ [0, ε]

u−1([−t, t]) ⊂ [π/2 − δ, π/2 + δ].

Let x1 and x2 be any two elements in u−1([−t, t]). From the mean value
theorem, there exists y ∈ [π/2 − δ, π/2 + δ] such that

u(x1) − u(x2) = u′(y) (x1 − x2).
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We have |u′(y)| ≥ | sin y| − | sin y + u′(y)| ≥ 3/4 − ε ≥ 1/2. Hence

|x1 − x2| ≤ 2 |u(x1) − u(x2)| ≤ 4t.

Thus we get

|u−1([−t, t])| ≤ 4t.

Using a scale change of the coordinate, we get the following.

Lemma 3.3. There is a positive number ε satisfying the following: If a
real valued function u(x) ∈ C1[0, 2π] satisfies

||u(x) − cos kx||C1[0, 2π] ≤ ε,

then we have

|u−1([−t, t])| ≤ 8t for any t ∈ [0, ε].

Proof.

u−1([−t, t]) =
2k−1⋃
j=0

u−1([−t, t]) ∩ [jπ/k, (j + 1)π/k].

Applying Lemma 3.2 to u(x/k), we have

|u−1([−t, t]) ∩ [0, π/k] | ≤ 4t/k.

In a similar way,

|u−1([−t, t]) ∩ [jπ/k, (j + 1)π/k] | ≤ 4t/k (j = 0, 1, · · · , 2k − 1).

Thus we get the conclusion.

Let E be a subset of C. For a positive number r, we set

E(r) := {θ ∈ [0, 2π]| reiθ ∈ E}.

In the rest of this section, we always assume k ≥ 2.

Lemma 3.4. Let C be a positive constant, and let g(z) = zk +a1z
k−1 +

· · · + ak be a monic polynomial of degree k. Set

E := {z ∈ C| |Re g(z)| ≤ C|z|}.

Then there exists a positive number r0 such that

|E(r)| ≤ 8C/rk−1 (r ≥ r0).
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Proof. Set v(z) := Re (a1z
k−1 + a2z

k−2 + · · · + ak). Then we have

|Re g(reiθ)| ≤ Cr ⇐⇒ | cos kθ + v(reiθ)/rk| ≤ C/rk−1.

Set u(θ) := cos kθ + v(reiθ)/rk. It is easy to see that

||u(θ) − cos kθ||C1[0,2π] ≤ const/r (r ≥ 1).

Then we can apply Lemma 3.3 to this u(θ), and we get

|E(r)| = |u−1([−C/rk−1, C/rk−1])| ≤ 8C/rk−1 (r � 1).

Here we have used k ≥ 2.

The following is the key lemma.

Lemma 3.5. Let g(z) = a0z
k + a1z

k−1 + · · · + ak be a polynomial of
degree k (a0 �= 0). Set

E := {z ∈ C| |Re g(z)| ≤ |z|}.
Then there exists a positive number r0 such that

|E(r)| ≤ 8
|a0|rk−1

(r ≥ r0).

Proof. Let arg a0 be the argument of a0, and set α := arg a0/k. We define
the monic polynomial g1(z) by

g1(z) :=
1

|a0|g(e−iαz) = zk + · · · .

Then we have

|Re g(reiθ)| ≤ r ⇐⇒ |Re g1(rei(θ+α))| ≤ r/|a0|.
Hence the conclusion follows from Lemma 3.4.

Lemma 3.6. Let g(z) be a polynomial of degree k, and we define E as
in Lemma 3.5. Set h(z) := eg(z). Then we have∫

C\E

|dh|2(z) dxdy < ∞.

Proof. Since |h| = eRe g, the argument in the proof of Lemma 2.1 gives
√

π |dh| ≤ |g′|min(|h|, |h|−1) = |g′| e−|Re g|.

Note that g′(z) is a polynomial of degree k − 1 and that we have |Re g| > |z|
for z ∈ C \ E. Hence we have a positive constant C such that

|dh|(z) ≤ C|z|k−1e−|z| if z ∈ C \ E and |z| ≥ 1.
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The conclusion follows from this estimate.

