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In parts I  and II of this series [4], we developed a systematic
discussion of imbeddings of the Schwarzschild space-time into a
pseudo-euclidean space of six dimensions. We have already obtain-
ed the stationary imbeddings o f three types (i), (ii) and (iii) in the
first paper, which will be called e l l ip t i c ,  h y p e r b o li c  and parabolic
respectively in  the present paper. In this paper, first of all, we
shall discuss these imbeddings in detail and illustrate by figures.
It should seem difficult to find explicit functions o f  imbedding
except for the stationary cases, and the remainder o f this paper
will be devoted to considerations o f various imbeddings of the
Schwarzschild space-time.

A t th e  e n d  o f this series we wish to express our sincere
thanks to Dr. Y. Akizuki and Dr. S. Sasaki for their continued
encouragements. Our thanks g o  a lso  to  the members of the
seminar for the differential geometry in Kyoto University and the
members of the Research Institute for Theoretical Physics, Hiro-
shima University who have kindly helped us by frequent dis-
cussions.

§  1 . T h e  equation  o f  (t, r) - geodesics.

The equations o f a  geodesic in the Schwarzschild space-time
V ' are given by

d ' t  2m d t dr — 0
du 2

+  

7r 2 du du
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d2 r2H m y  ( dt y m  (d ry  7 r F ( dey i  s i t " (  dpyl _  o,Ldu r 2 d u i  7r 2 d u ) du i du!  i

(1 .1 ) 61
20 .1_ 2  dr dB —sin 0 cos 0 ( d P )2  —  o,

dud u '  r  du du

d 2 g )2
+   2  d r  d q ,

+2 cot 0 Pc 1 "   —  O,
du r  du du du du

where the parameter u  i s  a  special one [8, p. 7], and w e  have
further the condition gi i dxi dx. =6k2du2 , namely

(1. 2) 7(dt)2 (dr)2 —r2 [(d0) 2 + sin20(dp) 2]  =  Eledu2 ,

where the k is  a constant and the 6  the indicator fo r  a  timelike
or spacelike geodesic ; the geodesic is a  null geodesic if k = O.

W e consider the two-dimensional subspace S in  the V' such
th a t the coordinates û and (Jo are constan t. A  null geodesic of
the V ', w hich is contained in  th e  above S, is  g iven  from  (1. 1)
and (1. 2) as follows.

d2t
+

2m dt dr — 0
du2 7 r 2 du du
d'r + m7 ( dtm  (  d ry  _  0  ,
du' ryr2 du)
72(dt) 2 —(dr)2O .

These equations a r e  im m ediately integrated an d  w e  have the
equation of such a  null geodesic. If we choose a direction of the
parameter t  suitably, the equation is written

(1. 3) t r  +  2m log (r — 2m) + t o ,

where the t o i s  a constant. For some constant t o w e shall ca ll the
geodesic th e  (t, r)-geodesic a n d  d en o te  b y  Gt0 . It should  be
rem arked that th e  parameter t  can take all real num bers as the
variable r  runs from 2m+0 to +  .

§  2 . The elliptic imbedding.

In  th is  section w e sh a ll trea t the imbedding ( i )  of part I,
w h ic h  w a s  c a lle d  to  b e  o f  e llip tic  typ e , an d  w a s  th e  same
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essentially as the one obtained by E . K a s n e r  [6 ] .  By th is im -
bedding the surface S of the V" is realised in the pseudo-euclidean
3--space as follows.

(2. 1) x  =  / i  s in  t ,  y  =  N./ 7  cos t ,  z  =  f  (r) ,

where x , y and z  are rectangular coordinates, and w e took k =1
and 2m =1, so that 7 = 1 — The function f ( r)  is determined by

(2. 2) (Cif 4 r 3 + 1 
4r 3 (r —1)'

lim  f (r)  = 0 .
r = 1 + 0

It follows from (2. 1) that

(2. 3) x2+y2 = 7

(2. 4) =  tan t.

W e illustrate the xy-, yz  - and zx-projection of the surface S
and draw  the projections of t- lin e  (r =const.) C r  and r -une ( r=
const.) C .  I t  is  c le a r  th a t  the surface S  i s  a surface of revolu-
tion and the axis of rotation is  the z - a x is .  The meridian on the
zx-plane is

(2.5)x  = 7 z  = f ( r) .

