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§ 1 . Introduction.

The fundamental work o f R. A . Minlos  [9 ] concerning the
existence of measures in nuclear spaces seems to make it possible
to get an approach to a new foundation of the theory o f stochastic
processes. To achieve this end it is necessary to prove the weak
measurability (see Definition in § 3) of some subspaces of the space
o f tempered distributions of L . Schwartz [12].

The aim of the present paper is to give a  first step in  this
direction. In § 2 we recall some facts in topological vector space
theory which will be used in  the sequel. In  § 3 w e  g iv e  the
definition o f the weak measurability o f a  set in  the dual of a
locally convex vector space. For the weak measurability of linear
subspaces two simple criteria are obtained there. In  § 4 examples
of weakly measurable subspaces of the space of distributions are
treated. We shall see that practically almost all functional spaces
o f usual use in analysis are weakly measurable.

I should thank here Prof. K. Itô for his kind leading and en-
couragement. The origin o f this work was the question asked by
him whether the space of the derivatives of locally Holder continuous
functions is weakly measurable or not1 ) . Applications of the present
work to the theory o f stochastic processes will be treated by him.
I should be grateful to Prof. H. Yoshizawa also for his showing
constant interest, for the helpful discussions and for his critical
reading of the manuscript.

1 )  See § 4, Proposition 6 and Proposition 7.
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§ 2 .  Preliminaries from topological vector space theory.

We recall here in  this paragraph those fundamentals from
topological vector space theory (see [2] and [3]) which are needed
in the subsequent paragraphs. When we speak of a vector space,
we always mean a vector space over the field of real numbers or
over the field of complex numbers ; when the field of scalars is
not specified, it is understood that the definitions and results are
valid in both cases. When several vector spaces intervene in the
same statement, it is understood that they have the same field
of scalars.

Let F  and G  be two vector spaces. Suppose that there is
given a bilinear form <x, y> on the product Fx G  (x  C F, y  E G).

DEFINITION 1. The vector spaces F and G are said to constitute
a dual pair (with respect to the bilinear form <x, y>), if the follow-
ing conditions are satisfied :

(i ) For any x + 0 in F, there exists y E G such that <x, y>+- 0,
(ii) For any y  0  in G, there exists x E F such that <x, y>+ 0.

Let E  be a locally convex (Hausdorff) vector space and let E'
be the (topological) dual space o f E ,  i.e. the space o f  a ll the
continuous linear forms on E .  Denote by <x, x '> the canonical
bilinear form x '(x), i.e.,

( 1 ) < x ,  x'> x '( x ) .

Then, E and E ' constitute a dual pair with respect to the bilinear
form (1)."

Suppose that there is given a dual pair F, G .  By conditions
(i) and (ii) in the above definition, F  (resp. G) can be canonically
embedded in the algebraic dual G * o f G  (resp. in the algebraic
dual F *  o f  F ) .  We identify, by this embedding, the space F
(resp. G) and the corresponding subspace of G* (resp. F * ) .  Hence
the elements of G  (resp. of F)  are considered as functions on F
(resp. on G).

2 )  In  th is  case, the condition (i) is  a  consequence o f Hahn-Banach's extension
theorem ( [ 2 ]  I, p. 101 and p. 110).
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DEFINITION 2. Let F, G be a dual pa ir. We denote by 0- (F , G)
(resp. 0- (G , F)) the weakest topology in F  (resp. in G) that makes
a ll the elements o f  G  (resp . of F )  continuous. We call this
topology 0- (F, G) (resp. cr(G, F)) the weak topology of F  defined by
G (resp. the weak topology o f G defined by F).

By conditions (i) and (ii) in Definition 1, 0- (F , G ) is always a
locally convex Hausdorff topology in F .  When the dual pair con-
sists o f a  locally convex vector space E  and its dual E', o -(E, E')
is nothing but the usual weakened topology' )  o f E ;  and  0- (E' , E)
is the weak topology of the dual E'.

A subset D of a vector space is called a balanced set is Xx E D
whenever 1X.1<1 and X E D .  It is called a  disc i f  it is balanced
and convex.

DEFINITION 3. Let F, G be a dual pa ir. Let 0  be a family of
discs in G . The topology in F  defined as the topology o f uniform
convergence on each set in e is called the e-topology.

If a  family 0 consists o f  bounded" sets and if 0 is a cover-
ing o f G, i.e. \J D=G , then the 0-topology is a  locally convex

DE S
Hausdorff topology in F  and is stronger than o- (F , G).

Let be a locally convex Hausdorff topology in F .  We denote
specifically by Fe the space F  with the topology Z . The dual of
F e is denoted by G.

MACKEY—ARENS' THEOREM. In  order that G = G  (under the
identification mentioned before), it is necessary and sufficient that '0
coincides with an e-topology such that e consists of weakly compact"
discs in G and is a covering o f  G .  (See [2 ] II, p. 68.)

