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In the theory o f Tychonoff spaces, the existence of (Hausdorff)
compactification is o f great significance because o f th e  fact' that
it  is  a  characteristic property of Tychonoff spaces as well as the
property that they are uniformizable. Some developments of the
theory have been made through utilization o f compactifications, as
we can see in the recent literatures.

In the present paper, we shall make a  systematic treatment
of the properties o f Tychonoff spaces in connection with the pro-
perties of their compactifications, with a view to visualizing those
properties in a unificative fashion and establishing a general back-
ground for the concepts in the theory o f Tychonoff spaces.

§ 1  is devoted to the preliminary results which will be used
in the sequel. In § 2, some properties of a Tychonoff space X  will
be characterized by the properties o f  its  compactification BX.
More precisely, we shall characterize some topological properties
of X in terms of the properties of X  as a dense subspace o f BX.
In § 3, we shall be concerned with the properties of the product
Xx BX. Suggesting by the author's theorem [2 7 ] which states
that the paracompactness o f X is equivalent to the normality of
X x OX (reX: the Stone-tech compactification), it may be expected
that some topological properties o f  X  can be characterized by
simple properties o f  X x B X . Our main results in  th e  present
paper are concerned with this subject, and we shall characterize a
number o f topological properties o f  X  b y  modifications of the
normality proposed on the product X x B X . For example, a collec-
tionwise normal space X  will be characterized by the property
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that F x i3X is normally embedded in X x f3X for any closed subspace
F  of X .  It will be shown that a  space X  is second countable if
and only if  Xx BX is perfectly normal for some compactification
B X  of X .  On the other while, Dowker's results [5 , Lemma 3
and Theorem 4 ] can be stated as follows : X  is normal and count-
ably paracompact if and only if  X x M  is normal for any compact
metrizable space M  (Theorem 3. 13). This suggests the possibility
of characterizing some properties of a Tychonoff space X in  terms
of the properties of the product of X  with some compact metrizable
space. Some related results on this subject will be given in the
last part of § 3 . In  § 4 , we shall show that Michael's problem on
the paracompactness of a metrizable space and a paracompact
space can be reduced to ask whether the product of a metrizable
space and a paracom pact space is norm al, and discuss some
related problems.

§  1 .  Preliminary.

All spaces mentioned in this paper are Tychonoff spaces unless
the topology is explicitly represented. A compactification BX of
a  space X  is a compact (Hausdorff) space containing X  as a dense
subspace. T h e  Stone-tech compactification OX is characterized
among compactifications of X  by the property that every bounded
continuous function on X  has a continuous extension over ox-. It
is the largest compactification of X  in  th e  sense that each corn-
pactification BX of X is a continuous image of ox, as the following
theorem shows.

Theorem 1 . 1 .  Any compactification BX o f  X  is the image of
SX under a unique continuous mapping q9 that keeps X pointwise
fixed and that p(OX—X)=BX— X.

For the proof, see [3 , P. 831].

Theorem 1.2. I f  f  is any continuous mapping of a  space X
into a compact space Y , then f  has a continuous extension f *  over
OX, which carries RX into Y.

The proof is in [18, P. 153]. (C . f. [25, P. 476 ]. )
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Let C(X) denote the set of all continuous functions (real-valued)
on X  and  le t C *(X ) denote th e  se t o f all bounded continuous
functions on X .  A  continuous function f E  C (X ) defines a  con-
tinuous mapping of X  into R * , where R *  denotes the one point
compactification of the real number space R , and it has a  con-
tinuous extension f *  over 13X by virtue of the preceding theorem.
The set ix E /3X : f*(x)e R} will be denoted by Xf.

A s we shall be concerned with the properties of dense sub-
space, we now state some propositions on dense subspace. Let X be
a dense subspace of Y and let A  be a subset of X .  We shall denote
by C 1 (A ) (C l y (A )) th e  closure o f A  taken in  X  ( re sp . in  Y ).
Similarly, the interior of A  will be denoted by Int x (A) or Int y (A)
according a s  it is taken in  X  or in  Y .  A  subset U of X  is said
to be regularly open if  in t x (C/x (U ))= U . Let U be an open subset
of X  an d  le t U * be an open subset of Y  such that U =U *nX ,
then we shall say that U * is  an extension of U  o v e r  Y . Put
U"Y ) = Y —Cl y (X— U), then U"

 Y )  is an extension of U o v e r  Y . In
fact, U"  n  X = (Y — Cl (X— U)) n X= X— Cl y (X— U)= X— (X— U)
= U .  We call the set U"Y )  the proper extension of U over Y . It
is evident that U V  implies U "Y <  V "Y ) in  view of the defini-
tion of the proper extension.

Proposition 1. 1. Let X  be a dense subspace of Y  and let U
be an open subset o f X . Then, the proper extension U"Y )  o f  U over
Y  is  the largest extension of U over Y .

Proo f. L et U* be any extension of U  o v e r  Y . If y
then y E Ci y (X —  U ). Therefore 0 * (y )n (X — U )+ 0  a n d  hence
0*(y)n X U * r\  X  fo r each open subset 0*(y) of Y  containing y,
and it follows that y 0  U * . Therefore we have U* I f  U*
is the largest extension of U , then the reversed inclusion holds
and we have U* =

Proposition 1. 2. Let X  b e  a dense subspace of  Y and let
U"Y) be the proper extension of U ov er Y . T hen  U"Y )  i s  r egu la ry
open if and only  i f  U  is  re g u larly  open, and w e have U"Y ) =
Int y (Cl y (U )) i f  U is regularly  open.
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Proo f. B y  an easy calculation, we see that Int z (C1 x(A))=
Int y (Cl y (A ))n X  fo r  any subset A  o f  X  i f  X  is  dense in Y.
If U " Y ) is  r e g u la r ly  open, th e n  w e  h a v e  U= U "Y )  r\ X =
Int y  (Cly (Us(Y )))n X = Int y (Cl y (U " Y ) nX ))nX =Int x (Cl x ( U E  n X ))
=Int x (C1 x (U ) ) .  This shows that U  is regularly open. Suppose
conversely that U. is  a  regularly open subset o f  X , then U=
Int z (Cl x (U))=Int y (Cl y (U))n X  and hence U*=/nt y (C/ y (U)) is an
extension of U  over Y , which is clearly regularly open. Hence
U *  U " Y )  b y  Proposition 1 .1 .  We shall show that U* U"Y )

which will complete th e  proof. Suppose on the contrary that
U*.> U " Y ) ,  then U "Y <C / y (U*) and since X  is dense in Y we
have [U " Y ) n(Y — Cl y (U*))] r X -P  0 . It fo llows that U =P(Y )n
X  C l y (U*), which is contradictory. Therefore we have U* =

Proposition 1. 3. L e t Y  be a dense subspace o f  Z  an d  le t X
be a dense subspace of  Y . L e t  U , V  denote any open subsets of  X
and  Y  respectively. T h e n  the followings are valid.

(1 )  U "z )  n  Y =
( 2 ) U P Y 'r z ) =
( 3 ) V "z ) V r ■  X y z ) . I f  V  is regularly open, then  V "z ) =

Vn X11'(2 ').

P roo f. (1) and (2) are evident by the following calculations.
(1) (Z —Clz (X —  U)) Y= Y— (C/(X —  U)r\ Y) = Y—  C/ y (X —  U) =
Ue( Y ). (2) Z—  Cl z (Y — U. Y) ) = Z —Cl z  [Y—(Y—Cl y (X— U))]=Z —
Cl z (X — U)= Ur' ( z ) . To prove (3), note that V is an extension of
V n X .  By Proposition 1 .1 , w e have V  (V  r X ) Y ) ,  and hence
I/' (z< (  V r\ X )"z )  b y  (2). I f  V is regularly open, then V r \ X  is
also regularly open by virtue o f  th e  formula ; Int z (C1 x(A))=
Int y  (Cly (A )) n X . Therefore V= ( Vn X ) 2 (Y )  b y  Proposition 1.2,
and hence we have V"z ) =( V n X ) b y  (2).