4. Proof of (1.2) ⇒ (1.3)

Let f = [1 : f1 : f2 : · · · : fn] : C → X be a holomorphic map with
|df |(z) ≤ C|z|m (|z| ≥ 1). Since exp : C → C∗ is the universal covering, there
exist entire holomorphic functions gi(z) such that fi(z) = egi(z). We will prove
that all gi(z) are polynomials of degree ≤ m+1. The proof falls into two steps.
In the first step, we prove all gi(z) are polynomials. In the second step, we
show deg gi(z) ≤ m + 1. The second step is the harder part of the proof.

Schwarz’s formula (see Ahlfors [1, p. 168]) gives*1

gi(ζ) =
1
π

∫
|z|=r

z

z − ζ
Re (gi(z))dθ + const, where |ζ| < r and θ = arg z.

Differentiating this equation, we get (k ≥ 1)

πrkg
(k)
i (0) = k!

∫
|z|=r

Re (gi(z)) e−k
√−1θdθ = k!

∫
|z|=r

log |fi(z)| e−k
√−1θdθ.

We have

|log |fi|| ≤ log(|fi|+|fi|−1) = log(1+|fi|2)−log |fi| ≤ log(1+
∑

|fj |2)−log |fi|.

Hence

πrk|g(k)
i (0)| ≤ k!

∫
|z|=r

log(1 +
∑

|fj |2) dθ − k!
∫
|z|=r

log |fi| dθ.

Since log |fi| = Re gi(z) is a harmonic function, the second term in the right-
hand side is equal to the constant −2πk! Re gi(0). Since |df |2 = 1

4π ∆ log(1 +∑ |fj |2), Jensen’s formula gives

1
4π

∫
|z|=r

log(1 +
∑

|fj |2) dθ − 1
4π

∫
|z|=1

log(1 +
∑

|fj |2) dθ,

=
∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy.

Thus we get

(4.1)
rk

4k!
|g(k)

i (0)| ≤
∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy + const.

Since |df |(z) ≤ C|z|m (|z| ≥ 1), the right-hand side is O(r2m+2). Hence
g
(k)
i (0) = 0 for k ≥ 2m + 3, and all gi(z) are polynomials (cf. Remark 1).
*1I learned the idea of using Schwarz’s formula from Berteloot-Duval [2, Appendice]. I

gave a different approach in [4, Section 6].
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Next we will prove deg gi(z) ≤ m + 1. We define Ei, Eij ⊂ C (1 ≤ i ≤
n, 1 ≤ i < j ≤ n) by setting

deg gi(z) ≤ m + 1 =⇒ Ei := ∅,
deg gi(z) ≥ m + 2 =⇒ Ei := {z ∈ C| |Re gi(z)| ≤ |z|},
deg(gi(z) − gj(z)) ≤ m + 1 =⇒ Eij := ∅,
deg(gi(z) − gj(z)) ≥ m + 2 =⇒ Eij := {z ∈ C| |Re (gi(z) − gj(z))| ≤ |z|}.

We set E :=
⋃

i Ei ∪
⋃

i<j Eij . Then we have E(r) =
⋃

i Ei(r) ∪
⋃

i<j Eij(r)
for r > 0. From Lemma 3.5, we have positive constants r0 and C ′ such that

(4.2) |E(r)| ≤ C ′/rm+1 (r ≥ r0).

We have

∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy

=
∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy +
∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy.

(4.3)

Using (4.2) and |df |(z) ≤ C|z|m (|z| ≥ 1), we can estimate the first term in the
right-hand side of (4.3) as follows:∫

E∩{1≤|z|≤t}
|df |2(z) dxdy ≤ C2

∫
E∩{1≤|z|≤t}

r2m+1 drdθ,

= C2

∫ t

1

r2m+1|E(r)|dr.

If t ≥ r0, then∫ t

r0

r2m+1|E(r)|dr ≤ C ′
∫ t

r0

rmdr =
C ′

m + 1
tm+1 − C ′

m + 1
r0

m+1.

Thus

(4.4)
∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1 (r ≥ 1).

Next we will estimate the second term in the right-hand side of (4.3) by
using the inequality (2.2) given in Section 2:

|df |2 ≤
∑

i

|dfi|2 +
∑
i<j

|d(fi/fj)|2.