This plane curve is shown as OAA' in Fig. 1. The equation (2. 3)
shows that a curve Cr  i s  a parallel, whose radius . \ /  7  starts from
0  and tends to  1. On the other hand we see from  (2. 4) that a
curve C , is  a m erid ian . For t —7r/2 w e have the curve OAA' on
the zx-plane, and along the curve we have

. dzhm  -  —  hm \/4 r 3 + 1 = -\/ 5 .
x--() dx —1+0

Next we consider a (t, r)-geodesic Q.° ,  which w ill be written
with bold strokes in Fig. 1  and 2. For r =1 + 0 the xy-projection
of a Q.° tu rn s round and round about the orig in  0  and tends to
0  as the logarithmic spiral. For various values of t ,  a curve G00

will be obtained from a fixed G, by rotating the whole about the
z-ax is by the angle t0.



0

Fig. 1 Fig. 2
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A s  a  result we can say that the singularity r =1 + 0 of the
metric o f th e  V' is represented as a single point, namely the
origin 0, if  we deal with the elliptic imbedding.

§  3 . The hyperbolic imbedding.

We noticed in  part I  th a t the imbedding obtained by C.
Fronsdal [3] was a special case of our hyperbolic imbedding. By
this imbedding the surface S  is realised by

(3.1)x  =  2N/ 7 sinh
2 2

y = 2 -t-N/ 7 cosh z  = g(r),

where the function g(r) is

(3. 2) (d g y  _ r 2+r+  1
7.3

lim g(r) = O.
r=1-1-0

Following C. Fronsdal we took k = 2 and 2m=1 again. It follows
from (3. 1) that

(3.3) y2- x 2 = 47 , y > 0 ,

(3. 4) —
x  

= tanh —

t  

.
2

We first consider a t -une C r , and see from (3. 3) that each C r  is
a  half o f  a  hyperbola on the plane z =g (r)  and its xy-projection
has the common asymptotics y= x (F ig . 5 ). The vertices of
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those hyperbolas move along the curve OCC' (Fig. 4) as the para-
m eter r  v a r ie s . T h e  y  o f  th e  curve OCC' starts from  0  and
approaches to 2.

N ext w e treat a r -une C , .  It follows from (3. 4) th a t  the
xy-projection o f  a  C , i s  a  half of the straight line issuing from
the origin (Fig. 5). Along a C, we get

d z _  •V7r(r2 +r+1) dz _  N/7r(r2 +r+1)
dx • t ' d ysinh — cosh —

t '

2 2

and hence the zx-projection contacts with the x-axis except when
t = 0 ,  and the yz-projection with the x-axis for a ll t.

Now we consider a  (t, r)-geodesic G1o ,  the equation o f which
is given by (1. 3). Along this curve we have easily

hm y — —hm x — exp 
(  1 +  t o

—1,0 r=1+0 2

f ro m  w h ic h  it  fo llo w s  th a t  e a c h  Gt o  t e n d s  t o  t h e  point
_1 +At° (— exp (- 1 ± t °), exp (

t o ) ) for r= 1 + 0 (Fig. 5). Thus we

get the pictures ofthose G, o , Which are written with bold strokes
on each coordinate plane (Fig. 3, 4, 5). The broken lines AtoTto
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on the yz-plane are used to
denote that the x is negative
on the arcs.

Consequently we can say
th a t the singularity of the
m etric o f th e  V ' is d istri-
buted densely on the half of
the stra igh t line y  —x, i f
w e are concerned only with
the hyperbolic imbedding. Fig. 5

§ 4. The parabolic imbedding.

The parabolic imbedding was found first by authors in part I,
which was given by

t 2  — 1  
Z1 —

2 \

/7 -I- h(r) , z2 =  t \ /  ,

Z3
t 2  + 1  

, —
2  

\/ ry  + h(r) , z, = r sin O sin p ,

z, r sin 0 cos (73 , z, r cos .

For the purpose o f examining the behavior of the surface S  in
this imbedding, it had better to introduce new orthogonal coordi-
nates x, y and z  instead of z„ z 2 and z, as follows.

