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Resultants and universal coverings

By

Kohhei Yamaguchi

Abstract

We construct the universal coverings of spaces of self-holomorphic
maps on the complex projective space CPn by using the resultants, and
we study their homotopy types.

1. Introduction

Let j : S2 = CP1 → CPm be the inclusion map given by j([x : y]) =
[x : y : 0 : · · · : 0]. If 1 ≤ m ≤ n and f : CPm → CPn is a con-
tinuous map, the corresponding integer of the homotopy class of f ◦ j in
π2(CPn) ∼= Z is called the degree of f . Let Mapd(CPm,CPn) denote the space
of all continuous maps f : CPm → CPn of degree d, and let Map∗

d(CPm,CPn)
be the subspace consisting of all based maps f ∈ Mapd(CPm,CPn) such
that f(em) = en, where ek = [1 : 0 : · · · : 0] ∈ CPk is a base point
of CPk (k = m,n). Similarly, Hold(CPm,CPn) ⊂ Mapd(CPm,CPn) (resp.
Hol∗d(CPm,CPn) ⊂ Map∗

d(CPm,CPn)) be the corresponding the subspace of
all (resp. based) holomorphic maps f : CPm → CPn of degree d. Remark that
Hold(CPm,CPn) = ∅ if d < 0, and that any holomorphic map f : CPm → CPn

of degree 0 is a constant map. So we always assume that d ≥ 1.
When m ≥ 2, we also consider the subspaces Hd(m,n) ⊂ Hol∗d(CPm,CPn)

and Fd(m,n) ⊂ Map∗
d(CPm,CPn) defined by

(1.1)

{
Hd(m,n) =

{
f ∈ Hol∗d(CPm,CPn) : f ◦ i′ = ψm−1,n

d

}
,

Fd(m,n) =
{
f ∈ Map∗

d(CPm,CPn) : f ◦ i′ = ψm−1,n
d

}
,

where i′ : CPm−1 → CPm denotes the inclusion given by i′([x0 : · · · : xm−1]) =
[x0 : · · · : xm−1 : 0] and ψm,n

d ∈ Hol∗d(CPm,CPn) is the based holomorphic map
defined by ψm,n

d ([x0 : x1 : · · · : xm]) = [xd
0 : xd

1 : · · · : xd
m : 0 : · · · : 0]. It is

known that there is a homotopy equivalence Fd(m,n) 	 Ω2mCPn ([9], [12]).
The principal motivation of this paper derives from the work of G. Segal

[13] and J. Mostovoy [10], in which they show that the following Atiyah-Jones-
Segal type homotopy (or homology) stability result holds.
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Theorem 1.1 (G. Segal, [13]; J. Mostovoy, [10]). Let 1 ≤ m ≤ n be
integers and let

id : Hol∗d(CPm,CPn) → Map∗
d(CPm,CPn)

jd : Hold(CPm,CPn) → Mapd(CPm,CPn)
i′d : Hd(m,n) → Fd(m,n) 	 Ω2mCPn

be the corresponding inclusion maps.
(i) If m = 1, the inclusions id and jd are homotopy equivalences up to

dimension (2n− 1)d.
(ii) If m ≥ 2, the inclusions id, jd and i′d are homotopy equivalences

through dimension D(d;m,n) when m < n and homology equivalences through
dimension D(d : m,n) when m = n, where 
x� denotes the integer part of a
real number x and D(d;m,n) is the number given by

D(d;m,n) = (2n− 2m+ 1)
(

d+ 1

2
� + 1

)
− 1.

Remark. A map f : X → Y is called a homotopy equivalence up to
dimension D if the induced homomorphism f∗ : πk(X) → πk(Y ) is bijective
when k < D and surjective when k = D. Analogously, it is called a homo-
topy equivalence through dimension D (resp. a homology equivalence through
dimension D) if f∗ : πk(X) → πk(Y ) (resp. f∗ : Hk(X,Z) → Hk(Y,Z)) is an
isomorphism for any k ≤ D.

If we recall several Atiyah-Jones-Segal type Theorems (c.f. [1], [2], [6],
[13]), we may expect that the inclusions id, jd, and i′d may be homotopy equiv-
alences through dimension D(d;m,n) for m = n ≥ 2, and we would like to
consider this problem. From now on, for m = n, we write

(1.2)


Hold(n) = Hold(CPn,CPn), Hol∗d(n) = Hol∗d(CPn,CPn),
Mapd(n) = Mapd(CPn,CPn), Map∗

d(n) = Map∗
d(CPn,CPn),

Hd(n) = Hd(n, n) and Fd(n) = Fd(n, n) 	 Ω2nCPn.

In order to settle the homotopy stability problem it seems necessary to un-
derstand the universal covering spaces H̃d(n), H̃ol∗d(n) and H̃old(n), where X̃
denotes the universal covering of a connected space X.

Let zk (k = 0, 1, 2, · · · , n) be complex variables, let Hd(n) denote the space
consisting of all homogenous polynomials g ∈ C[z0, · · · , zn] of degree d, and let
Xd(n) ⊂ Hd(n)n+1 be the subspace consisting of all (n+1)-tuples (f0, · · · , fn) ∈
Hd(n)n+1 such that the polynomials f0, f1, · · · , fn have no common root except
0n+1 = (0, · · · , 0) ∈ Cn+1.