DEFINITION 4. Let F, G be a dual pair. For a subset A of F,
we denote by A° the set of those elements y  in  G  which satisfy
the inequality

y><1"

3) In French terminology, "la topologie affaiblie".
4) See [2 ] II , p . 4.
5) Compact with respect to o- (G, F).
6) .g2. s tan d s  fo r  " th e  real p a r t  of ". It is easy to see that i f  A  is a  disc this

inequality can be replace b y  Kx, y> I <1.
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for any x  in  A .  The set A ° is called the polar of A.
Interchanging the roles of F and G  we define the polar B° of

a  subset B  of G.

DEFINITION 5. L et A  be a  subset o f F  an d  A ° be the polar
of A .  Then, the polar (A°)° of A ° is called the bipolar of A  and
is denoted by A".

BIPOLAR THEOREM. L et F, G be a  dual pair and  A  be a subset
o f  F. T h e n  the bipolar A " is  the sam llest weakly closed convex set
that contains A  and the origin 0. In  particu lar, if  A  i s  a  weakly
closed disc, we have that

A "  A .
(See [2 ]  II, p. 52 Proposition 3.)

L e t E  be a  locally convex vector space and E ' be its dual.
Take a  disc neighbourhood V o f 0  in  E .  It is evident that V° is
then weakly compact because of Tychonoff's theorem. But the
contrary is not true in  general, i.e. the po lar B ° o f  a  weakly
compact disc B  in  E ' is not necessarily a  neighbourhood of 0 in E.
If E  is tonnele (see [2 ]  II, p. 1), however, this contrary holds, i.e.

PROPOSITION 1. L et E  be a locally convex vector space which is
tonnele . Then, every weakly compact subset o f  th e  d u al  E ' is  an
equicontinuous set. (See [2 ]  II, p. 65 Theorem 1.)

The following fact will be of later use.

PROPOSITION 2. In  a  topological vector space, le t A  be a convex
set with non-empty interior A. Then, every p o in t o f  A  is adherent
to  A. (See [ 2 ]  I, p. 51 Corollary 1  to Proposition 15.)

§  3 . M e a su ra b ility  c r ite r ia .

Let E  be a  locally convex vector space an d  E ' be its dual.
T h e  purpose o f  this paragraph is to obtain criteria for weak
measurability (see Definition 6  below) o f subspaces o f th e  dual
space E'.

For an element x  GE and  a  real number a, we denote by sx ,,,
the closed half space of E ' defined by the inequality

<x, <  .
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DEFINITION 6. Let W E') be the totality of closed half spaces
S  above. We denote by 0(E ') the B orel f ie ld  on  E'
generated by U(E'), i.e . the smallest Borel field containing WE').
A  subset o f  E ' is called weakly measurable i f  it belongs to the
Borel field 0(E').

Since E  and E ' constitute a dual pair, the elements o f E are
considered as functions on the dual E ' .  Then it is clear that the
Borel field 0 (E ') defined above is just the smallest Borel field that
makes all the elements o f E  measurable functions on E'.

Let us denote by V ° the (original) topology o f th e space E
and consider another topology '0 on E which is weaker than the
original topology V ° and compatible with the vector structure of
E but is neighther necessarily locally convex nor Hausdorff. Since

is assumed to be weaker than Vo , a linear form on E which
is continuous with respect to  the new topology i s  à  fortiori
continuous with respect to  the original one '0, and therefore an
element of E ' .  Hence E i  is a subspace of E ' .  Using the notations
we get the following

THEOREM 1. L et E  be a  separable locally convex vector space
and E ' be its d u al. A  subspace G  o f  E ' is w eak ly  m easurable i f
it can be w ritten in the form

G = E

f o r a topology on E such that
(i) '0' is w eak er than the original topology '00

(ii) is  metrizable" and compatible w ith the  vector structure
o f  E.

PROOF. We shall show that G  belongs to e 8, ,  i.e. G  is  a
countable union of those sets each of which is a countable inter-
section of sets in (E ' ) .  First take a point a G E .  Taking its polar
we have that

( 2 ) a°--- Se ,i .

7 )  More generally, we might only assume that satisfies th e  first axiom of
, :ountability. We need not assume that 7  is a Hausdorff topology.
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Take an ?ö-open s e t  D  in E .  Since Y  is weaker than Z o , D is
V o-open a lso . Z o being a separable topology and D being '0 0-open,
D contains a countable number of points a, (v =1, 2, 3, •••) which
are dense in D .  Let A  be the set consisting o f  these vectors
a, (v=1, 2, 3, •••). A being contained and dense in D, we have that

13' = A° =
1, = 1

since the elements o f E ' are continuous. Hence, by (2), we see
that D° is  in e 8 , i.e. D° is  a countable insersection o f  those sets
which are in e(E'). Now since i s  a metrizable topology, there
exists a  countable number of '0-open sets D„ (n=1, 2, 3, •••) that
constitute a  fundamental system o f  neighbourhoods o f 0 in E .
By the above argument, we know that each D,z° G e,. To complete
the proof, therefore, it is enough to show that

( 3 ) G  =  TX.