V 2 zi = x — z z 1 = y, V  2  z3 z

Then the surface S is represented

(4.1)x  =  PA! 1 -+  \TT h (r) , y  t-\/  , z = 7

2 'V 2

where the function h(r) is determined by

(4. 2) dh rl i m  h(r) =  0 .
dr

It follows from (4. 1) that

(4. 3) .Y2 \/27(x — 2  h(r)) ,

(4.4)Y  =  V 2 t ,
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We shall proceed in similar manner with the previous sections,
and consider first a t -une C r . By means o f (4. 3) we see that
each C,. is a parabola on the plane z = \ / 7 / 2  whose vertex is the

point (N/  2  h, 0 , V 7 /2 )  as in Fig. 6. The locus of the vertices are

shown as OCC' in Fig. 7. Along this curve we have lim (dxIdz)= 4.
r=1+0

The curve OCC' is a r - lin e  for t = 0 , and we see from (4. 4)
that the yz-projection o f a  general r-line  C , is a half of a straight
line issuing from the origin (F ig . 8).
Along a C, we have Y

. dx = t 2 + 4 .r=i+o dz

Finally we consider a (t, r)-geodesic
Ge o . Making use of (1. 3) we have lim x

r=1±0

= lim y = lim  z = O. The pictures o f Gt,
r=1-1-0 r=1-1-0

are written in Fig. 6, 7  and 8  with bold
strokes, and the broken lines on the zx-
plane show that y < 0  at those parts of
curves. On the other hand the broken
lines on the xy-p lane  mean that those
parts slip under the lower part of the
surface S. F ig . 6

10 0 1

Fig. 7 F ig . 8
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Thus we may say that the singularity is then the single point 0
as for the parabolic imbedding.

§ 5 .  Impossibility of a certain imbedding of the V ' in E 6 .

We recall the process in part II. We considered there the hyper-
surface V3(t) of the Schwarzschild space-time V' which was defined
b y  t = const., and showed that th e  17 3 ( t )  was imbedding in an
euclidean 4-space. M aking use of this imbedding we saw that
the V' was thought of as a hypersurface of the space V ' o f five
dimensions, the metric being

(5. 1) ds2 = 7 d t2  
2 m

 de —(d,z4)2 —(dz 5)2 —(dz 6)2 .

Therefore our imbedding problem o f th e  V' was reduced to the
one of the V ' o f two dimensions, whose metric was

(5. 2) ds2 = ryde — —

2 m  

.yr

We concluded part II by a remark that the stationary imbeddings
corresponded to the special case for b„ = 0, where bi ;  ( i ,  j= 0 ,  1)
were second fundamental quantities of the V' when it was looked
upon as a surface of a pseudo-euclidean 3-space. The geometrical
meaning o f  b0 1 = 0  is  th at t-lines and r -unes on the V' are lines
of curvature.

Though our imbedding problem of the V' was reduced to the
simpler one, it should seem rather difficult to obtain imbedding
functions o f  th e  V ' exp licitly except fo r  th e  stationary case.
However, from th e geometrical and perhaps physical points of
view we are interested in a special imbedding of the V' such that
a certain fam ily o f geodesics of the V' is represented as a family
of straight lines in E ', similar to the case for the empty universe
of De Sitter [8 , pp. 261-264]. But w e shall p rove a  negative
result as follows.

Theorem 1. There exists no imbedding of the S chw a rz sch ild
space-time V' in  a  pseudo-euclidean 6-space E 6 such that the V'
contains a straight line of the E6.



On the im b edd in g of the Schwarzschild sp a ce - t im e III. 263

Proof. We saw already that the V' was imbedded in the V'
of the metric (5. 1), and the imbedding functions were given by