For (f0, · · · , fn) ∈ Hd(n)n+1, letR(f0, · · · , fn) ∈ C denote the resultant for
the forms of several variables of homogenous polynomials (f0, · · · , fn) defined
as in [7] (see Section 2 in detail). It is known that (f0, · · · , fn) ∈ Xd(n) if
and only if R(f0, · · · , fn) �= 0 for (f0, · · · , fn) ∈ Hd(n)n+1 ([7]) , and we can
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identify

(1.3) Xd(n) =
{
(f0, · · · , fn) ∈ Hd(n)n+1 : R(f0, · · · , fn) �= 0

}
.

Define the free right C∗-action on Xd(n) by

(1.4) (f0, · · · , fn) · α = (αf0, · · · , αfn)

for ((f0, · · · , fn), α) ∈ Xd(n)×C∗. Because any holomorphic map f ∈ Hold(n)
is represented as f = [f0 : · · · : fn] for some (f0, · · · , fn) ∈ Xd(n) (c.f. [9], [10]),
we can easily see that there is a homeomorphism

(1.5) Hold(n) ∼= Xd(n)/C∗.

If f ∈ Hol∗d(n), since f(en) = en, it is represented as f = [f0 : · · · : fn] such that
(f0, · · · , fn) ∈ Yd(n), where Yd(n) ⊂ Xd(n) denotes the subspace consisting of
all (n+ 1)-tuples (f0, · · · , fn) ∈ Xd(n) such that the coefficient of zd

0 of f0 is 1
and 0 in the other polynomials fk (1 ≤ k ≤ n).

For each integer 0 ≤ k ≤ n, define the subspace Wk(d) ⊂ C[z0, · · · , zn] by

Wk(d) =

{{
zd
k + zng : g ∈ Hd−1(n)

}
if k �= n{

zng : g ∈ Hd−1(n)
}

if k = n

and consider the space Vd(n) = W0(d)×W1(d)×· · ·×Wn(d) ⊂ C[z0, · · · , zn]n+1.
If f ∈ Hd(n), it is represented as f = [f0 : · · · : fn] such that (f0, · · · , fn) ∈
Xd(n) ∩ Vd(n), and it is easy to see that there are homeomorphisms

(1.6) Hol∗d(n) ∼= Yd(n) and Hd(n) ∼= Zd(n),

where we write Zd(n) = Xd(n) ∩ Vd(n).
We also denote by HFd(n) and HF ∗

d (n) the homotopy fibers of the in-
clusions jd : Hold(n) → Mapd(n) and id : Hol∗d(n) → Map∗

d(n), respectively.
Remark that there is a homotopy equivalence HF ∗

d (n) 	 HFd(n) (see Lemma
5.1). Then the main results of this paper are stated as follows.

Theorem 1.2.
(i) There exists a homeomorphism H̃old(n) ∼= R−1(1).
(ii) There are homotopy equivalences

H̃ol∗d(n) 	 R−1
1 (1) and H̃d(n) 	 R−1

2 (1).

Here, R−1(1), R−1
1 (1) and R−1

2 (1) denote the subspaces of Xd(n) given by

(1.7)


R−1(1) =

{
(f0, · · · , fn) ∈ Xd(n) : R(f0, · · · , fn) = 1

}
,

R−1
1 (1) =

{
(f0, · · · , fn) ∈ Yd(n) : R(f0, · · · , fn) = 1

}
,

R−1
2 (1) =

{
(f0, · · · , fn) ∈ Zd(n) : R(f0, · · · , fn) = 1

}
.
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Although we know the fundamental group actions on the universal cover-
ings H̃old(n), H̃ol∗d(n) and H̃d(n), we cannot determine whether they are nilpo-
tent actions or not. If these inclusions are homotopy equivalences through di-
mension D(d;n, n), HFd(n) and HF ∗

d (n) must be 
d+1
2 �-connected. Although

we cannot prove this statement, we can show the weaker one as follows.

Theorem 1.3. HF ∗
d (n) and HFd(n) are simply connected.

This paper is organized as follows. In Section 2, we construct the universal
covering of Hold(n) geometrically by using the resultant for the forms of several
variables. In Section 3 and 4, we also construct the universal coverings of
Hol∗d(n) and Hd(n) by using this resultant, and finally in Section 5, we give the
proof of Theorem 1.3.

2. Resultants and the space H̃old(n)

First, recall about resultants. For each I = (i0, · · · , in) ∈ Zn+1
≥0 , we write

|I| =
∑n

k=0 ik and zI = zi0
0 z

i1
1 · · · zin

n . We denote by I(d) the set

I(d) = {I = (i0, · · · , in) ∈ Zn+1
≥0 : |I| = d}.

If (f0, f1, · · · , fn) ∈ Hd0(n)×Hd1(n)×· · ·×Hdn
(n), each homogenous polyno-

mial fk of degree dk can be written as fk =
∑

I∈I(dk)

cI,kz
I (cI,k ∈ C). Then for

each such possible pair of indices (I, k) with I ∈ I(dk) and 0 ≤ k ≤ n, we intro-
duce a variable ZI,k. Then for a polynomial P ∈ C[ZI,k : I ∈ I(dk), 0 ≤ k ≤ n],
let P (f0, · · · , fn) denote the complex number obtained by replacing variable
ZI,k in P with the corresponding coefficient cI,k.