Take any element x ' in G = E .  x '  being v-continuous and
<0, x'>= 0, x ' should belong to some D„'  since {D, } constitute a
fundamental system o f neighbourhoods o f 0 . Hence we have that

( 4 )

On the other hand if an element x ' of E ' i s  in  some IX , x '
should be continous relative to  U . In fact, for an y &>0, x '
implies that 1<x, x'> I< 9 for any x E ED„ being a Z -open set
containing 0 since is  compatible w ith  the vector structure of
E , the inequality implies that x' is continuous with respect to Y.
Thus we have that

( 5 ) G
n= 1

From (4) and (5) w e get (3). This completes the proof.

T o  assure the weak measurability o f a  given subspace o f G
o f E ',  we cannot use Theorem 1  as a  criterion unless we can
easily find a topology on E  that satisfies the conditions stated
in the theorem. Therefore we shall give another criterion which
concerns directly the subspace G.
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THEOREM 2. Let E  be a  locally  convex vector space which is
separable and ton ne lé . E ' b e  its  dual. Then, a subspace G o f  E '
is weakly  measurable if  there exists a family  o f  d i s c s  in E ' that
satisf ies the following conditions:

(i) consists of a countable number of discs K „(n=1, 2, 3,
each of  which is contained in G and weakly compact.,

(ii) constitute a covering of G, i .e . G =0  K , , .

PROOF. According to Proposition 1 in the preceeding para-
graph, each disc K „ i s  an equicontinuous set since K „ is weakly
compact and the space F  i s  tonnelé. Therefore the polar K°„ is
a  neighbourhood o f 0  in  E .  Denote by V„ the interior of K .
V„ is not empty since K „' i s  a  neighbourhood. By Proposition 2
in the preceeding paragraph, w e know  that V„ i s  dense in K .
Since E  is separable and since V„ is  open, we can find a countable
number of points a, (v =1, 2, 3, in V„ which are dense in V„.
Thus we have that

Kz. = TT,I= f\ a?, .

But since K „ is  w eak ly  compact, according to Bipolar Theorem
in the proceeding paragraph, w e have that K n" = K „ .  Therefore
w e  have, as in  the proof o f Theorem 1, th at K n e e s . Hence
G =0  K „E e s ,.. This completes the proof.

n

REMARK. Theorem 1 and Theorem 2 are essentially equivalent.
In fact, if we know beforehand that the space E  and the subspace
G  or E ' constitute a  dual pair with respect to the restriction of
the canonical bilinear form (1) on E x E ' to E x G , we can deduce
Theorem 2  directly from Theorem 1  referring to Mackey-Arens'
Theorem in the preceeding paragraph, since the - t o p o lo g y  is
metrizable because c o n s i s t s  o f a  countable number o f  discs.
(To assure th a t th is  -topology is weaker than the original topology
o f E , we required that E  i s  tonnelé.) In turn, we can reduce
Theorem 1 to Theorem 2 i f  we restrict ourselves to spaces which
are tonnelé, because equicontinuous sets are always weakly compact.
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THEOREM 3. L et E  and  F be two locally convex vector spaces.
L e t E ' an d  F' be their dual spaces. A nd let u: E— > F be a conti-
nuous linear mapping. T hen, the transposed mapping u' : F' —>E'
o f  u  is a  weakly measurable mapping".

PROOF. Let S an element of e ( E ') .  Then, by the defining
formula

<u(x), Y> — <x, u'(y')> (x E E, y ' E F')
of the transposed mapping u ', we see that

u'r- l (Sx ,„) = S u c x ) ,„.

From this we have that

( 6 ) u/-1(U(E')) C  8 (F ').

Now, let 0  be the totality o f  those subsets A  o f E ' which
satisfy

u'-1(A) E 0(F') .
It is easy to see that 0  is  a Borel field. But since, by (6), 0
contains e (E ')  and 93(E') is  the smallest Borel field containing

we have that 0 0 (E ') ,  i.e.

u ''(0 (E ')) 0(F') .

This completes the proof.

COROLLARY. L e t F be a  locally convex vector space. L et E  be
a dense subspace of  F and introduce a stronger locally convex topology
in to  E . Then, we can canonically reg ard  F' as  a subspace of  E '.

Under these assumptions, if  a subset A  o f  F ' is in Q3(E'), then
A  is in  0 (F ')  also".

PROOF. Let u :  E.--->. F be the injection mapping which is conti-
nuous by assumption. Then, u' is nothing but canonical embedding
F'— >E' stated in the proposition. Hence, by the above theorem,
we have that

A = ur - 1 (A) E 0(F ') .

8) When E  and F  are reflexive, every continuous linear mapping y :F'— >E' is
written in  the form v = u '. This is  the case when E = 1  and F —y, or when E =1,
F =6.