If deg gi(z) ≤ m + 1, then Lemma 3.1 gives∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|dfi|2(z) dxdy ≤
∫ r

1

dt

t

∫
|z|≤t

|dfi|2(z) dxdy ≤ const · rm+1.
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If deg gi(z) ≥ m + 2, then Lemma 3.6 gives∫
Ec∩{|z|≤t}

|dfi|2(z) dxdy ≤
∫

Ec
i ∩{|z|≤t}

|dfi|2(z) dxdy ≤ const.

The terms for |d(fi/fj)| can be estimated in the same way, and we get

(4.5)
∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1 (r ≥ 1).

From (4.3), (4.4), (4.5), we get∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy ≤ const · rm+1 (r ≥ 1).

From (4.1), this shows g
(k)
i (0) = 0 for k ≥ m + 2. Thus gi(z) are polynomials

with deg gi(z) ≤ m + 1. This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 needs the following lemma.

Lemma 5.1. Let k ≥ 1 be an integer, and let δ be a real number satis-
fying 0 < δ < 1. Let g(z) = a0z

k + a1z
k−1 + · · ·+ ak be a polynomial of degree

k (a0 �= 0). We set h(z) := eg(z) and define E ⊂ C by

E := {z ∈ C| |Re g(z)| ≤ |z|δ}.
Then we have ∫

C\E

|dh|2(z) dxdy < ∞,

and there is a positive number r0 such that

|E(r)| ≤ 8
|a0|rk−δ

(r ≥ r0).

Proof. This can be proved by the methods in Section 3. We omit the
detail.

Let g1(z), g2(z), · · · , gn(z) be polynomials, and define the holomorphic
map f : C → X and the integer m ≥ −1 by (1.3) and (1.5). Here we suppose
m ≥ 0, i.e., f is not a constant map. We will prove Theorem 1.2.

From Theorem 1.1, we have

|df |(z) ≤ const · |z|m (|z| ≥ 1).

It follows

lim sup
r→∞

max|z|=r log |df |(z)
log r

≤ m.
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We want to prove that this is actually an equality. Suppose

lim sup
r→∞

max|z|=r log |df |(z)
log r

� m.

Then, if we take ε > 0 sufficiently small, there exists a positive number r0 such
that

(5.1) |df |(z) ≤ |z|m−ε (|z| ≥ r0).

Schwarz’s formula gives the inequality (4.1):

(5.2)
rk

4k!
|g(k)

i (0)| ≤
∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy + const (k ≥ 0).

Let δ be a positive number such that 0 < δ < 2ε. We define Ei and Eij

(1 ≤ i ≤ n, 1 ≤ i < j ≤ n) by setting

deg gi(z) ≤ m =⇒ Ei := ∅,
deg gi(z) = m + 1 =⇒ Ei := {z ∈ C| |Re gi(z)| ≤ |z|δ},
deg(gi(z) − gj(z)) ≤ m =⇒ Eij := ∅,
deg(gi(z) − gj(z)) = m + 1 =⇒ Eij := {z ∈ C| |Re (gi(z) − gj(z))| ≤ |z|δ}.

We set E :=
⋃

i Ei ∪
⋃

i<j Eij . Then, if we take r0 sufficiently large, we have
(from Lemma 5.1)

(5.3) |E(r)| ≤ const/rm+1−δ (r ≥ r0).

We have∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy

=
∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy +
∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy.

From (5.1) and (5.3), the first term in the right-hand side can be estimated as
in Section 4:∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1−(2ε−δ) (r ≥ 1).

Using Lemma 5.1 and the inequality |df |2 ≤ ∑
i |dfi|2 +

∑
i<j |d(fi/fj)|2, we

can estimate the second term:∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy ≤ const · log r + const · rm (r ≥ 1).

Thus we get∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy ≤ const · rm+1−(2ε−δ) (r ≥ 1).
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Note that 2ε − δ is a positive number. Using this estimate in (5.2), we get

g
(k)
i (0) = 0 (k ≥ m + 1).

This shows deg gi(z) ≤ m. This contradicts the definition of m.
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