Lemma 2.1 ([7], [[4]; Chap. 3, Theorem 2.3, Theorem 3.1]). For each
(n + 1)-tuple J = (d0, · · · , dn) of positive integers, there exists a unique ir-
reducible homogenous polynomial RJ ∈ Z[ZI,k : I ∈ I(dk), 0 ≤ k ≤ n] of degree∑n

k=0 d0 · · · dk−1dk+1 · · · dn which satisfies the following three conditions:
(i) RJ is an irreducible polynomial even in C[ZI,k : I ∈ I(dk), 0 ≤ k ≤ n].
(ii) RJ (zd0

0 , zd1
1 , · · · , zdn

n ) = 1.
(iii) If (f0, · · · , fn) ∈ Hd0(n) × · · · × Hdn

(n),

RJ (f0, · · · , fk−1, λfk, fk+1, · · · , fn) = λd0···dk−1dk+1···dnRJ(f0, · · · , fk, · · · , fn)

for any λ ∈ C∗, and the equation f0 = f1 = · · · = fn = 0 has no solution except
0n+1 ∈ Cn+1 if and only if RJ(f0, · · · , fn) �= 0.

Remark. In general, the polynomial RJ can be regarded as the gen-
eralization of the determinant (c.f. [4], [7]). To see this, consider the case
d0 = d1 = · · · = dn = 1. If (f0, · · · , fn) ∈ H1(n)n+1, each fk can be written
as fk =

∑n
j=0 cj,kzk (cj,k ∈ C). If Zj,k denotes the corresponding variable

to cj,k and set J = (1, 1, · · · , 1), RJ can be written as RJ = det(Zj,k) and
RJ (f0, · · · , fn) = det(cj,k).
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From now on, we always assume that d0 = d1 = · · · = dn = d ≥ 1, and we
write

(2.1) R = RJ = R(d,d,··· ,d) for J = (d, d, · · · , d).
Because R(f0, · · · , fn) �= 0 for any (f0, · · · , fn) ∈ Xd(n), R can be regarded as
the map R : Xd(n) → C∗.

Let Gd,n be the subgroup of C∗ defined by Gd,n = {g ∈ C∗ : g(n+1)dn

=
1} ∼= Z/(n+ 1)dn, and consider the space C∗ ×Gd,n

R−1(1), where we identify
[gβ, (f0, · · · , fn)] = [β, (gf0, · · · , gfn)] in C∗ ×Gd,n

R−1(1) if g ∈ Gd,n and
((β, (f0, · · · , fn)) ∈ C∗ ×R−1(1).

Define the map ϕd : C∗ ×Gd,n
R−1(1) → C∗ by ϕd([β, f ]) = β(n+1)dn

for
[β, f ] ∈ C∗ ×Gd,n

R−1(1). Because R is a homogenous polynomial of degree
(n+ 1)dn and it satisfies the equality

(2.2) R(λf0, · · · , λfn) = λ(n+1)dn

R(f0, · · · , fn)

for ((f0, · · · , fn), λ) ∈ Xd(n) × C∗, this implies the following result.

Lemma 2.2 (c.f. [13, Proposition 6.1]).
(i) There exists a C∗-equivariant homeomorphism

Φd : Xd(n)
∼=−→ C∗ ×Gd,n

R−1(1)

such that ϕd ◦ Φd = R : Xd(n) → C∗.
(ii) The map R : Xd(n) → C∗ is a fiber bundle with non-singular fibers

and structure group Gd,n
∼= Z/(n+ 1)dn.

(iii) The monodromy T : R−1(1) → R−1(1) (i.e. the action of the generator
of the structure group) is given by T (f0, f1, · · · , fn) = (ξf0, ξf1, · · · , ξfn), where
ξ is a primitive root of unity of order (n+ 1)dn.

Proof. (i) Let f = (f0, · · · , fn) ∈ Xd(n) be an element, and let αk ∈ C∗

(k = 1, 2) be two complex numbers such that α(n+1)dn

1 = α
(n+1)dn

2 = R(f).
Consider the element F (αk) = (αk, ( f0

αk
, · · · , fn

αk
)) ∈ C∗ × R−1(1) (k = 1, 2).

In this case, since there exists some element g ∈ Gd,n such that α2 = gα1,
[F (α1)] = [F (α2)] in C∗ ×Gd,n

R−1(1). So define the map Φd : Xd(n) →
C∗ ×Gd,n

R−1(1) by Φd(f) = [α, ( f0
α , · · · , fn

α )] = [α, f
α ] for f = (f0 · · · , fn) ∈

Xd(n) if α(n+1)dn

= R(f). Next, let [β, f ] ∈ C∗ ×Gd,n
R−1(1) be any element

such that (β, f) = ((f0, · · · , fn), β) ∈ C∗×Xd(n). If [β, f ] = [β1, h] (β, β1 ∈ C∗,
f, h ∈ R−1(1)), there exists some g ∈ Gd,n such that (β1, h) = (g−1 · β, g · f).
Hence, β1 · h = β · f and the element β · f = (βf0, · · · , βfn) ∈ Xd(n) does not
depend on the choice of the representative (β, f). So one can define the map
Gd : C∗ ×Gd,n

R−1(1) → Xd(n) by Gd([β, f ]) = β · f = (βf0, · · · , βfn).
If [β, f ] ∈ C∗ ×Gd,n

R−1(1), because R(f) = 1, R(β · f) = β(n+1)dn

R(f) =
β(n+1)dn

. Hence, Φd ◦ Gd([β, f ]) = Φd(β · f) = [β, βf
β ] = [β, f ], and we have

Φd ◦Gd = id. An analogous computation also shows that Gd ◦ Φd = id and so
that Φd is a homeomorphism.