9) This is the case when E = 1  and F =9', o r  when E-3), F = .  (S e e  [12] )
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§ 4. Examples.

From now on we shall be concerned exclusively with subspaces
of the space of distributions of L. Schwartz [12] defined on the n-
dimensional space R .  Let us recall some notations defined in [12].

T  :  the space o f  indefinitely continuously differentiable
functions defined on R n  and with compact supports.

:  the space o f  m  times continuously differentiable
functions defined on R "  and with compact supports.
When m=0, th is is the space C o f continuous func-
tions with compact supports.

• :  the space o f indefinitely continuously differentiable
functions defined on R n  and rapidly decreasing.

• :  the space o f  m  times continuously differentiable
rapidly decreasing functions. When m =0, this is the
space o f rapidly decreasing continuous functions.

6  :  the space o f  indefinitely continuously differentiable
functions with arbitrary supports.

:  the space of m times continuously differentiable func-
tions. When m =0, this is the space C  o f continuous
functions.

We suppose that these spaces are associated with their standard
topologies (see [12]). These spaces are thus locally convex vector
spaces. W e notice here only the facts that they are tonnele and
that it easy to see that they are separable. To them we add the
following.

LP (1< p < 0 0 ): the space o f  measurable functions whose
p-th powers are integrable with the usual topology
defined by the norm

IlfIlp If(x)iPdx).

The corresponding dual spaces are :
• the dual o f T, i.e. the space of distributions.
T'm : the dual o f  Tm, i.e. the space of distributions of

order < m .  W hen m = 0 ,  th is  is  the space C' of
(locally bounded) measures.
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: the dual o f 92 , i.e. the space o f tempered (or slowly
increasing) distributions.

r'n  : the dual o f 9"", i.e. the space o f  tempered distribu-
tions o f  order < m .  When m =0 , this is the space
o f slowly increasing measures.
the dual o f  g ,  i.e. the space of distributions with
compact supports.

g'm : the dual o f  gm , i.e. the space of distributions of
order < m  with compact supports. When m = 0, this
is the space o f measures with compact supports.

1 1(1<q _<00 ; 73. +  = 1 ) :  the dual of L".

As an application of Theorem 1 in the preceeding paragraph
we can easily see the following

PROPOSITION 1. g/", g',9"'n, LP (1 <p <0 0 )  and 99 ' are in 0(T') ;
gim, g', rni, LP (1<p<00) are in  O(El'); g'rn is  in  q3(g')" ) .

For, these spaces are obtained as dual spaces by introducing
suitable metrizable topologies into T, g ' or g.

In particular (the case m= 0), we get the following

COROLLARY. T he set of  all m easures w ith compact supports is
in  0(8 '), 0 (9") and 0(T') ; the set of  all slow ly  increasing m easure
is  in  0(9 ') and 0(T').

Meanwhile, the topology o f C ( = V )  being not metrizable, we
cannot apply Theorem 1 directly to assure that the space C' of all
measures is in O(JY). W e  have, however, the following

PROPOSITION 2. C '  is  in  0(1').

PROOF. Let a m(x )  be an element of D  su ch  that an i (x) =1
when tx1< m  and a n i (x)= 0 when lxi >m-F 1. And consider the
following sequence o f linear mappings c1),,, : T ' defined by

(1) ( T ) =  cç T , T  E T '  (multiplication by a r n ) .

These mappings being the transposes of the continous mappings
: D—'D and g" being in O(D') we have that <13,7,'(V ) E D') by

1 0 )  The weak measurability of L ' will be established later (see Proposition 9).
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Theorem 3. But since it is easy to see that C'=:(VI -3,7,'(8"), we
get that C' E 0(1'). Specifically C' is in e 8 , 8 .

As for the weak measurability of sets of positive measures
we have

PROPOSITION 3. T he  se t o f  a ll  positive m easures is in  Q3(1').
The se t o f  all positive slow ly  increasing m easures is in  58(99 ' )  and
3(1)'). T he  se t o f  all positive m easures w ith com pact supports is

i n  3(6'), O(9") and 0(5Y ).

PROOF. Since it is easy to see that the set T ., of positive
elements of D is separable and since a positive distribution is a
positive measure (see [12] I, p. 28), we have that the set C., of all
positive measures can be expressed in the form

A S-v..0
= 1

where {(p„} is a countable dense set in 1),.. This shows that C'„ is
in  0 (T '). The remaining things also can be proven by analoguous
arguments or by Theorem 3.

PROPOSITION 4. D  is  in  0(6% Q3(92 )  and 0 (T '). 9 ' i s  in  O(9")
and 0 ( Y). 6  is  in  O(D').