We now consider some properties o f surroundings for X .  A
neighborhood V of the diagonal of X x X  is said to be a surround-
ing  f o r X  i f  there exists a  sequence o f  neighborhoods of the
diagonal { V „ }  su ch  th a t V = V 1 , V f l oV„ V , * )  f o r  each n.

*) V=4(x, y ) E XX X ;  (X ,  2 ')  E V  a n d  (z, y ) E V fo r  some z E
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Throughout the sequel, neighborhoods are assumed to be open. We
call a surrounding V stable i f  there is a sequence { V,} such that
-177,e(oxxpx),-, A (i

e x )_  VE(.13Xx p x )  A(ex) fo r  each  n ,  where ($X )
denotes the diagonal of /3X x  3X . In the following, we shall denote
by Z ( f )  the zero-set of f  E C(X) :  Z( f) = {x E X ; f  (x) = 0 } and by
0 (f )  the complementary set of Z ( f ) .  A partition of unity on a
space X  is  a family 43 = {p, ; px =1 } of continuous function on
X  such that O T (x ) 1, E cpx(x)=1 for each x E X  and a ll but
a finite number of members of (1) vanish outside some neighborhood
o f x  fo r each x E X .  I t is  c le a r  th a t {0((p,)} i s  a  locally finite
covering of . X .  I f  {0(q),)} is star-finite, then we shall say that cl)
i s  a  star-finite partition of unity on X .  A partition  of unity
(1)= {px ; E  = 1 }  is  subordinate to a covering { U„} i f  each 0(q)x )
is contained in U .  f o r  some U .  B y  v ir tu e  o f th e  theorem of
Dieudonné P a  for every point finite covering of a normal space
there is a partition of unity subordinate to the covering (with the
same index set). It w ill be shown that a star-finite partition of
unity determines a stable surrounding.

Proposition 1. 4. The following conditions are equivalent.

(1) V is  a stable surrounding fo r  X.
(2) Pro x [V " P " x ) n A(13X)]= X * is a paracompact subspace o f )3X,
where Pr o x  denotes the projection of 3X x f3X  onto RX .
(3) T here is a star-f inite partition of unity cl) = {T x : E  = 1 } on
X  such that W = { (x , y ) E X x  X  : E I ,P2,(x)— Tx( Y) I < 1 }  V  and
p r o x [Tvecftxxox) r \ A ox -)] _ p r o x Eroxxgx) n  A(3x)] .

Proof. For the sake o f  convenience, we shall denote by V'
the proper extension of V  over 0Xx3X: VS = V"Pxx'3 x ) . Suppose
that V is  a stable surrounding for X  and let IVO, b e  a sequence
o f  surroundings fo r  X  such that V ,= V, 177,0 V c T J V ,  an d  17:,--\
(3X)= V' r\A (reX ) fo r  each n. It is easy to see that  (V o  V,Dn

(Xx X )= V„. V„, and w e have V,',0 V„)' in  view  o f Pro-
position 1. 1. It follows that .1/0 V,!< for each n. If we put

V n (X *  X *), then {Vg`} is  a sequence of neighborhoods of
the diagonal A (X *) o f X * x X * such that V o V I  V t _ ,  for each
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n. Let d be the pseudo-metric on X* defined by the fam ily { V:}
such that {(x, y) E X * X X * : d(x , y )< 1 1  V t ,  and let T  denote the
topology of X * induced by the pseudo-metric d, then the space
(X*, T ) is a paracompact space by virtue of the theorem due to A. H.
Stone [2 4 ]. Put U(x)— {yE X* : d(x , y)<1/2 2} ,  then Cip x (U(x))C
X* as we now verify : Let r  be a point of Cip x (U(x)), and let d ,
denote the restriction of d(x, y) on {x} x X * .  By virtue of Theorem
1. 1, d, has a  continuous extension d l  over 3 X . Evidently, d ' ( r ) <
1/22 <1/2 a n d  hence there is a  neighborhood (in OX) W (r) of r
such that dP(y)= d(x, y)<1 /2 for each y E W(r)r\ X * .  It is clear
t h a t  ( W (r)n X *)x(W (r)r■ X *)(17 ,0, T/. (2 CV1` CVE ; where =
{(x, y) E X * X X* :d(x, y)<1 /21, and we have W(r) x W (r)C  V' by
Proposition 1. 1. It f o l lo w s  t h a t  r G X * ,  a n d  consequently
C /p ,(U (x ))(X *  fo r each x E X .  N ow , let us consider an open
covering {U(x)} z e x , of (X*, 7- ) and let {(A } be a locally finite open
refinement o f  {U(x)}, e , . .  Since 7- is  w eaker than  the original
topology (induced topology of gx on X *) of X *, {(1,} i s  a  locally
finite open covering of X * w ith respect to  the original topology
of X*, and it is evident that C/p x (U,) C X * .  To prove the para-
compactness of X* le t  {G,} be any open covering of X * .  Then,
each C l ( U )  is covered by a finite number of G„'s, say G„••• ,G m .
Put 1-1,, k - - -U x n G k  (1 < k < m ) , and construct a  finite collection of
open subsets I-1,, k  for each X in  th is fash ion . Then, the family
{1-1,, k}  is  an open locally finite refinement o f {G „} as may easily
be seen . It fo llow s that X * i s  paracompact. T h is  proves the
'implication (1) = (2).

Nextly, we prove the implication (2) ( 3 ) .  Assume that X*
is  paracompact, then it is a  topological sum of a. compact spaces,
since X* is  open in f iX , and therefore each open covering of X*
has an open star-finite refinement. (Note that X *  i s  a  locally
compact paracompact space, in  th is  c a se .)  S ince X *  i s  para-
compact, V*--- r o x x g x ) n ,  x*k X  X * )  i s  a  surrounding for X * and
there is a  sequence { V,T} o f  neighborhoods o f the d iagonal (X*)
of X* x X * such that Vt =V *, V 0V C V 1_ 1 f o r  each n. Con-
sider an open covering {Iq (x )}, E x , , where VVx)-- {y E X*:(x, y) E
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Vfl , and let (V = {pt : E  = 1 } be a  star-finite partition of unity
on X* which is subordinate* ) to the covering { T7 (x)} xEx*• Since
0((p,) 1 7 ( x )  for some x E

 X * ,  th e  un ion  o f all 0(p,) for which
0((p,)r■ 0(q,„)  I  0 i s  contained i n  som e V t(x ). It fo llow s that
W*— f(x, y) E X* x X * :  E  14(x) —  pt(y ) < 1 1  is contained in V .
Let px denote the restriction of (71 on X, then cI?= :  E  p x =11
is obviously a  desired one. In  fact,  W * c  V * im p lies  th a t
W= {(x, y)E Xx X : E  p i (x) — px (y)! < 1 1  V and  it follows that
we(f3X xgx< v e c o x x o x ) .  Therefore tS.(X*) W * An  o x <  w-coxxf3x) r \

A(3X)C Vsa3xxgx ) n A (3 X )= A (X * ),  a n d  h e n c e  w e  h a v e  Pr o x
[Tveutxxl3x) n A o x n _  Prox  E  V "X '‘13X )r\  A(3X)].