864 Kohhei Yamaguchi

Furthermore, if (f, β) ∈ Xd(n) × C∗ with R(f) = α(n+1)dn

(α ∈ C∗), be-
cause R(β ·f) = β(n+1)dn

R(f) = (βα)(n+1)dn

, Φd(β ·f) = [βα, βf
βα ] = [βα, f

α ] =
β · [α, f

α ] = β · Φd(f). Hence, Φd is a C∗-equivariant map. Because a similar
computation shows that Gd is also a C∗-equivariant map, Φd is a C∗-equivariant
homeomorphism.

If f ∈ Xd(n) and R(f) = α(n+1)dn

, ϕd ◦ Φd(f) = r([α, f
α ]) = α(n+1)dn

=
R(f). Hence, ϕd ◦ Φd = R and the assertion (i) is proved.

(ii) It follows from (i) that we may identify R with the map ϕd. So it
suffices to prove the local triviality for the map ϕd.

We write D = (n + 1)dn, and let β ∈ C∗ be any element. From now on,
we choose the fixed constant θ0 ∈ R such that β = |β| exp(

√−1θ0), and set
a0 = |β|1/D exp(

√−1θ0
D ). Then because {α ∈ C∗ : αD = β} = {ga0 : g ∈ Gd,n},

we note that

ϕ−1
d (β) = {[ga0, f ] : g ∈ Gd,n, f ∈ R−1(1)} = {[a0, gf ] : g ∈ Gd,n, f ∈ R−1(1)}

= {[a0, f ] : f ∈ R−1(1)} ∼= R−1(1).

Let φ(r, θ) denote the function φ(r, θ) = r exp(
√−1θ) (r > 0, θ ∈ R), and let

U be a sufficiently small connected open neighborhood U of β such that φ|U is
injective. For example, let U be the open set given by

U =
{
φ(r, θ) :

3|β|
4

< r <
5|β|
4
,− π

100
< θ − θ0 <

π

100

}
⊂ C∗.

If we remark the above isomorphism, we can see that the map h : U×R−1(1) →
ϕ−1

d (U) given by by h(φ(r, θ), f) = [φ(r1/D, θ/D), f ] is a homeomorphism. Fur-
thermore, if q1 : U × R−1(1) → U denotes the first projection, clearly the
equality ϕd ◦ h = q1 holds. Hence, the local triviality is proved.

(iii) The assertion (iii) easily follows from the proof of (i).

By using Lemma 2.2, we have the fibration sequence

(2.3) R−1(1) ⊂−→ Xd(n) R−→ C∗.

We also recall from [14, Appendix] that there is a fibration sequence

(2.4) Hol∗d(n) ⊂−→ Hold(n) ev−→ CPn,

where the map ev is given by ev(f) = f(en) for f ∈ Hold(n).

Lemma 2.3.
(i) π1(Xd(n)) ∼= Z.

(ii) There is a homotopy equivalence X̃d(n) 	 R−1(1), and the map R :
Xd(n) → C∗ 	 K(Z, 1) represents the generator of the based homotopy set

[Xd(n),K(Z, 1)] ∼= H1(Xd(n),Z) ∼= Z, where X̃d(n) denotes the universal cov-
ering of Xd(n).
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Proof. (i) Let ẽn = (1, 0, 0, · · · , 0) ∈ Cn+1 and define the map ẽv :
Xd(n) → Cn+1 \ {0n+1} 	 S2n+1 by ẽv(f0, · · · , fn) = (f0(ẽn), · · · , fn(ẽn))
for (f0, · · · , fn) ∈ Xd(n). We also remark that there is a C∗-principal bundle
C∗ → Xd(n) π−→ Hold(n) ∼= Xd(n)/C∗, because (1.4) is a free action and the
local triviality is satisfied. Then if γn : S2n+1 → CPn is a Hopf fibering, it is
easy to see that ev ◦π = γn ◦ ẽv. Hence, if F0 denotes the homotopy fiber of the
map ẽv, it follows from [3, Lemma 2.1] that we have the homotopy commutative
diagram

∗ −−−−→ F0 −−−−→� Hol∗d(n)� � ∩
�

C∗ −−−−→ Xd(n) π−−−−→ Hold(n)

‖ ẽv

� ev

�
C∗ −−−−→ S2n+1 γn−−−−→ CPn

such that all horizontal and vertical sequences are fibration sequences. Hence,
there is a homotopy equivalence F0 	 Hol∗d(n) and we have the fibration se-
quence (up to homotopy equivalence)

(2.5) Hol∗d(n) −→ Xd(n) ẽv−→ S2n+1.

Since S2n+1 is 2-connected and π1(Hol∗d(n)) ∼= Z ([14]), there is a isomorphism
π1(Xd(n)) ∼= Z.

(ii) Since R−1(1) is connected, by using the homotopy exact sequence in-
duced from the fibration (2.3), R∗ : π1(Xd(n)) → π1(C∗) = Z is surjective.
However, because π1(Xd(n)) = Z, R∗ is an isomorphism and R−1(1) is sim-

ply connected. Hence, there is a homotopy equivalence X̃d(n) 	 R−1(1) and
R : Xd(n) → C∗ 	 K(Z, 1) represents the generator of [Xd(n),K(Z, 1)] ∼=
H1(Xd(n),Z) ∼= Z.