PROOF. By Corollary to Theorem 3, it is enough to prove that
531, 9', 6 are in ( T ' ) .  L e t  { D  (k=1, 2, 3, •••) be the set of all
partial differentiations. D k being weakly measurable (Theorem 3)

and L' being in 73(.5Y), w e  have th a t M ,2 =  D,71 (L 2 )  is  in 0(21 1 ).
k=-1

Here, I L ' is  the space o f those distributions whose derivative of
any order is in L 2 . By Sobolev's theorem (see [12] II, §6) we know
that 1,2 consist of indefinitely continuously differentiable functions.
Therefore we have that T =6 'r\T L 2 is in 0(T').

Next, let (I),n  b e  the mappings defined in the proof of Proposi-

tion 2. Then we get that 6= A  (1),7,1 (3)) 03(rY  ).

Finally consider the mappings q f  : defined by

T ) = (1+ x 1 2 )-  D k T , T  E .

‘P'„,, k  being weakly measurable (Theorem 3), we have that f\NP,TML - )
Irt k
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E O(D '). Thus we have P= gr r\x1,
77,„(L0 ) E 0(1').

m, k

As an application of Theorem 2, let us prove the following

PROPOSITION 5. For a (fixed) positive number a, let 1 1 , be the
space of those continuous functions such that

sup  If ( x ) - f ( y )  I <  +  0 0

1.1<k Ix —yrlyJ‹k
f o r any positive integer k. (The value of the left hand side may
depend on f  and k.) Then H ,  is in  0(1').

PR O O F. First let us consider the space H„ of those continuous
functions which satisfy the folltwing conditions :

1 ° )  There exists a positive number A  (which may depend
on f )  such that

1 f(x)— f(y)1 .._< Ai x — y r for all x, y E Rn

2 ° )  There exists a positive number B  (which may depend
on f )  such that

I f (x)I G B for all x E Rn

We shall show thet ff-t is in  0 ( )').
For positive integers m and n, denote by K„,,„ the set of those

elements of 14„ which satisfy the inequalities :

( 8 )
( 9  )
It is clear that

I f (x ) — f ( Y)1._<m ix — y r  ,
If (x ) I .__<n .

Ha, = „V K ,n ,„ .

Therefore, according to Theorem 2 , it is enough to prove that
each K„,,„ is a o-(1', M)-compact. To do this, introduce in the space
C  o f all continuous functions on R " the topology 7.ö, o f uniform
convergence on every compact set in R". Since each K„,,„ is an
equi-continuous and uniformly bounded family of functions by (8)
and (9), K„,,„ is a  relatively compact set in C  with respect to V,
according to Ascoli-Arzela's Theorem (DJ p . 43). Moreover it is
easy to see that K„,,,„ is 7 c -closed. Hence K„,,„ is ' -compact.

( 7  )
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But since the induced topology of 0- (V, M) in  C  is weaker than
K„,,„ is a-(1', D)-compact. Thus we get the weak measurability

of
Now consider the mappings defined in  th e  proof o f Proposi-

tion 2. It is clear that

H„ = 12
=\(13;1 (11„) .

Thus we get that H „ is i n  3(S1'). This completes the proof.

COROLLARY. The space of slowly increasing continuous functions
w hich satisfy  (7) is in  O(f ').

PROOF. This is clear from the proposition above and Corollary
to Theorem 3 in  the proceeding paragraph.

For the proof o f  th e  weak measurability o f  th e  space of
derivatives of functions we require the following

LEMMA. L e t  D  be an elliptic" )  differential operator with constant
coefficients. Then we have that :

1 ° )  Every solution U E  of the equation

DU = 0

in an open set SZC R n  is real-analy tic in  1-2.

2 ° )  D : Sy M' is  an onto mapping, i.e.

D JY  =  .

3 ° )  D :9 9 ' is  an onto mapping, i.e.

= 99 ' .

1°) is classical (see [11] and [12]). 2°) and 3°) are true even
for any differential operators with constant coefficients. (For the
proof of 2°), see [5 ] or [1 0 ]. For 3°), see [7].)

PROPOSITION 6. Let H „ be the space of functions is the preceed-
ing proposition and let D be an elliptic" )  dif ferential operator w ith
constant coefficients. Then the image DH„ of  H „ by  D  is  in O W ) .

PROOF. Since the image of a measurable set by an measurable
mapping is not necessarily measurable, we should start again with

1 1 ) When n =1, any differential operator (with constant coefficients) is elliptic.
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f i a,  defined in the proof of the preceeding proposition. We know
that

= K„,„

with K „  weakly compact discs.
Let (1),„ be the mapping defined in the proof of Proposition 2.

Since the operators D  and (Pm  a r e  weakly continuous, (1)„,(D K )
is weakly compact. Hence, by Theorem 2, we have that (1),„(D.FI)

V (1),„(D K )  is  in  0 (1 ').  Therefore, for the proof, it is enough

to show that

= A (-1);1 (4)„,(D. „)) .

Let us notice that
(1)„,(12I1 ) = (1),„(D11„,) .