J y° = x° , y '  x ' ,  y 2 =  x' sin x2 sin f  ,
y' x l  sin x2 cos f  , = x ' cos x2 ,

where we putted (t, r, O, P ) = ( x ° ,  x ', x ', x ') and (t, r, z4, z5, z6)—
( y o, y l ,  y 2, y 3 , y 4 ). H ence if C : ya --ya(u), a = 0, 1, 2, 3, 4, is a curve
of the V' drawn on the V', we have

dyaa y "  dx ia ,  b, c = 0, 1, 2, 3, 4
du ax' du j  =  0, 1, 2, 3,

(5.4)
d 2ya  jp- L  dyb dyc r i t j  dxi + (d 'x i dx f  dx k ay '
du2d u  d u d u  d u  \du2l e  du du ) axi

where (Y ) is so-called the Euler-Schouten's tensor o f th e  V'
defined by

y;, a y 2 . aye, ay, ay'
axiaX1 e aX k

and the II ;  and rg, are Christoffel's symbols of the second kind
of the V' and V' respectively. Therefore if the C  is a  geodesic
of the V', then the C  satisfies (1. 1), and in terms of the coordi-
nates (t, r, y', y', y") of the V ' the C  is written in the form

d 't
 +

2m dt dr
du2 7 r 2 du du 

— 0 ,

m ( d r y  fyr r (d0\2 ± s i n v (d p y l _  0,d 2 r + my (d tY
du2 r 2 ' d u )  7r 2 \du) L■du) \du )

d 2 Y2 + sin pA(u) — 0 , d 2 Y3 + sin 0 cos pA(u) =  0, s i n  
du 2d u 2

d 2 Y4 + co s  0 A(u) = 0,
du 2

where by definition

A(u) m  (dt
7m \ du
r 2  (dr

)  2

 +  2 m  r (c \ 2 +  s i n v \ 2 1
L\clu) \du)r 2 \ du ) 

Next, the V' is imbedded in  a  pseudo-euclidean 6-space E 6 ,

(5. 3)

(5. 5)

and the imbedding is given as the result of the one o f the V',
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the metric being (5. 2), in a pseudo-euclidean 3-space E 3 . Let y(t, r)
b e  an  imbedding vector o f th e  V', which is a solution of the
system o f equations 11 (21), (22), (23) and (24), in  which (boo , boa.,
b„) is a system of solutions of the Gauss equation I I  (19) and the
Codazzi equations 11 (20). I f  we express y= (2' 1 (t , r), z2 (t , z), z3 (t , r)),
then the imbedding functions of the V ' in E 6 are given by

= zl(t , r) , z 2 =  z 2 (t , r) , = z 3(t , r) ,
z`i = y2 , z 5 = y 3 , z 6 = y 4 .

Then the curve C  is looked upon as a  curve in  the E ,  along
which we have

 az" dya a  =  1, 2, 3, 4, 5, 6 ,
du aya du a, b, c = 0, 1, 2, 3, 4 ,

(5. 7) d2za _  z:b dya dyb + (d 2ya dyc)az" 
du2d u  d u  \du2d u  d u  ) ay'

where ( Z )  is the Euler-Schouten's tensor of the V' such as

a'z ' -  az'-   l'¢i•  •
aY a a y c

The second equations o f (5. 7) are written in virtue o f  (5. 5)

d'zw za dya dyb
+

d x i  dxi az 'Y
du2d u  d u d u  d u  aya

+ (d'x i + ri k  dxi dxks\aya az '
du' '  d u  du ) axi aya •

Since the C is  a  geodesic, the term in the parenthesis vanishes,
and it follows from (5. 5) that we get

' d2 z "  _  (a 'z '  m y  az ( dt V + 2 0 2 z" m   a z 'd t  d r
du2\  3t2 r 2 a r  l\  du) \a tar 7r 2 at )  du du

+ (a 2 z: + m   az"V dry  + yr r(d9 \2+sin2o(dPflaz
-

■ a?,  y r 2 ar AduL  du) \du) Jar
(5.8)a  = 1, 2, 3 ,

d2z4 
s i n

d 2 z 5 .+ sin 0 sin (pA(u) = o ,  + sin 0 cos (pA(u) = 0,
du du2
d'z' + cos 0A(u) = 0.

(5. 6)

du'
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Making use of the equations 11 (21), three terms in the parenthesis
in the above equations are written in the forms

a2 mry az' _ 72 az°H- b
oom' ,

at 2r 2 a r 2r ar

(5.9) a 2 z m  a  z ' b  0 , m „ a = 1, 2, 3,
atar —yr2at
v e +  m 1  a e
ar2 7r2 ar

2r ar + b„ne .