Lemma 2.4. If f = (f0, · · · , fn) ∈ Xd(n), fk �= 0 for any 0 ≤ k ≤ n.

Proof. If fk = 0 for some k, the holomorphic map g = [f0 : · · · : fn] =
π(f) ∈ Hold(n) satisfies the condition f(CPn) ⊂ CPn−1. Hence, g∗ = 0 on
H2n(CPn,Z). However, because the degree of g is d ≥ 1, the degree of g∗ on
H2n(CPn,Z) is dn �= 0, which is a contradiction.

Theorem 2.1. There is a homeomorphism H̃old(n) ∼= R−1(1).

Proof. By using (1.5) and Lemma 2.2, there is a homeomorphism

Hold(n) ∼= Xd(n)/C∗ ∼= (C∗ ×Gd,n
R−1(1))/C∗ ∼= Gd,n\R−1(1).

Since C∗ acts on Xd(n) freely, the subgroup Gd,n also acts on R−1(1) freely.
Hence, we have the covering space sequence Gd,n → R−1(1) → Hold(n).
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However, because π1(Hold(n)) ∼= Z/(n + 1)dn ∼= Gd,n and R−1(1) is con-

nected, R−1(1) is simply connected and there is a homeomorphism H̃old(n) ∼=
R−1(1).

Corollary 2.1. There is a homotopy equivalence X̃d(n) 	 H̃old(n).

3. The space H̃ol∗d(n)

As in (1.6), we identify Hol∗d(n) = Yd(n) and consider the map R1 :
Hol∗d(n) = Yd(n) → C∗ defined by the restriction R1 = R|Yd(n). If we re-
call that (f0, λf1, λf2, · · · , λfn) ∈ Hol∗d(n) and the equality

(3.1) R1(f0, λf1, λf2, · · · , λfn) = λndn

R1(f0, · · · , fn)

holds for any ((f0, · · · , fn), λ) ∈ Hol∗d(n) × C∗, by using a complete analogous
proof of Lemma 2.2 one can show the following result.

Lemma 3.1.
(i) There exists a C∗-equivariant homeomorphism

Ψd : Hol∗d(n)
∼=−→ C∗ ×G∗

d,n
R−1

1 (1)

such that ψd ◦ Ψd = R1 : C∗ ×G∗
d,n

R−1
1 (1) → C∗, where G∗

d,n = {g ∈ C∗ :
gndn

= 1} ∼= Z/ndn. and the map ψd : C∗ ×G∗
d,n

R−1
1 (1) → C∗ is given by

ψd([β, f ]) = βndn

.
(ii) The map R1 : Hol∗d(n) → C∗ is a fiber bundle with non-singular fibers

and structure group G∗
d,n.

(iii) The monodromy T1 : R−1
1 (1) → R−1

1 (1) is given by

T1(f0, f1, · · · , fn) = (f0, ξ1f1, ξ1f2, · · · , ξ1fn),

where ξ1 is a primitive root of unity of order ndn.

Hence, we have the fibration sequence

(3.2) R−1
1 (1) ⊂−→ Hol∗d(n) R1−→ C∗.

Theorem 3.1. There is a homotopy equivalence H̃ol∗d(n) 	 R−1
1 (1) and

there is a fibration sequence H̃ol∗d(n) → H̃old(n) → S2n+1.

Proof. By using the fibration sequences (2.3) and (3.2), we obtain the
homotopy commutative diagram

R−1
1 (1) −−−−→ R−1(1) −−−−→ S2n+1� � ‖

Hol∗d(n) ⊂−−−−→ Xd(n) ẽv−−−−→ S2n+1

R1

� R

� �
C∗ =−−−−→ C∗ −−−−→ ∗
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where all horizontal and vertical sequences are fibration sequences.
If we consider the fibration sequence R−1

1 (1) → R−1(1) → S2n+1, be-
cause S2n+1 is 2-connected and R−1(1) is simply connected, R−1

1 (1) is simply
connected. Then, because R−1

1 (1) is connected, by using the homotopy ex-

act sequence induced from the fibration sequence R−1
1 (1) → Hol∗d(n) R1−→ C∗,

R1∗ : π1(Hol∗d(n))
∼=−→ π1(C∗) is an isomorphism. Hence, there is a homotopy

equivalence H̃ol∗d(n) 	 R−1
1 (1). Moreover, because H̃old(n) 	 R−1(1), the ho-

motopy fibration sequence R−1
1 (1) → R−1(1) → S2n+1 reduces to the desired

homotopy fibration sequence.

Remark. It is known that there is a homotopy equivalence H̃old(1) 	
H̃ol∗d(1)× S3 ([5], [11]). Hence, the homotopy fibration sequence given in The-
orem 3.1 is trivial if n = 1.

Since (f0, αf1, αf2, · · · , αfn) ∈ Hol∗d(n) for any (f, α) = ((f0, · · · , fn), α) ∈
Hol∗d(n) × C∗, we can define the right C∗-action on Hol∗d(n) by

(3.3) (f0, · · · , fn) · α = (f0, αf1, αf2, · · · , αfn)

for ((f0, · · · , fn), α) ∈ Hol∗d(n) × C∗. By using Lemma 2.4, we can easily see
that (3.3) is a free C∗-action.