Finally, we prove that (3) implies (1). Let (I) = { q :  E  p ,= 1 1
be a star-finite partition of unity on X .  Let p r  denote the exten-
sion of T x o ver ISX  and  pu t 0 (p )=  {p E RX : p t (p )> 0 } .  Since
{0(p,)} is star-finite, {0(93)} is also star-finite. L et X * be the
subspace of 3X  consisting of all points p  of reX such that all but
a  finite number o f p t  vanish outside some neighborhood of p .
Obviously X *  is  an open subspace o f  i3X  containing X , and
{0(4 ) r \  X * }  is  a  star-finite covering of

 X * .
 L e t  p ', denote the

restriction of pt on
 X * ,

 then 4t, ' =  fp 1  is a star-finite partition of
un ity  on X * .  P u t  Vn = {(x, y)E Xx X : EIPÀ(x) — (Px(Y)1<1/21
and put V =  {(x', y')E X* x X* : E I 91,(x ')- 9, ( v') I <1 /2"} , then it
is clear that V,T, n (X x  X )=  V „  and w e  h av e  V :  (X x  X )=  V „C
v77,03xxf3X) r (X x  X) = EV,e,( t'xxi3x ) n (X* X X*)] n (X x X ) .  Therefore
vv3xxox)r\(x* x X*) V  > 6 . (X * )  by virtue o f  Proposition 1.1
and 1. 3. Thus, we have VVx'gx ) r\ A (O X )> g X * ) fo r  each n.
To prove the reversed inclusion, let (p, q) be a point of V x x i 3x),
then U *(P )xW *(q ) 17 ( gx xgx )  f o r  some neighborhood (in f ix )
u*(p) an d  W *(q ) o f p  and q. L et x  be a  p o in t o f U*(P)r■ X,
then we have E px(y )l<  1 /2n  for each y E  W*(q)n X .  Let
93 1, ••• , p n ,  be a finite set of all members of (13 such that q, k(x )+ 0
(1< k < m ) ,  then y E V7=1 Cl(rPk) for each y E  W *(q)n X  and hence
w e have W *(q )n  )C  \jr_ i  O (p ). I f  q  does not belong to X*,

* )  A partition of unity 0  is subordinate to a covering { U }  o f X  if and only if
each member o f 0  vanishes outside some member of {U0 }.
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th e n  W *(q)r\X  in tersects in fin ite ly m any 0 ( q ) 's  a n d  hence
U7=1 0(Pk) in tersects infin itely m any 0(Tx )'s. It fo llo w s  th a t
{0(q5,)} is not star-finite which is contradictory. Therefore we
have q E X * .  Sim ilarly, we see that p  E  x *  and hence we have
(p ,  q) E X * x  X * .  T h e re fo re  1/ "  f 3x) X * x X *  an d  it follows
that IP,,(13xxox'n A(,(3X) C (X * x x*)n A(i3x)= A (X * ). Thus, we have
V,7,(13" x ) r\A (OX )=A (X *)= V E(t )x  ") n AC8x) for each n. T h e  proof
is completed.

In view of the above proposition, we see that a  surrounding
V for X  i s  stab le  if and  only if  X * ox [w (pxx f3 x ),-\A G ,3 x )] is
a  topological sum of (5—compact spaces. Now, let us agree to call
V a  strongly stable surrounding f o r X  if  X * is  a 0—compact space.
Then, it may easily be seen from the proof of the above proposi-
tion that the following proposition hold true.

Proposition 1. 5. The following conditions are equivalent.
(1) V  is  a  strongly  stable surrounding f o r X.
(2) X * =Prp x [V " P " x ) r\A (R X )] is a  0—compact subspace of ,8X ,
(3) There is a countable star-finite partion of  unity (1)= {(p„ : E p n =1}
o n  X  such that W  = { (x , y )E X x X : Elq,„(x)—  p n(y)1 < l }  ( V  and
p r o x [w ,gxxox) r , A (e.x )] _ pr o x [  v E(gx, r , A

(
ex-)] .

It is to be noticed that in  a  connected space every stable sur-
rounding for X  is strongly stab le . A s is well known, a  metrizable
space X  is characterized by the fact that there exists a  countable
fam ily o f surroundings {V, } f o r  X  su ch  th a t nz_,
Similar characterization of second countable spaces may be obtained
in  terms of the strongly stable surrounding.

Proposition 1. 6. A  space  X  is  second countable if  and only
i f  there is a  countable family { V n} o f  strongly stable surroundings
f or X  such that r\,7.1 V„=A(X).

Proof. Recall that a second countable space is metrizable and
is  a  L indel6f space (c . f . [1 8 ] , P. 4 9 , P. 1 2 5 ) . L et d(x, y )  be a
metric on X , and consider a  covering {Vn (x)},, e x ,  where Vn (x)—
{yE X : d(x , y )< 1 / 2 " } . B y  v ir tu e  o f  th e  theorem d u e  to  K.
Morita [1 9 ] ,  there  is  a  countable star-finite partition of unity
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40 ( = {q)(,,n): (pr = 1} on V  subordinate to th e  covering. Put
V ( n)  = { (x ,y )E X x X : p r (x ) — p;,"'(y)i <1} , th e n  V( n) i s  a
strongly stable surrounding for X , for each n. It is easy to see
that [\  V " "  A(X), and the necessity of the condition is proved.
The converse will be proved is § 3. (See, Remark o f Theorem 3. 4.)

We finally state a  result on the completeness o f  a  uniform
space, which will be used in the next section. In [2 6 ], the author
proved that a uniform space (X , {K } ) is complete if and only if
A (X )=  p x ,,p x (C lp x „p x (1 7 )). This is equivalent to the following

Theorem 1.3. A  uniform space (X , { V, } )  is complete if  and
only i f  A(X )= r\v:(13x , gx).

§  2 .  Characterization o f topology (I)

In  this section, we shall characterize some topological pro-
perties o f a  space X  in terms o f th e properties o f X  as a dense
subspece of its compactification. E. tech [ 3 ]  proved that a space
X  is normal if and only i f  C l (F )n C l p x (C )= 0  for each paire of
disjoint closed subsets F, G  o f X .  In  his paper [1 5 ] , E. Hewitt
introduced the notion of pseudo-compact spaces and proved tnat
X  is pseudocompact if and only if no closed C8 -se t of OX is con-
tained in i3X— X .  Recently, S. M r6wka [22] has given a character-
ization of Lindeldf spaces, which is similar to that o f real compact
spaces (Q-spaces in the sense o f E. Hewitt [ 1 5 ] ) .  He introduced
the notion of Q-closed subset :  A set X C S  is said to be Q-closed
in S if and only if fo r each p (S — X  there is a continuous func-
tion fE  C(S) such that f ( p ) -  0  and f(q)  I 0  for each q E X .  Then,
he proved that X  is a L indela space if and only i f  X  is Q-closed
in each o f its compactification, and that X  is real compact if and
only i f  X  is Q-closed in k iX . G. I. Kac [17] has given a character-
ization of topological comploteness by the properties of the Stone-
tech compactification. Further, some development of the theory
in this direction has been made in [1 3 ] and [1 4 ] by M. Henriksen
and J. R. Isbell. In  [2 6 ] ,  [2 7 ]  and [2 9 ] , some characterizations
of paracompactness has been given and used to solve some topo-
logical problems. We now state those characterization of topological
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properties with some new results.

Theorem 2. 1. The follow ing conditions on a space X  are
equivalent.
(1) X  is  normal.
(2) C / (F )n  C l (G )  =0  fo r  each paire of disjoint closed subsets
F, G  of X.
(3 )  I f  {Un }  is  a finite open overing of X , then  {U,',( P9  covers I3X.