Now, supposing that the geodesic C of the V' be represented as
a  straight line of the E 6 , and then d2e/du 2 =0 and hence we obtain
first A (u)=0 from (5. 8). This fact and (1. 2) give us

1dt 2—  
2

&leclu2 ,
3

(5.10)
d02+ sin20 4 2 = — 1 &ledu2 .

3r 2

 

Substituting from (5. 9) and (5. 10) in  (5. 8), we have

(5. 11) b00dt2 + 21) o l dt dr + b11dr 2 = 0.

On the other hand, the equations (1.1) o f  a  geodesic a re  easily
integrated once by means of (1. 2), and we have

(5. 12)

dt a ( dr V
d u 7  ,  ycru ) = a 2 + '-' b—Ek27 ,

r 2

( dO)
2 _ p_  b  _  c 2d

r 4 2 ' 4 sin20 du r 2 sin 2 Û

where a, b and c are constants. Substituting from (5. 12) in  (5.10)
the condition b=(113)9k 2r 2 is  derived , and hence k=0  o r  r =ro

(const.) because of b = const. If k =0, the curve C is a null geodesic.
On the other hand, if r =r (>2 m ) , we have from (5. 12)

(c/0)2 _  _  1  ep  c 2  
\dul 3rg rg sin'
( d r y  0  _  a 2 2  &k2 (i 2m
"du! 3 r0) •

The second equation gives &=1 and we have k =c=0 , because we
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should consider only a real geodesic. Thus we have k= 0 in this
case also. Consequently k ,b  and c  vanish, and (5. 12) are written

d t a  
ck = 71 a , ± 1 ,  a + 0 ,

du 7 du
d O  dp— — 0 .
d u  d u

Substitution of the above equations in (5. 11) leads to

(5. 13) boo+ 2boin7 + b„72 = 0.

The second fundamental quantities bi ;  i n  (5. 13) a re  not
arbitrary but must be determined by 11 (19) and (20). From the
algebraic equations (5. 13) and 11 (19) we deduce that

bo o = (71b — nb01)7 ,

b„ ( - 71b - 71b01) ,

and, substituting from these in 11 (20), we have (b12r)— db 1 dr=0,
which is clearly not satisfied. Consequently we establish the
theorem 1.

Now we consider generally a null geodesic C  of the V4 . Then
the equations (5. 12) (k =0) are satisfied, and for the C  we have

A(u) — —
3 m

b ,
r 4

dxi dxi 0  y l  dxi dxi 37  b
du du du du 2r3

v 2  dxi dxj 3 m  sin 0 sin (73 bd x i  d x i  3m  sin  0 cos p ,t i  du du r4 " d u  du r4

v 4  dxi dxj 3 m  cos  b

du du r4 •

Therefore it is easily seen that a null geodesic C o f th e  V4 i s  a
null geodesic o f th e  V ' as well if, and only if, the constant b
vanishes. Such a real geodesic C  is then given by

dta  dr—  —  , —  = na , ± 1 ,  a +  0 ,
du 7 du

(5.14)
dO  _ dp 0

d u  d u •

b —  
, i3m
'V 21-3 '
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It follows from (5. 8), (5. 9) and A (u )=0  that the geodesic is ex-
pressed in the E 6 as follows.

(5. 15) dd2u 00 0 1z : 
a' o ,  —  ( b  +2 b  n y + b , , y 2 ) m
r

2 7  1, 2, 3,

= e u +  ,  X = 4, 5, 6 ,

where ax  and bx are constants. The result seems worthy to state
as a theorem.

Theorem 2. There exist null geodesices of the Schwarzschild
space-time V' which are also null geodesics even in the V', the metric
o f which is (5. 1). In  terms of the coordinates (t, r, 97, (p) of the V'
those geodesics are given by (5. 14). Furthermore, in  terms of the
coordinates (z ', z 2 , z 3 , z 4 , z ', z 6 ) of a pseudo-euclidean 6-space envelop-
ing the V4 ,  those geodesics satisfy the equations (5. 15), where bi ;

( i, j=0 ,1 )  are a system of solutions of I I  (19) and (20).