Proposition 3.1. π1(Hol∗d(n)/C∗) ∼= Z/ndn and there is a homeomor-

phism ˜Hol∗d(n)/C∗ ∼= R−1
1 (1), where ˜Hol∗d(n)/C∗ denotes the universal covering

of the orbit space Hol∗d(n)/C∗.

Proof. It follows from Lemma 3.1 that there is a homeomorphism

Hol∗d(n)/C∗ ∼= (C∗ ×G∗
d,n

R−1
1 (1))/C∗ ∼= G∗

d,n\R−1
1 (1).

Since the group G∗
d,n acts on R−1

1 (1) freely, there is a covering space sequence
G∗

d,n → R−1
1 (1) → Hol∗d(n)/C∗. However, since R−1

1 (1) is simply connected,

π1(Hol∗d(n)/C∗) ∼= G∗
d,n

∼= Z/ndn and there is a homeomorphism ˜Hol∗d(n)/C∗ ∼=
R−1

1 (1).

Corollary 3.1. There is a homotopy equivalence H̃ol∗d(n) 	 ˜Hol∗d(n)/C∗.

4. The space H̃d(n)

In this section, we construct the universal covering H̃d(n) explicitly. For
this purpose, we identify Hd(n) = Zd(n) and consider the map R2 : Hd(n) →
C∗ defined by the restriction R2 = R|Hd(n).

Since (f0, · · · , fn−1, λfn) ∈ Hd(n) and the equality

(4.1) R2(f0, · · · , fn−1, λfn) = λdn

R2(f0, · · · , fn−1, fn)

holds for any ((f0, · · · , fn), λ) ∈ Hd(n) × C∗, by using a complete analogous
proof of Lemma 2.2 one can show the following result.
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Lemma 4.1.
(i) There is a C∗-equivariant homeomorphism

fd : Hd(n)
∼=−→ C∗ ×Hd,n

R−1
2 (1)

such that rd ◦ fd = R2 : Hd(n) → C∗, where Hd,n = {g ∈ C∗ : gdn

= 1} ∼= Z/dn

and the map rd : C∗ ×Hd,n
R−1

2 (1) → C∗ is given by rd([β, f ]) = βdn

.
(ii) The map R2 : Hd(n) → C∗ is a fiber bundle with non-singular fibers

and structure group Hd,n.
(iii) The monodromy T2 : R−1

2 (1) → R−1
2 (1) is given by

T2(f0, f1, · · · , fn) = (f0, · · · , fn−1, ξ2fn),

where ξ2 is a primitive root of unity of order dn.

Let j′d : Hd(n) → Hol∗d(n) denote the inclusion.

Theorem 4.1. If n ≥ 2, j′d∗ : π1(Hd(n))
∼=−→ π1(Hol∗d(n)) = Z is an

isomorphism.

Proof. From now on, we identify Hol∗d(n) = Yd(n) and Hd(n) = Zd(n) as
in (1.6). If (f0, f1) ∈ Hol∗d(1) ⊂ C[z0, z1]2, it can be written as

f0 = f0(z0, z1) = zd
0 + z1g0(z0, z1), f1 = f1(z0, z1) = z1g1(z0, z1)

for some homogenous polynomial gk = gk(z0, z1) ∈ C[z0, z1] (k = 0, 1). Then,
if we change z1 �→ zn in f0 and f1, we can easily see that the element

ϕ(f0, f1) = (f0(z0, zn), zd
1 , z

d
2 , · · · , zd

n−1, f1(z0, zn))

= (zd
0 + zng0(z0, zn), zd

1 , z
d
2 , · · · , zd

n−1, zng1(z0, zn))

is contained in Hd(n). So define the subspace Gd(n) ⊂ Hd(n) by

Gd(n) =
{
ϕ(f0, f1) : (f0, f1) ∈ Hol∗d(1)

} ∼= Hol∗d(1).

Next, consider the subspace G′
d(n) ⊂ Hd(n) defined by

G′
d =

{
(f0, ε1zd

1 , · · · , εn−1z
d
n−1, f1) : f0, f1 ∈ C[z0, · · · , zn], εk ∈ C∗} ∩Hd(n).

Consider the subspaces Gd(n) ⊂ G′
d(n) ⊂ Hd(n). Since n ≥ 2, the comple-

ment of Gd(n) in G′
d(n) and that of G′

d(n) in Hd(n) are of codimension 1.
So the complement of Gd(n) in Hd(n) is of codimension 2, and the inclusion
j′′d : Gd(n) → Hd(n) induces an epimorphism j′′d ∗ : π1(Gd(n)) → π1(Hd(n)).
However, because π1(Gd(n)) ∼= π1(Hol∗d(1)) ∼= Z by [13], there is an isomor-
phism π1(Hd(n)) ∼= Z/l for some integer l ≥ 0.

Next, because Gd(n) ⊂ Hd(n) ⊂ Hol∗d(n), the complement of Gd(n) in
Hol∗d(n) is codimension > 2 and the inclusion j′d ◦ j′′d : Gd(n) → Hol∗d(n) also
induces an epimorphism j′d ◦ j′′d ∗ : π1(Gd(n)) → π1(Hol∗d(n)). Hence, by using
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π1(Gd(n)) = π1(Hol∗d(n)) = Z ([14]), j′d∗ ◦ j′′d ∗ : π1(Gd(n))
∼=→ π1(Hol∗d(n)) is an

isomorphism. So that if we recall the composite of homomorphisms

Z = π1(Gd(n))
j′′
d ∗−→ π1(Hd(n))

j′
d∗−→ π1(Hol∗d(n)) = Z

and recall that π1(Hd(n)) = Z/l, we have l = 0 and j′d∗ : π1(Hd(n))
∼=−→

π1(Hol∗d(n)) = Z is an isomorphism.