Proof. It will be suffice to prove the equivalence of (1) and
(3). I f  4X— V U:,( P x ) =C=1-0, then there is a point p  C such that
p E c i o x ( u i )  fo r some i, since {U„} is a finite covering and since
X is dense in ,8X . We may assume without loss of generallity that
{U n } is  a minimal covering : That is, no proper subfamily of {Un }
can cover X .  Evidently, p0\_.1 W,(ox) implies that p E Ciox (X— U3 )
fo r each j ,  and hence p G Cipx (r\i*i (X— U 5 ))= f -\3* i  Clg x (X— U5 )).
Put F = A 5 * i  (X — U5 ) a n d  p u t G =X  then F  and G  are
disjoint closed subsets o f X  such that C/px (F)r\C/o x (G )+ 0 .  It
follows that X  is not normal. Suppose conversely that X  is not
normal, then there are two disjoint closed subsets F  and G of X
such that Clpx(F)nCipx(G)± 0. Put Ui = X— F  and put U2 = X— G,
then Ui ( f3x ) v  C243x ) doese not cover 18X as may easily be seen
from the definitiod of the proper extensions.

Theorem 2. 2. A  space X  is locally  compact if and only  i f
BX— X is  compact for any  compactification BX o f X.

Proo f. For each x G X , there is a neighborhood U (x) of x such
that C/x ( U (x )) is  compact, if X  is locally compact. Then, it is
clear that no point of BX— X is contained in C/B x ( U (x )) and there-
fore X  is open in B X . Hence, BX— X is compact. Conversely, if
BX— X is compact, then there is for each xG X  a neighborhood U(x)
o f x  such that C 1 B x ( t A x ) ) r \ ( B X — X ) = 0 .  Evidently, C/Bx(U(x))==
Clx ( U(x)) is a compact neighborhood of x E X , and X  is therefore
locally compact.

Theorem 2. 3 .  X  has unique uniform  structure if and only  if
,8X— X is at m ost one point.
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P roof. B y the theorem due to R. Doss [ 7 ] ,  X  has unique
uniform structu re  if an d  on ly if for each paire of functionally
separated closed subsets of X  one at least is compact. If F  and G
are functionally separated subsets of X, then Clo i (F)n Clp x (G)=0,
and the present theorem is an immediate consequence of the above
characterization due to Doss.

A  space X  is said  to  be pseudo-compact if every continuous
function on X  is bounded.

Theorem 2.4. X  is  pseudo-compact if and only i f  ,sx- -x
contains no closed Gs-set of I3X.

Proof. If C is  a  closed G8 - s e t  of R X , which is contained in
ox—x, then  there is a  continuous function f  E C(OX ) such that
C=Z (f )--- fp E /3X: f(p)=O} csx It follows that there is for
each n  a point x n  E X such that I f(xn) I <1 /n , and 1 / f  is  c le a r ly
an unbounded continuous function on X .  Conversely, i f  g(x ) is
an unbounded continuous function on X, then f (x) = 1 /max [  g(x)( ,1]
is  a continuous function on X  having no zero point. Let f *  denote
the extension of f  over sx, then Z (f * )+ 0  and Z ( f*) is  a closed
G8 -se t of /ex contained in  OX—X.

A  space X  is  sa id  to  b e  rea l compact [9 ]  if  it is complete
relative to  the weakest uniformity for X  with respect to which
every continuous function on X  is uniformly continuous.

Theorem 2. 5. The following conditions on a space X  are
equivalent.
(1) X  is real compact.
(2) For each point p E SX— X, there is a  closed G s-set C  o f  RX
such that p E CC i3X— X.
( 3 )  For each point p E $X— X, there is a countable star-finite par-
tition of unity (D= {p n  : E  p n  =1} such that Clp x (0(q)„)) p for each n.

Proof. Let R *  denote the one point compactification of the
real num ber space R .  Then, each f  E C (X ) h a s  a  continuous
extension f *  over ox  ( in to  R * )  by Theorem 1. 2. P u t X f =

{pE R X : f * (p)E R }  and put Cf  =4X— X f . By virtue of Theorem
1. 3, X  is real compact if and only if A(X ) r\fEc(x) V ef (f3X x where
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Vf =  { (x ,y )E X x X :If (x ) —  f (Y)1 < l}  .  I f  x E X1 , then there is an
open neighborhood ( in  O X ) U * (x ) o f  x  such  that I f*(x)—
f*(y)l < 1  for each y E U* (x). It follows that (x , x )E VP 3 x x  Px )  for
each x E X .  Conversely, if p  x f , then every neighborhood U *(p)
of p  containe points x, y  o f X  such that I f (x )— f (y ) i>l, hence
(P, fi) G Cii3x ,px (X— 17

1 )  and consequently (p, p) vp 'xx i 3x). There-
fore w e h a v e  .6,(X1) =A(3X)r\V;SPx'Px ) . O n the other hand, it
is easy to see t h a t I r\ fE c (x )V ;-C  z(/3X), and it follows that X  is real
compact if and only if  X = A f E C ( X )  X f  by Theorem 1. 3. Evidently,
C f  is  a  closed Gs -set of RX contained in ,8X—X and every closed
Gs-set contained in  OX— X  i s  a  C f  fo r some f  E  C (X ). This
proves the equivalence of (1) and (2). If f  is  a  continuous func-
tion on X  such that Z(f*)=CCOX —  X , then we can construct a
countable star-finite partition of unity (P= {p„ : E  =1} by letting
f n =max [1/n+ 1, min ( f , 1 1 n - 1 ) ] ,  gn =111n— fn l and uo / •Y`
It is clear that C l(O (çp ,,) )n C = Ø  f o r  each n. This proves that
(2) implies (3). Finally, if (1.)= {q,,: E  p,,=1}  is a countable (star-
finite) partition of unity on X  such that C/F x (0(p„)) .p  for each
n , then f=E (1/2n),p„ i s  a  continuous function on X  such that
p E Z (f *)C R X — X . Thus we see that (3) implies (2).

A spece X  is said to be topologically complete i f  there is a
uniformity for X  relative to which X  is complete.

Theorem 2 .  6 .  X  is topologically  com plete if and only if  fo r
each point p E OX— X  there is a partition of unity 43= {y x : E y , =1}
such that Clo x (0((p,)) p ,  fo r  each X.

Proof. Suppose that (X , {V„}) is complete, then A TP„--6.(X)

by virtue of Theorem 1. 3, where VI denotes the proper extension
of V . over 0X x iSX . There is a  V°, such  that V I (p, p), for each
p E OX —  X . Let d(x, y) be a pseudo-metric on X  such that d(x, y)=1
whenever (x, y) 0  Vo„  and let 7- denote the topology of X  induced
by the pseudo-metric d(x, y). Then the space (X , r) is paracompact.
Now, let us consider an open convering IU(x)Ixcx of (X , T), where
U(x)= 1y E (X, d ( x ,  y)<1 /2 2} , an d  le t {U,} be an open locally
finite refinement o f  { U ( x ) } x E x .  L e t  40= :  E p, = 1 }  be a par-
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tition of unity on (X, ,r) subordinate to the covering {Ux} . Since
T  is weaker than the original topology of X , olc).=  {qix : E q i,-1 } is
also a partition of unity on X  with respect to the original topology
o f X .  We shall show that p  C l p x ( U (x)) for each x E X , which
will imply that p  C l ( o ( p ) )  for each X and the necessity of the
condition w ill b e  th u s  p ro ved . Suppose not, then there is
y E U*(p)r\X  such that d(x, y)<1 /2 2 for each neighborhood U*(p)
of p .  Put d x ( Y ) — d ( x ,  y )  a n d  le t  d :  be the extension of d ,  over
O X , then d:(p)<1/2 2 <1 /2. T h ere  is  an  o p en  neighborhood
W *(p) of p  such that [W *(p )x W *(p)] r\(X x  X )=[W * (p )n X ]x
[W *(p)r\X ] V . It follows that (p , p ) E  V: which is contradictory.
We now prove the sufficiency of the condition. If c1=  {p, : E  =1}
is a partition of unity on X  such that p  C l ( o ( p ) )  for each X,
then V= f(x, y) E Xx X : E p x(x)- p x( y) l <1 1  is a surrounding for
X  such that (p , p ) V .  To prove this, le t  W * (p ) be any neigh-
borhood o f  p  a n d  le t  x  be any p o in t o f W *(p)rv X . Then,
px(x)---k 0 for all but a finite number of px 's, and since Cip x (0 (p ,) )  p,
there is a y eW *(p)r -NX  such that (x, y) 0 V . Therefore (fi, p)E
Clp x , p ,[(X x X )—  V ] and consequently (p , p )  Ø V .  It follows that
X  is topologically complete by Theorem 1. 3.