In fact we have that

(I)„,(D it) 4: ) m (D H) (T),„„(D(1) ± 2 (H c,)) (I),„(D FI).

Thus the equality should hold everywhere. Therefore we are to
show that

= A (I) 77,1(  D .

The relation th a t D EL  [ -VID,;1(c13 (D H )) is  c le a r . Thus w e are
only to show that

DH.„ 1 )4 1 ) ,; 1 (4)„,(DH .

L e t T  be any elem ent in  TV13„,(4),„(D1-1„)). Then, for every m,

there exists an  element f,,„ EH, such that

(10) T  D f „,

holds in  the open ball B r n =  ;  1 < m }  .  Meanwhile, by 2°) of
the lemma above, we have an expression of the form

(11) T  = DS
w ith  S  a d istribution . Thus it is enough to  show that SE
From (10) and (11) we have that

D(S— f„,) = 0 in
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Therefore, by 1°) of the lemma, S— f„, is analytic  in  Bm . Thus
we get that

S  (S —  f n ,)+ f„,

is  Iitirder continuous o f  order ce in  B „,.  Since R n = 0 /3 ,„ we
have that

S

This completes the proof.

PROPOSITION 7. Using the notations in the above proposition
we have that D (I-1„nr) is in  0(9").

PROOF. Since we have already that DIT, and r  are  in  WV),
DI-Lr\ 9" i s  in  0 ( r )  according to Corollary to Theorem 3. It is
therefore enough to prove that

D(1-1„n9") = DI-1nr .

But since the relation that D(H„r\99 ') DH„r\99 '  is  clear, we have
only to show that

D(11„r\g") D f l „ n r  .

L et T  be an  element on DHc s n r .  Then T  can be expressed in
the forms

(12) T  = Df  , f

and

(13) T  = DS , S E

by 3°) of the lemma. From (12) and (13) we get that

D(S—  f) = O.

Since S—  f is  an  analytic function by 1°) of the lemma, we have
that

S = (S—  f)+ f  E

This shows that T =DS ED (H „r\Œ '). This completes the proof.

PROPOSITION 8. The space C o f  all continuous functions on  R n

is  i n  3(.5Y).



218 Shigetake Matsuura

PROOF. L et C  b e  the totality o f those functions which are
bounded and uniformly continuous on  the whole R " .  We first
prove that C is  in  O (D '). For each positive integer m let /3„, be an
element o f l ( R " )  such that A n(x) =  1 i f  Ix I <   +

1
 1

m

,  /9(x)- 0  if
Ixl >  1  a n d  0 < 4„,(x) <1 everywhere. Putting mry,n (x, y) = g„,(x -y),

we define a  sequence of mappings : IY (fe ")--  ( R 2 " ) by

= 7m • S  (multiplication by 7,n ) , S E 5Y(R 2 ") .

And we define another mapping ® : l'(R n ) (R ' )  by

0 (T ) =  TO 1 -1 ® T , TE V (R n ),

where 1  denotes the function on R n  w ith  value identically equal
to 1, and Ø  stands for the tensor product (or direct product). ‘It„,
and 0  are weakly measurable according to Theorem 3.

Now let B  be the closed un it b a ll in  L - (R 2 "). Since B  is  a
OE(.17, L')-compact disc (Banach's theorem)' 2 ) an d  since 0- (17, 12) is
stronger than the induced topology o f 0- (1 ', 5 )), B  i s  a  cr(V , D)-
compact disc. Therefore we have that B  is  in  0 (1 1(R 2n)) (see the
proof of Theorem 2). Let us prove the following relation :

(14) C = L - (/?n)n B ))}

Since we know already that i s  in  Q3(5Y), this relation proves
that C  i s  in  0 (V ) .  Now le t f  be an  element of C. Since f  is
uniformly continuous, for any n there exists an m such that

I x - y  I m
i  implies I f(x )- f(y )1 ‹ - n-1 .

Since $ m ( Y )  vanishes when - y > ,  w e  have that

18 .(x - .Y)- f  (x ) -  f (y)1 fo r  a l l  (x, y) E R ' .

Or, equivalently

7 , z ( f  1 - 1  f ) E -1- B .

1 2 )  The closed unit ball of the dual space of a Banach dual space is weakly compact.
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Since n  is arb itrary and since C  consists o f bounded functions,
this shows that

C L " (R " )n { f\ \ -j  0 '0 )7 4   n
i  

Conversely, le t f  b e an  element o f the right hand side. Then,
for any n there exist an  m such that

7m(f0 1 - 1  O f)E -I
n'B .