Since (f0, · · · , fn−1, αfn) ∈ Hd(n) for any ((f0, · · · , fn), α) ∈ Hd(n) × C∗,
if we identify Hd(n) = Zd(n) as in (1.6), we can define the right C∗-action on
Hd(n) by

(4.2) (f0, · · · , fn) · α = (f0, · · · , fn−1, αfn)

for ((f0, · · · , fn), α) ∈ Hd(n)×C∗. It is easy to see that the action (4.2) is free
by using Lemma 2.4. Similarly, consider the right GLn(C) action on Hol∗d(n)
given by the matrix multiplication

(f0, f1, · · · , fn) ·A = (f0, f1, · · · , fn)
(

1 0n
t0n A

)
(4.3)

for ((f0, f1, · · · , fn), A) ∈ Hol∗d(n) × GLn(C). By using Lemma 2.4, we can
see that the above right GLn(C)-action on Hol∗d(n) is free, and we obtain the
following commutative diagram of fibration sequences

(4.4)

C∗ i′′d−−−−→ Hd(n) −−−−→ Hd(n)/C∗

ĵd

�∩ j′
d

�∩ qd

�
GLn(C) −−−−→ Hol∗d(n) −−−−→ Hol∗d(n)/GLn(C)

where the natural inclusions i′′d : C∗ → Hd(n) and ĵd : C∗ → GLn(C) are
defined by

i′′d(α) = (zd
0 , · · · , zd

n) · α = (zd
0 , z

d
1 , · · · , zd

n−1, αz
d
n),

ĵd(α) =

(
En 0
0 α

)
(En : (n× n) identity matrix).

Lemma 4.2. π1(Hd(n)/C∗) ∼= Z/dn.

Proof. Consider the commutative diagram of exact sequences induced
from (4.3):

π1(C∗)
i′′d ∗−−−−→ π1(Hd(n)) −−−−→ π1(Hd(n)/C∗) −−−−→ 0

ĵd∗

�∼= j′
d∗

�∼= qd∗

�
π1(GLn(C)) −−−−→ π1(Hol∗d(n)) −−−−→ π1(Hol∗d(n)/GLn(C)) −−−−→ 0

Since ĵd∗ and j′d∗ are isomorphisms by Theorem 4.1, qd∗ is so. However, because
there is an isomorphism π1(Hol∗d(n)/GLn(C)) ∼= Z/dn by [14], we have an
isomorphism π1(Hd(n)/C∗) ∼= Z/dn.
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Theorem 4.2. There is a homotopy equivalence H̃d(n) 	 R−1
2 (1).

Proof. It follows from Lemma 4.1 that there is a fibration sequence

(4.5) R−1
2 (1) ⊂−→ Hd(n) R2−→ C∗.

If µ0 : C∗ → C∗ denotes the map given by µ0(α) = αdn

for α ∈ C∗, it is the
dn-fold covering projection. Furthermore, for α ∈ C∗, by using Lemma 2.1,

R2 ◦ i′′d(α) = R(zd
0 , · · · , zd

n−1, αz
d
n) = αdn

R(zd
0 , · · · , zd

n) = αdn

= µ0(α).

Hence, R2◦i′′d = µ0 and it follows from [[3], Lemma 2.1] that there is a homotopy
commutative diagram

Z/dn −−−−→ R−1
2 (1) −−−−→ Hd(n)/C∗� ∩
� ‖

C∗ i′′d−−−−→ Hd(n) −−−−→ Hd(n)/C∗

µ0

� R2

� �
C∗ =−−−−→ C∗ −−−−→ ∗

where all horizontal and vertical sequences are fibration sequences.
Consider the homotopy fibration sequence Z/dn → R−1

2 (1) → Hd(n)/C∗.
Since π1(Hd(n)/C∗) ∼= Z/dn (by Lemma 4.2) and R−1

2 (1) is connected, R−1
2 (1)

is simply connected. Hence, by using (4.5) we also obtain a homotopy equiva-

lence H̃d(n) 	 R−1
2 (1).

Corollary 4.1.
(i) There is a homeomorphism ˜Hd(n)/C∗ ∼= R−1

2 (1), where ˜Hd(n)/C∗ de-
notes the universal covering of the orbit space Hd(n)/C∗.

(ii) There is a homotopy equivalence H̃d(n) 	 ˜Hd(n)/C∗.

Proof. Since the assertion (ii) easily follows from (i) and Theorem 4.2, it
remains to show (i). It follows from Lemma 4.1 that there is a homeomorphism

Hd(n)/C∗ ∼= (C∗ ×Hd,n
R−1

2 (1))/C∗ ∼= Hd,n\R−1
2 (1).

By using Lemma 2.4, we can see that the group Hd,n acts on R−1
2 (1) freely.

Hence, there is a covering space sequence Hd,n → R−1
2 (1) → Hd(n)/C∗. Since

π1(Hd(n)/C∗) ∼= Z/dn ∼= Hd,n (by Lemma 4.2) and R−1
2 (1) is connected, there

is a homeomorphism ˜Hd(n)/C∗ ∼= R−1
2 (1).