A space X  is said to be a  Lindeltif space if  every open cover-
ing of X  has a  countable subcovering. It is well known that X
is  a  Lindeltif space if and only if  every open covering of X  has
a  countable star-finite refinement (c. f. [20]).

Theorem  2. 7. Let BX  denote any compactification o f X . Then,
the following conditions are equivalent.
(1) X  is a L indeldf  space.
(2) For each compact subset C(B X —  X, there is a  countable star-
fin ite  p a rt i t io n  o f  u n i t y  i t  { p„: E q ,„=1}  o n  X  such that
ClBx(O(P0)r\C —0 f o r each n.
(3) For each compact subset C BX — X , there is a  closed Ga--set
G of  B X  such that C G BX—X.
(4) For each compact subset C BX— X, there is a countable family
{Gn}  of compact subsets of  B X  such that G „nC =0 f o r each n  and
V,7=1. G„ X.
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Proof. Assume that X  i s  a  Lindel i if  space and let C  be a
compact subset o f B X contained in BX— X .  For each x E X , let
U(x) b e an open neighborhood o f x  such that C/Bx(U(x))n C=0,
and consider a covering {U(x)} x E x  o f X .  Let {Wn }  be a countable
star-finite refinement o f  { U ( x ) } x E x .  S in c e  X  is  normal, there is a
partition of u n ity  c1)= {pn : E p n = 1 } such that C/x (0(99n )) 147

n

for each n. It is evident that C/Bx(0(q3 0)n C= 0 for each member
T n  of the partition of u n ity . This proves the implication (1) ( 2 ) .
Suppose that (2 ) is  va lid  and let f„  be a continuous function on
BX such that 0< f,. 1, f , . = 0  o n  C  and f , . =1 o n  C/Bx(O(P.)).
Put f  ( 1  I 2 n ) • f n ,  then Z ( f )  is a closed Gs -set o f BX such that
C (Z (f )C B X —  X .  This proves that (2 ) implies (3). The impli-
cation (3) ( 4 )  is obvious. Finally, le t {(4,} be any open covering
of X  and let U l denote the proper extension of U .  over B X . Put
C=BX—U Uea ,  then C  i s  a compact subset o f BX contained in
BX— X .  Evidently, each Gn is covered by a finite number o f Un ,
and therefore U7,=iGn is covered by a countable subfamily o f  { r.}.
Since \j„,G„ X, we see that X  is covered by a countable sub-
family o f {U . It fo llo w s th at X  is a Lindel6f sp ace . The proof
is completed.

A  space X  is said to be paracompact i f  every open covering
o f X  has a locally finite refinement.

Theorem 2. 8 .  Let BX denote any compactification of X .  Then,
the following conditions are equivalent.
(1) X  is  paracompact.
(2) For each compact subset CCBX— X, there is a partition of unity
cla= {q9x : E p x =1} on X such that ClB x (0(qi,))r\C —0 fo r  each X.
( 3 )  For each compact subset CCBX— X , there is a f am ily  {Ga }  o f
compact subsets O f  BX such that Ga n C = 0 ,\ I  G,. X  and that there
is f or each x E X  an open neighborhood (in  B X ) U * (x ) o f  x which
intersects f initely  many Ga 's.

Proof. Assume that X  is  paracompact, and le t C be a com-
pact subset of BX— X .  For each x E X let U*(x) be an open subset
o f BX containing x  such that C/B x ( U*(x))r\C— 0 , and consider a
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covering {(_/(x)},E x  o f X , where U(x)— U*(x)r■X. There is a  par-
tition o f  u n ity  (D= { q : E p, = 1 }  subordinate to th e  covering
{U(x)} x E X •  Since O ( p ) C U ( x )  fo r some x, (for each X), w e have
ci„x(0(p))nc= 0 for each X. This proves the implication (1) ( 2 ) .
The implication (2) ( 3 )  is obvious in  view  of the fact th at if
triXI is  a  locally finite family of subsets of X , then {C / (H )}  is
also a  locally  fin ite fam ily . T o  prove the implication (3) ( 1 ) ,
le t u s  recall that X  i s  paracom pact if  a n d  only i f  every open
covering o f X  has a  locally finite refinement (c. f . [1 7 , P . 156]).
Let {U} be any open covering of X , and let UL denote the proper
extension of U 0, over B X . Put C=BX—V (IL , then C  i s  a  com-
pact subset o f BX— X .  It is clear that each G. is covered by a
finite number o f U l's  sa y  LT1, ••• , U , s in ce  Gc,  i s  compact. Put
110 , , k = G „ U :n  X , then each 1-10 , , k  is contained in some U0,= r \  X
and  G„r\X =V7=1 Ha, k, Constructing II„, k  fo r  each G 0,  in  this
fashion, we h ave  a  locally finite refinement {1-10,, k} o f  f t / j .  It
follows that X  is  paracompact.

A space X  is said to be hereditarily paracompact if every sub-
space of X  is paracom pac t. It is easy to see that X  is hereditarily
paracom pact i f  a n d  on ly  i f  every open subspace o f X  is  para-
compact. Let E  be any open subspace of X , and let BX be any
compactification of X .  Then C l ( E )  i s  a  compactification of E.
Applying the above arguments to E  and Cl, x (E ), we obtain the
following

Theorem 2. 9. Let BX denote any compactification o f X . Then,
the following conditions are equivalent.
(1) X  is hereditarily  paracom pact.
(2) For each closed subset C o f BX, there is a partition of unity
4)= { q :  E q),=1} on X — C such that Cl8 x (0(q3))r■C=0 for each X.
( 3 )  For each closed subset C  o f  BX, there  is  a f am ily  { }  of
closed subsets o f  B X  such that Cr\G„,=(), V G„ X—C and that
there is for each x G X— C an open neighborhood (in BX) of  x inter-
secting f initely  many G„'s.

Quite in a similar way, we have the following characterization
of hereditarily Lindel6f spaces.
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Theorem  2 .1 0 . L e t  B X  denote any compactification o f  X.
Then  the following conditions are equivalent.
(1) X  is a  hereditarily Lindeldf space: That is, every subspace of
X  is a Lindeldf space.
(2) Every closed subset C o f BX is contained in a closed Ge -set C*
o f BX such that X—C—X—C*.
(3) For each closed subset C o f BX, there is a countable star-finite
p a r t i t io n  o f  u n ity  4) —  { p„ : E (p• = 1} o n  X— C  such that
C1Bx(0(P.))r■C=0 fo r  each n.
(4) For each closed subset C  o f  BX, there is a  countable family
{G }  o f  closed subsets o f  BX such that Gn r■C —0 fo r  each n and
VZ=1

C o ro lla r y . Every hereditarily Lindeldf space is perfectly normal.