Since f  i s  a  function in  L " (R " ),  writing m  instead of m+ 1 we
get that

(15) Ix —y  <   1
1;11i m p l i e s  1 f (x)— f(y)1

for almost all (x, y) E R 2 ". Therefore the only remaining thing is
to prove that f  becomes continuous after a correction of its value
on a set of measure zero in R .  F ro m  (15) w e get that for any
m and n there exist a  set M„,,„ whose complement is of measure
zero and for each x E M„,,„ there corresponds a set AT,, whose
complement is also o f measure zero such that fo r any x E M„,,„
and y E N fn , „

im p lies 1 f (x ) — n i •

Putting M = f\M ,,,„ and putting, for x GM, N =  r \ N , , ,  we get

that for any 6 > 0  there exists 8>0 such that

(16) Ix— yI G  8 implies ( f(x )— f(y ) c9 f o r  x E M, y E M x
 .

Here both the compleme,, t  of M  an d  th a t o f  each  A T ' are of
measure zero . Now for any positive integer n, let en  be an element
of .T such that en ( x )> 0  on Rn, e n (x )= 0  i f  I x I >  1 and S en (x)dxn
= 1 . And put

fn =  f* e,, (convolution) .

Then each f „  belongs to g and f„  converges to f  in as 00
(see [12] II, p. 23). M eanwhile, we shall prove that { f „ }  i s  a
Cauchy sequence in the uniform. In fact, when x E M, we have that
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(17) I f„(x)— f„,(x) f  (x)I + I f  (x) fm(x)1

I f  (x ) -f  (x  —y) I en (x)dx+ If (x) - f (x —y) I en „(x)dx
M< 1/'"

For any s > 0 , if  we take an n o la rge  enough, we have that

I f (x)— f(x  —y) I _< S/2 when x 
— 

—1  a n d  y E N x

 no

But since the complement of N x  is  of measure zero, from (17) we
get that

(18) If (x )—  fm (x) f o r  m ,n > n o

when x E M .  Since M  is  dense in R " and { f m }  consists of conti-
nuous functions, (18) should in  fact hold everywhere. Thus { f „ }
is a Cauchy sequence in the uniform norm and therefore converges
uniformly to a  continuous function f  But since the topology of
uniform convergence is stronger than the topology o f 1Y , fn con-
verges it fortiori to f  in  D '.  Hence the two limits f  and f  should
coincide in 0 ' .  This means that f  and f  coincide except on a set
of measure z e ro . Thus we get the relation (14).

Now let (1)„, be the mapping defined in the proof of Proposition
2. Then it is clear that

C Aq);1(c),
since a  continuous function is bounded and uniformly continuous
on every compact set. This completes the proof.

COROLLARY. Mm
,  g m , gm are  in  0(5Y ). Jr, gun, gm n 92'  are in

O (q '). S I" ' is in  O(8').

PROOF. Let D , • • •  ,  Di  b e  the partial differentiations of order
< m .  They are  weakly measurable (Theorem 3). Then we get

that S'n—Cn {AD.T 1(C )} Q 3 (20. Hence Dm—S'n S'n E O(D'). Finally,
,=1

let ‘Irk, j=  (1 +  X I 2) k pj . Then we get that 99 m  = n A\P'71,1k(L ) 1
k = 1  j -- 1

E  0 ( Y ) .  T h e  rem ain ing th ings a r e  clear from  Corollary to
Theorem 3.
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PROPOSITION 9. The space L ' o f  all summable f unction on  R"
is  i n  3(5)').

PROOF. Let A  be the closed unit ball in  D (R " ) .  Since L '=

ÇJnA, it is enough to prove that A  is in (S1'). We shall give
n = i

the proof by dividing it into several steps.

Step. 1. D A  is  i n  3(1 '). Let A , be the open unit ball of
1,1 a n d  B , be the open unit ball of P ." )  L e t  u s  prove first the
following

LEMMA. There ex ists a  sequence o f  strictly  positive functions
{g„,} in  gr\B, such that the following two conditions on a function

f  are equivalent.
(i) f  is  in D r A 0 .
(ii) There ex ists an  m such that f  can be w ritten in the form

f = g m h„, w ith hm  i n  SI r\B„.

Let P  be the totality o f those function in  g n B , which are
positive everywhere on R '.  S in ce  the space 6 satisfies the second
axiom of countability, we can find a  countable number of elements
{g„,} in  P  which are dense )  in P .  Let us prove that this sequence
{gm } has the property stated in the lemma. In  fact, if a  function

f  can be written in  the form f = gm hm  w ith  hm  E Mr- NB , fo r an  m,
then it is clear that f  is in  I  and

11f11,_<11g.112- II h.112< 1
by Schwarz' inequality. Thus f  is  in  5) n A , .  Conversely, le t f
be an element of Mn Ao . We shall prove that f  satisfies (ii) in
the lemma. L et 0  be an  element o f g r■ L i which is everywhere
positive on R n (e.g. 61(x)=(1 + ( x12 ) - ( " /2 ). F o r  > 0 ,  we put

f8(x) = {1 f (x ) 12 ± 8 2 ( 9 (x)) 211/4 .