§  6 .  Impossibility of an imbedding of the V4 in  S 5 .

It is well known that a  Riemannian space V "  can not be
imbedded in  a  pseudo-euclidean space En+4  o f  (n + 1) dimensions,
if th e  Ricci tensor R i f  =R i k.i k  is  equal to  zero [ 5 ] ,  [ 2 ,  p. 200].
Therefore the Schwarzschild space-time V4 is not realised as a
hypersurface o f .0 .  We should also pay attention to  the paper
by C. B. A llendoerfer [1 ], in which he studied the necessary and
sufficient condition that an Einstein space V" o f  non-vanishing
scalar curvature can be imbedded in  a  pseudo-euclidean (n+1)-
space. Further we are interested in the paper by H. Takeno [9],
who investigated an imbedding o f a  spherically symmetric space-
time in a pseudo-euclidean 5-space.

One of the authors developed in 1953 the theory of imbedding
of a Riemannian space V" in  a space S '  of constant curvature
K  [ 7 ] ,  in which he gave a system of algebraic equations by means
of which the curvature K  is determined only from quantities of
th e  V ". If we apply the result, we can discuss an imbedding of
a  V " in  a  S n+' for the case where the Ricci tensor R15 vanishes
or is equal to (R1n)g 3 . In  this final section we shall prove a
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negative result as follows.

T heorem  3. There exists no Riemannian space of constant
curvature in  which the Schwarzschild space-time is imbedded as a
hy persur face.

Proof. If a space S " ' - ' of the constant curvature K  can enve-
lope a given V", the curvature K  has to be found as a solution
of the system o f equations [7, (4. 8)]

(6.1) A11121 11521 fr1k2k3 k4 -K - 2 R11121 51121 k1k2 k3 k4 =  0  ,

in which components of the tensors A and R  are defined in terms
of the fundamental tensor g i ;  and the curvature tensor R i  p a  o f
the V" as follows.

A.1,121 1112J k1k2k3 k3 — (Ri1ha1b1gi2.2ghb2
ai ka 22hk i3bk 42

R i 2 j2 a 2 6 2 g i g  j i b'  R i z i l a z b i g h a i g h b 2 )  k

R
11121 5112 I k 1 k 2 k 3 k 4  =  4

1
 ( R i i  a i b i R i 2 j 2 a 2 b 2  Rid2ai b2R labi2iia2bi) 8 akik:kal bk42

where a's are the generalised Kronecke's deltas. The equations
(6. 1) themselves are somewhat complicated formally, but if the
V" is an Einstein space, namely R i i — (R In)g i i ,  then we can reduce
a  simpler system o f  equations from (6. 1). T hat is, contracting
(6. 1) by g i

2k3g i 2k 4  and making use of the equations R i i =( R In ) g i f ,

we have

(6. 2) [ 1 - (g i k g 1 , g i g i k ) 6 R i i k f i K

R 2R
—16 ‘ g i k g  1  g " g i k / 2  R i f R7.kbRbi. l a

±  R 7. ib le r k a +  R J R I ,

where we changed indices and restricted already to the case n = 4 .
N ow  w e return  to  the consideration of the Schwarzschild

space-time, so that the scalar curvature R  vanishes, and it is easily
seen that the above equations have a solution

(6.3) K =  —   m

2r3 •
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However this K  is not constant unfortunately, and thus we have
the theorem 3.

Though our attempt to imbed the V ' in  a  S 5 has gone to
waste, we obtain a by-product that the curvature tensor of the V'
is decomposed as follows.

(6. 4) R i j k l

j , k , 1 = 0, 1, 2, 3 ,

where, referring to the coordinates ( t ,r,O ,p ) , components of the
tensor b are defined by

A 13m 1b0 0 =  — 'y —
,  b 1 1 2 r 3

b 22 =
,  /3m 2 b" — b22 sin'e , bi ;  = 0 , -I- •2r 3 r  

The equations (6 . 4) are of the same form as the Gauss equations
of the V' provided that the V' be imbedded in  a  S 5 [2 , p . 2 1 1 ].
It should be noted that the tensor bi ;  is proportional to the funda-
mental tensor g i ;  o f th e  V' to within algebraic sign.

University of Osaka Prefecture,
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