Proo f. Suppose that X  is a hereditarily Lindel6f space and let
F  be any closed subset o f X , then F*=C /„„(F ) is contained in
a closed Ge- s e t  G *-1 - \,7=1 O.* o f BX such that X—F*—X—G* by
virtue o f  th e  preceding theorem. Therefore F=F*r■X—G*r■
X =  (0: n X )  and hence F  is  a  closed Ge-set
o f X .  It follows that X  is perfectly normal.

§  3 .  C h aracterizatio n  o f  topology (II).

This section is devoted to the characterization o f topological
properties o f  X  in  terms o f the properties of the product X x Z
of X  with some compact space Z .  In  most cases, we may take
Z  to be a compactification o f X .  However, for the sake o f con-
venience, some of the following results will be stated letting Z  to
be a compact metrizable space or an arbitrary compact space.

From the work o f  D o w k e r [5 ] and the author [27 ], it may
be expected that the modifications of the normality condition
proposed on the product X x Z will yield some interesting properties
o f X .  This will be discussed in detail, and we shall show that a
number of important topological properties can be characterized
by the modifications of the normality proposed on X x Z.

Following Gillman and Je r iso n  [9 ], we shall say that a sub-
space E o f X  is C*-embedded in X  i f  every bounded continuous
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function on E  can be extended to a bounded continuous function
on X .  As is well known, every closed subspace of a normal space
X  is  C*-embedded in X.

Let C'(X ) be a subset o f C (X ).  If there is a function f  E CV)
such that f (x )= 1  for each x E F  and f (x )=  0  for each x E G, then
we shall say that F  and G are functionally separated by a member
of C'(X).

Theorem 3 . 1 .  Let BX denote any compactification of X .  Then,
the following conditions are equivalent.
(1) X  is  paracompact.
(2) For each compact subset C  of BX— X, there is a surrounding
V f o r X  such that Clx . B x ( V )n (X xC )= Ø .
(3 )* ) X x B X  is  normal.
( 4 )  I f  G = X x C  is a closed subset of X xB X  such that G nA (X )=0 ,
then  G  a n d  A (X ) a re  f unctionally  separated (by  a  m em ber of
C*(Xx BX)).

P roof. W e p rove firstly  th e  equivalence o f  ( 1 )  an d  (2).
Assume that X  is  paracompact and let C be a compact subset of
BX— X .  Then, there  is  a partition of u n ity  1:1)= {q), : E  =1}
such that C /(O (Px))n  C =0  for each X, by virtue o f Theorem 2. 8.
P u t V =  {(x, y) E XX X : E  q (x )— q (y )i< 1 }  ,  th en  V  i s  a  sur-
rounding fo r  X .  W e n o w  p ro v e  th a t C/x ,„ x ( V) n (X x C) = O.
Suppose on the contrary that C/xvBx( 17.)n (Xx C ) contains a point
(x , p ) of Xx BX, then there is a point (x', y ') which belongs to V,
in each neighborhood U(x)x U *(p ) o f (x ,  p ) .  Let us take U(x) to
be a  neighborhood o f  x  such that U (x ) intersects finitely many
members o f  {0 (99 x)} , s a y  0(q3 1), ,  0(P.), t h e n

 E 7 , - . 1 9 3 k ( x 1 ) = 1  fo r
each x' E U (x ).  It is  c lear th at (x', y') E V implies y' E V L I O (P ),
and it follows that p  E Cl Bx(V7-1 0 (qi k)) =U7-1 Cl Bx(O(P fr)). But this
is  impossible, since p  E C  and since Cr\C/Bx(0030)= 0  for each k.
Conversely, le t  V  b e a  surrounding fo r X  such that C/,,x ( V)r\
(X x C ) - 0 .  Let d be a pseudo-metric on X such that W= {(x, y) E

* )  K. Morita has recently proved the equivalence o f  1 )  and  3 )  independently.
(K . M orita, Paracom pactn ess and Product spaces, Fund. M ath. V ol. 50 (1961) pp. 223-
236)
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Xx X : d  (x, y) < 1 }C  V, and let 7- denote the topology of X induced
by the pseudo-metric d .  Then the space (X , ,r )  is paracompact.
Put W(x)— {2' E (X , .2-

)  d(x, z )<1}  , then it is clear that C/Bx(W(x))r\
C = 0  for each x E X .  Consider an  open covering {Mx)} xEx of
(X , 7-), and let (1)=  {T x :  E (7), =1} be a partition of unity on (X , T )

subordinate to the covering { W ( x ) } x E x .  S ince 7- is weaker than the
original topology of X , cl) is a partition of unity on X with respect
to the original topology of X .  Thus, we see that there is a  par-
tition of unity 14)= { q : x =  1} on X such that Cl Bx(0 (q,x))nC =0
for each It follows that X is paracompact, in view of Theorem
2.8.

The implication (1) ( 3 )  is well known Pa and the implication
(3) ( 4 )  is evident. We shall prove that (4) implies (1). Let C
be any compact subset of BX— X .  We shall show that there is a
partition of nnity { q :  E  w x =1} on X such that C/Bx(O(Px))r\
C = 0  for each X, which will complete th e  proof by virtue of
Theorem 2. 8. Let F(x, p ) be a continuous function on X x BX such
that F = 1  on G = X xC  and F = 0  on A (X ) . Let F ( p )  denote the
restriction of F(x, p ) on {x} x BX, and put d(x, y)=11Fx(P) — Fy (P)11=
Sup IF.(P) —  Fy(P)I • Then d(x, y ) is a  pseudo-metric on X .  Let T
pEBx
denote the topology o f X  induced by the pseudo-metric d(x, y),
and  consider th e  space (X , ,r )  which is paracom pact. L et (ID=
{g),: E  = 1 }  be a partition of unity on X  subordinate to the
covering { U ( x ) } x E x  of (X , 7°), where U(x)— {y E (X, T ): d(x, Y )<1121 .
Since T  is weaker then the original topology of X , clf) is a partition
of unity of X  with respect to  the original topology of X .  We
shall show that C/Bx(O(Px))n C = 0  fo r  each X. It is clear that
d(x. y)<1 / 2  implies I F (y ) 1 =1Fx(Y) —  Fy(Y)1 < 1 /2. Therefore
F ,(P )<1  /2  for each p c Cl B x (U(x)), since F , is a  continuous func-
tion on B X . On the other hand, F(x, p)=F x(P)= 1  for each P E G.
It follows that C/Bx(U(x))n C=0 for each x E X  and consequently
C/Bx(O(Px))r\C= 0  for each X. The proof is completed.

W e now notice that F (x , y )E C (X X Y ) defines a  continuous
mapping of X into C(Y) (F : X--->C(Y)) by letting F<x>= Fx  E C(Y ),
where F., denotes the restriction of F(x, y) o n  {x} x Y. We shall
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denote by ex (Xx Y )  th e  subset o f  C(Xx Y )  consisting o f  all
functions o f  C(Xx Y )  such that F<X>= {F,}, E x  i s  a  separable
subspace of C(Y).

Theorem 3. 2. Let BX denote any compactification of X .  Then,
the following conditions are equivalent.
(1) X  is  a Lindeldf space.
(2) For each compact subset C o f BX— X , there is a strongly  stable
surrounding V fo r  X  such that C1x .Bx ( V )n (X xC )=0 .
( 3 )  I f  G = X xC  is a closed subset o f XxBX such that G r (X )= Ø ,
then  G  a n d  A (X ) are f unctionally  separated by  a  m em ber of
C x (X x BX).