Proof of Theorem 1.2. The assertion follows from Theorem 2.1, Theorem
3.1 and Theorem 4.2.

5. Homotopy fibers

In this section we give the proof of Theorem 1.3.
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Lemma 5.1. There is a homotopy equivalence HF ∗
d (n) 	 HFd(n).

Proof. Consider the evaluation map e : Mapd(n) → CPn given by e(f) =
f(en). Then it follows from the fibration sequence (2.3) and [3, Lemma 2.1]
that there is a commutative diagram

HF ∗
d (n) −−−−→� HFd(n) −−−−→ ∗� � �

Hol∗d(n) ⊂−−−−→ Hold(n) ev−−−−→ CPn

id

� jd

�∩ ‖
Map∗

d(n) ⊂−−−−→ Mapd(n) e−−−−→ CPn

such that all horizontal and vertical sequences are fibration sequences. Then
the assertion easily follows from the diagram chasing.

Proof of Theorem 1.3. It suffices to show that HF ∗
d is simply connected.

If d = 1, the assertion follows from Theorem 1.1, and assume d ≥ 2. Because
id∗ : π1(Hol∗d(n))

∼=→ π1(Map∗
d(n)) is bijective by [14], it is sufficient to show

that id induces a surjection on π2.
Let i′′ : CPn−1 → CPn denote the inclusion given by i′′([x0 : · · · : xn−1] =

[x0 : · · · : xn−1 : 0], and define the restriction map r′ : Map∗
d(CPn,CPn) →

Map∗
d(CPn−1,CPn) by r′(f) = f ◦ i′′. Then we have the fibration sequence

(5.1) Fd(n)
j′
−→ Map∗

d(n) r′−→ Map∗
d(CPn−1,CPn).

Define the map g′′d : Ω2nCPn → Fd(n) by

g′′d (ϕ) = ∇ ◦ (ϕn,n
d ∨ ϕ) ◦ µ′ : CPn µ′

→ CPn ∨ S2n ϕn,n
d ∨ϕ−→ CPn ∨ CPn ∇→ CPn

for ϕ ∈ Ω2nCPn, where ∇ : CPn ∨ CPn → CPn is a folding map, and
µ′ : CPn → CPn ∨ S2n denotes the co-action map obtained by collapsing the
hemisphere of 2n-cell e2n in the mapping cone CPn = CPn−1 ∪γn−1 e

2n. Note
that g′′d : Ω2n

0 CPn �→ Fd(n) is a homotopy equivalence ([9]). Let εd : Hol∗d(1) →
Hd(n) be the inclusion given by εd(f, g)) = (f, g, zd

2 , · · · , zd
n), where we identify

Hol∗d(1) with the space consisting of all pair (f, g) ∈ C[z0, z1]2 of homogenous
polynomials of the same degree d with no common root except 02 = (0, 0) ∈ C2

such that the coefficient of zd
0 of f is 1 and that of g is 0. It is routine to check
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that the following diagram is homotopy commutative

(5.2)

Hol∗d(1) εd−−−−→ Hd(n)
j′′

−−−−→⊂ Hol∗d(n)

i

�∩ i′′d

�∩ id

�∩

Ω2
dCP1 Fd(n)

j′
−−−−→⊂ Map∗

d(n)

∗[d]

�� g′′
d

��

Ω2
0CP1 ε−−−−→ Ω2nCPn

Ω2γ1

�� Ω2nγn

��

Ω2S3 Ω2E2n−2−−−−−−→ Ω2nS2n+1

where E2n−2 : S3 → Ω2n−2S2n+1 denotes the (2n − 2)-fold suspension, ∗[d] is
the d-times loop sum with the identity map on S2, i : Hol∗d(1) → Ω2

dCP1 is an
inclusion and the map ε is given by

ε(f)(x ∧ s2 ∧ s3 ∧ · · · ∧ sn) = [f(x) : s2 : · · · : sn]

for (f, x) ∈ Ω2
0CP1 × S2 and sj ∈ S1 (j = 2, 3, · · · , n).

Since Map∗
d(CPn−1,CPn) is 2-connected ([9]), the map j′ induces a surjec-

tion on π2. By Theorem 1.1, i∗ : π2(Hol∗d(1)) → π2(Ω2
dCP1) is an isomorphism

if d ≥ 3 and an epimorphism if d = 2. Because Ω2E2n−2
∗ : π2(Ω2S3)

∼=−→
π2(Ω2nS2n+1) is an isomorphism, by applying π2 to the diagram (5.2), we see
that id∗ : π2(Hol∗d(n)) → π2(Map∗

d(n)) is also a surjection.
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[8] A. Kozlowski and K. Yamaguchi, Spaces of holomorphic maps between
complex projective spaces of degree one, Topology Appl. 132 (2003), 139–
145.

[9] J. M. Møller, On spaces of maps between complex projective spaces, Proc.
Amer. Math. Soc. 91 (1984), 471–476.

[10] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem,
Topology 45 (2006), 281–293.

[11] Y. Ono and K. Yamaguchi, Group actions on spaces of rational functions,
Publ. Res. Inst. Math. Sci. 39 (2003), 173–181.

[12] S. Sasao, The homotopy of Map (CPm,CPn), J. London Math. Soc. 8
(1974), 193–197.

[13] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143
(1979), 39–72.

[14] K. Yamaguchi, Fundamental groups of spaces of holomorphic maps and
group actions, J. Math. Kyoto Univ. 44 (2004), 479–492.