It is clear that f 8 i s  an  element o f 6  and everywhere positive.
Furthermore, we see that

13) i.e. A o = { f ;  II f l l i <i}, Bo—{f ;11f 11 2 <l}.
14) Here, we require only that { g }  is dense in P  with respect to the topology of

compact convergence.
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11f8 11 = {1 f (x)12 + 62(0(x)) 21v2dx

{ If(x)I + • 0(x)} dx = IlfIli+ 8 110 111 •

Therefore, if  we take a  sufficiently small 8, we get that 11f811K 1
since I Ifl Thus f s  i s  in  P .  Now, let us denote by K  the
support of f. Since /1>l f I and K  is compact, we have that

(19) p = Min ( f s (x) 2 — f (x)1)> 0 .
.EK

But since Ignj  i s  dense in P, we can find an m such that

(20) Max I f(x)2 — gm (x)2 I - PT
E

From (19) and (20) we get that

g ,,,(x)2 — 1 f (x)I

when x E K .  But since f (x )= 0  outside of K  and gm (x )> 0  every-
where, we get that

(21) f(x ) I /gm (x)2

everywhere on R .  N o w  put hm = f gm . Then, it is clear that
hm  i s  in  D. Hence, th e  only remaining thing is to show that

h„,I12<1. Using (21), we get that

IlhmH =  I f (x )1  I f  (x)1 dx <1 f (x)I dx = If IL < 1 .g (x ) '

This completes the proof of the lemma.
Now, let F m : be the mapping defined by

Pn,(T ) =  g
1  T , T E  .

r„, is weakly measurable (Theorem 3). By the lemma, it is clear
that

(22) Mr\ A o = P,T,1 (Dr■ Bo ).

Meanwhile, since B is 0- (L 2 , L2 )-compact and the induced topo-
logy by 0 - (5Y, 1) is weaker than 0 - (L 2 , L 2), B  is (FOY, T)-compact
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(B o =

and  hence B E Q3(1') (see th e  proof o f  Theorem 2). Therefore

1 - 1 )B  is in  Q3(T'). But since we know already that M
n

is in  O(D'), we see that MnB o is  in  0 (1 ') .  Thus (22) shows that
A , is in  0(M '). Therefore

n A  = +  1 )( l n  E 0 (1 ' )  .
n-=1 n

Step 2. 6 n A  is i n  3(M'). Let (I),n be the measurable mapping
defined in  th e  proof of Proposition 2  (with 0 < a n2(x) < 1  every-
where). Then, we see that

(23) 6nA  = 43,7,1(SInA).

In fact, if fE 6 n A , it is clear that (I),n ( f )  E ln A  for any m since
an ,  E M and 0<ce,n (x) < 1 .  Conversely, if a distribution f  is in the
right hand side of (23), it is clear that f  E 6 and for any m

If(x)Idx_G1

Letting 00, we get that II f f  ( x )  d x < 1 . Thus f  E 6nA.

Step 3. A  is  in  0 (T ') .  Let en ,  be an element of D such that
1em (x )> O  on R ", em (x )= O i f  Ixl >  a n d  en ,(x )d x= 1 . And let f

be in  P .  It is well known that n ilf*e.111<llf Ili a n d  f * e n ,  con-
verges to f  in the L 1-norm as m—> 00• Now, let NIf,n be the mapping
T' defined by

‘If„,(T ) =  T *e„ ,, T E .

We shall prove that

—(24) A  = NIP77,1(6r■ A)} r■ 1r\ A (T., (  1  (6n A))}\n •

Since Yin ,  and gr,—T, are weakly measurable (Theorem 2)1 , this
formula proves that A  is  in  0 (T ').  Now, let f  be an element of
A .  Since, for each m, f*e„, is in 6 and I f*e.II,<11 f  I l i< 1 ,  f  is

in  AT,-;1(8 r\ A ) .  And since f*e„, converges to f  in L ', { f* e n }  ism = i

1 5 ) See the foot note 8 ) also.
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a Cauchy sequence in  D .  From  these we see that f  is  in the
right hand side o f (2 4 ) . Conversely, let T  be a distribution in the
right hand side of (2 4 ) . Then, 11T*e„,j1,<1 and {T*e„,} constitutes
a Cauchy sequence in L 1. Since D  is complete, T*e„, converges
to a summable function f  in the L'-norm. B u t  s in c e  T*e„,11, <1
for a ll m, we get that S i n c e  the topology of M' is weaker
than that o f L', T * e m  converges to f  in V .  On the other hand,
it  is  k n o w n  th a t T *e„, converges to  T  in  V . H ence the two
limits f  and T  should coincide. This means that T = f E A .  This
completes the proof.

C O R O LLA R Y . L ' is  in  0 (9 ") . T h e  totality L1 0 ,  o f  locally sum-
m able functions is in 3(1;1').

P R O O F . The first assertion is clear according to Corollary to
Theorem 3. The second follows from the formula : Lloc= [1(1); 1 (L 1),

m=--1

where (1)„, is  the mapping defined in the proof of Proposition 2.

Kyoto University
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