P roo f. In the first place, we prove the equivalence of (1) and
(2). Assume that X is a Lindeliif space and let C be a compact subset
of BX— X .  Then, there is a countable star-finite partition of unity
4 =  { p :  = 1 }  on X  such that C1Bx (0( P.))r\ C for each n,
by v irtu e o f  Theorem 2. 7. Put V= {(x, y) E XX X : E  'p(x) —
p„(y) < l }  ,  then V  is  a  strongly stable surrounding fo r  X  by
Proposition 1. 5. B y the similar argument done in  th e  proof of
Theorem 3 . 1 , we can see without difficulty that C/x xB x ( V)r■
(X x C)= O. T o  p ro ve  the implication (2) ( 1 ) ,  le t C be any com-
pact subset of BX— X and  let V be a  strongly stable surrounding
for X  such that C/x<sx( 17 )n (Xx C)= 0 .  By virtue of Proposition
1. 5, th e re  is  a  countable star-finite partition  o f unity (1)=

p = 1} such that W = {(x , y )EX xX : E IP .(x ) — (Pn(Y)1< l }
It is clear that C / B x ( W ( x ) ) n C = 0  for each W(x), where W(x)=

ly EX : (x, y) G .  Put d(x, y)= q ,„ (x )— p n(y)I and let .7- denote
the topology of X 'induced by the pseudo-metric d .  Then, the
space (X, 7.) is secoud countable and hence it is a  Lindeldf space
Consider an  o p en  covering {W(x)} xEx o f  (X , 7 ) ,  where W(x)—
{y E X : d(x, y)<11 ( = {y E X : (x, y) E W} ), and let {W } be a count-
able subcovering o f {W(x)} xEx. Since C/B x ( W(x))r\ C =  for each
W(x), Cl8 ( W )r\C=ø  fo r  each n. Thus, we see that there is a
countable covering {W, } o f  X  such that U./3x( Wn)r\ C= 0. It
follows that X  is a  Lindellif space by Theorem 2. 7. W e nextly
prove the implication (1) ( 3 ) .  Let G= X x C be a  closed subset
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of X x B X  such that G r ( X ) = Ø ,  th e n  C is a compact subset of
BX — X . B y  virtue of Theorem 2. 7, there is a closed  G a-set C
of B X  such that C c1J C cITa BX— X .  There is a continuous function
f*EC(B X ) s u c h  t h a t  0 < f * < 1

 a n d  C * =Z ( f * )={ P E B X :
f*(p) O} N o w  le t  u s  c o n s tru c t  a  p a r t it io n  o f  u n ity  t=
{ p :  p=1} on X by letting

f ( p )  =  Max [i / n +i ,  Min (f*(p), 1/n — i)],
g '( p ) =  1/n — f (p)  a n d
q(x) =  g ( x ) / 1 g ( x ) ,

where g .  denotes the restriction of g  o n  X . In  v iew  o f th e
above definition of q , , ,  it m ay easily  be seen  that -p,, has a con-
tinuous extension  tp  o v e r  B X  and the extension i s  s u c h  t h a t

(p (p )  =  g(p)/g'_1(p)+g'(p)+gt'+1(p)  i f  p o ( g )  a n d
= 0 if p O ( g ) .

Define FE C (X x B X )  by letting  F(x , p)= 1 q ( x ) - q ( p ) I .  -then
it is clear that F = 1  on X x C  an d  F==0 on  (X ). T o  show  that
F E C (X x  BX), le t  T  be the topology of X induced by the pseudo-
metric d(x , y )= q,,(x)— p(y) on  X . T hen , the space (X , T )  is

second countable, and hence there is a countable subset {x} of
X which is dense in (X, T ) .  T h e se t {F 1}  is a dense subset of
F<X>. In fact, for any member F  of F(X > and for each E > 0 ,

 we
can choose a point x 1 E X such  that d(x 1 ,  y)<E. T h e n  F —Fx1 H=
Sup (  p , , ( y )  - q<,(p)) -( qi,,(x1) - i$(P))  I  q i ( x 1 ) — g , , ( y )  I
P E  B I

Therefore, F E C (X x B X ).  Suppose conversely that there is a
FEC x (X X BX ) such that F = i  on X x C  and  F = 0  o n  (X ) . L e t
T  denote the topology of X  induced by the pseudo-m etric
d(x, y)= IF —FH. T h en  th e  sp ace  (X , T )  is second countable.
Consider an open covering  {U(x)} E x o f  (X , T ) ,  where U ( x ) =
{y E (J, T ) :  d(x , y ) < i / 2 }  an d  le t  {U }  be a countable  subcovering
of {U(x)} X EX. I t  i s  c le a r  t h a t  d ( x ,  y ) < l / 2  im p lies  I F ( y ) -
F,(y )I<1/2  and hence F (x , y ) (<l/2 .  Therefore  C l(U (x ))r'C =Ø
for each U(x) and hence Cl ( U) r\ C = 0 for each n. Thus, we see
that for any compact subset C  of B X — X there is a countable
covering {U }  of X  such that  C1 B X (U,,)r\C=Ø fo r  e a c h  n, It
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follows that X  is a  Lindeliif space by Theorem 2. 7.

T heorem  3. 3. A  space X  is  metrizable if  and only  i f  X xB X
is  normal and A (X ) is  a closed Ge-set o f X xB X , where BX is any
compactification o f X.

Proof. Every metrizable space X  is paracompact [24], hence
Xx BX is normal for any compactification BX of X .  Let d be a
metric on X  and put 17 „= {(x, y) E XX X : d(x, y)<1 /21 , then it is
clear that r\,7.1. V„---A (X ). We shall show that f IV=1 V:,( xxBx) =

(X ) .  Let (x, p) be a point of Xx BX which is not contained in
A(X ), then there a re  two open subset U *(x ) and w*(p) of BX
containing x  and p  respectively such that U*(x)r\w*(p)=0.
There is a  n  such that {y E X : (x, y)E U *(x ), and we have
(x, y )  -17„ f o r  each  y E w*(p)n X .  I t  fo l lo w s  th a t  (x, p ) E
C l  B x ((Xx BX)— V„) and hence (x, p)0 -ux-B x ). It follows that
that X ) = [ \ 1  VZ`x x B x ) . Supppse conversely that X x B X  is
normal and A ( X ) = A , 7 - 1  U ,  where Ut is an open subset of Xx BX.
Then G„=(XxBX)— U,T and LS,(X )  are disjoint closed subsets of
X x B X . There is a  continuous function F(x, p )  on X x B X  such
that F =1  on G„ and F=0  on A (X ) and 0 < F < 1 .  Put c/„(x, ,Y)=
IFx— Fy ll. where Fx  denotes the restriction of F  on {x} x B X . Put

{(x, y)E X xX : d (x , y )<11 , th en  V,< U r\ (X x  X )  because
Y )< 1  implies I F(x, Y)I < 1 .  Therefore U t  (Xx X ) is a  sur-

rounding fo r X , and hence ,6(X) is  an intersection of countable
surroundings for X .  It follows that X  is metrizable [30].

T heorem  3. 4. The following conditions on a space X are equi-
valent.
(1) X  is  second countable.
(2) X  is  metrizable and separable.
(3) X  is  homeomorphic to  a subspace of compact metric space.
(4) X xB X  is perfectly  normal for some compactification BX o f X.

Proo f. The equivalence of (1), (2) and (3) is well known [18]
and the implication. (3) (4 )  is evident. Therefore we have only to
prove that (4) implies (1). Suppose that Xx BX is perfectly normal
and let IQ  b e  a countable family of open subset of X x BX such
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that AZ--1. (7„= A (X ) , where U „ = C / x . B x ( U . ) .  W e  p u t  Un (x)—

{P E BX : (x, E (in} and U,i(x )= ip E BX : (x, p ) G U,,}. Consider the
product B X x  B X  a n d  p u t  C„=PrB x [A(BX)— U,!, ( Bx'Bx )], X „=
BX —  C„. Since B X  is perfectly normal, X „ is a  0—compact sub-
space of B X  and hence it is a  Lindeliif space. Now, let us con-
sider th e  product X n x  B X , which is clearly norm al. Put G„—
(X „xC„)v ((X „x BX )—  U,','" B x ) ) ,  then G„ is  a  closed subset of
X „x B X  such that Gn n A(X„)— 0. There is a  continuous function
F„ E C(Xn x  B X ) such that 0 < F „ < 1 ,  F „ = 1  on G„ and F „ = 0  on

(X n ). Let F ; denote the restriction of F„ on {x} x B X , and con-
sider an open covering {0(x)}„E x n  o f  X „, where 0(x)= {y E X„ :
!IF; — F ;i1< 1 /2} . There is a countable star-finite partition of unity

4)— {Pk :  E  p k =1 }  subordinate to the covering { 0 ( x ) } x E X n •  Define
a  pseudo-metric d„ on X„ by letting d„(x, Y )=E  I Pk(x)-(Ph(Y ) I ,  and
let T„ denote the topology of X „ induced by the pseudo-metric cin .
T h en , th e  space (X „, T O  is  second countable, a n d  therefore

ri=nr,,(x„, To is second countable [2 , Chap. 1 , P . 7 2 ] .  Let Pr,,
denote the projection of II onto (X „, T„), and let X * be a subspace
of II consisting of all points Q  of II such that Pr „(Q)= Pr,(Q) E X
for each n .  Then the space X *  is  second countable. We shall
show that X * is homeomorphic with X , which will complete the
proof. L et Q , denote the point of X * such that Pr„(Q,)=x  E X
for each n .  Then, we have a one to one mapping 0  of X  onto X*
by letting 0(x)— Q .  S in ce  7.„  is weaker than the original topology
o f X „, for each n ,  the mapping 0  is continuous. To prove that
0-1 is continuous, l e t  V (x) be any open neighborhood of x EX.
Then, there is a Un such that U„(x) V ( x ) " - v ) because BX— V(x)' ( Bx)

i s  com pact and [-\U ,,(x )-- x . W e now  prove that W„(x)= ly E
(X „, „) : dn(x , Y )< 11 U n(x). L et (P1, ••• , b e  th e  se t  o f  all
members of (13 which do not vanish at x, and let 0(x1)  be a member
o f { 0 ( x ) } x E x  such that 0(x1) O(P1) (1 < i < m ) .  Then x E 0(x1)  for
each i ,  and y E Wn (x) implies y G 0(x1)  for some i, therefore F;(y )=

F(y ) P ( Y )
 — F 1 ( y )  +  F 1 ( y )  F ( Y ) I P;11+

—  F;l1<1 / 2 + 1 /2 = 1  and hence y E Un (x). It follows that W„(x)
Un (x). P u t  W;r = X* n ((f1„,#. (X ,„, T.)) x W .(x )), th en  w e  have
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O '(W ) (  U (x ) r X  V (x ) ' r X =  V (x ) .  T h e re fo re  G  is  co n -
tinuous, and consequently 8  is a homeomorphism. T he proof is
completed.

Remark. From the proof of the preceding theorem we see
th a t if  V  is  a strongly stable surrounding for X, for each n, and
if A ( X ) = [ \ 1  V ,  th en  X  is  se co n d  co u n tab le . (P u t X,,=

P r [ z ( / 3 X)r\  V ].) This prove the sufficiency of the con-
dition of Proposition 1. 6.

We call a space X entirely normal if every neighborhood of
the diagonal of X x X  is a surrounding for X.

Theorem 3. 5. A space X is entirely norm rl if and only if for
any closed subset F of  X x  X, C l  , ,  ( F )  r  (X )  = 0 implies that F
and i.\(X) are functionally separated by a member of C(Xx i-9X).

Proof. A ssum e that X  is entirely norm al and let F  be a
closed subset of  X x X  su ch  th a t  T h e n
(X xX ) —F= V is a neighborhood of the diagonal z (X )  of X xX .
There is a pseudo-metric d  on X such that  d (x , y)=1 for each
(x, y) V .  Let d  denote the restriction of d (x , y) on {x} x  X . As
we have noted above, d defines a mapping q of X  into C *(X) by
le ttin g  (x )  =  d E C  *(X ). The mapping q is continuous by virtue
of the triangular inequality of d .  Applying Glicksberg's lemma
[10, Lemma 2] to  d(x , y) E C(Xx X ), we can see that d(x , y) has a
continuous extension d* ( x , p) over Xx I3X. It is clear that d* =  1 on
Cl (F) and  that  d * = 0  on  z (X ).  C o n v e rse ly , le t V  be any
neighborhood of the diagonal of X x  X  an d  le t V! denote the
proper extension of V  over Xx/3X. P u t  E=(X xX )—  V .  Then
Cl (E)=(XxIX)— VE and w e have  C l (E)r'iX(X)=Ø. L e t
F (x , )  be a continuous function on  X x 8 X  such that  0 F ^ 1 ,
F=0  on X )  a n d  F = 1  outside of V ! .  Put d (x , y)=HF — FlI=
S u p F (p )— F ,(p ) ,  then  d (x , y ) is a pseudo-metric on X, and it
PEPX

is easy to see that {(x, y) E X xX : d(x , y)<1} V .  Therefore V is
a surrounding for X. It follows that X is entirely normal.

A space X is said to be  collectionwise norm al [1] if for every
locally finite collection { F }  of mutually non-intersecting closed
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subsets of X  there is a collection {U 0  of mutually non-intersecting
open subsets of X  such that F„ I.Ja,  for each a.

Theorem  3. 6. A space X  is collectionwise norm al if  and only
if  G x 0 X  is C*-embedded (normally embedded) in  X x O X  f or every
closed subspace G  of  X.

Proof. Let F  be a  continuous function (bounded) on G x 4X,
and let Fx  denote the restriction of F on {x} X k iX . Define a mapping

: X  C (O X ) by letting (p<x> F x  E C(OX ), then ço is a continuous
mapping of G  into C (/3 X ). By virtue of the theorem of Dowker
[6, Th. 2], which states that a  metric space is absolute retract
for collectionwise normal space if and only if it is absolute retract
for metric space and absolute G s ,  we can see without difficulty
that the mapping qi can be extended to a  continuous mapping (7)*
of X  into C(OX)* )  B y  le tt in g  F*(x, p)= p*<xxp), we have a (real-
valued) function F *  on X  x i&X . The continuity of p* implies that
F *  i s  a  continuous function on X x OX, and thus we see that F
has a  continuous extension F*  over X x 4 X .  Therefore G x ,49X is
C*-embedded in X x R X . To prove the sufficiency of the contition,
note first that X  is  a normal space under the assumption of the
theorem . In fact, if G „ G , are disjoint closed subsets of X , then
the continuous function f  on (Gi x ,8X)\..)(G,x OX) defined by letting
f (x , p) =1 for each (x, p) E Gi x 13X and f (x, 0 for each (x, p) E
G ,x 4 X  can be extended to a  continuous function f *  on Xx /3X.
The restriction

 f *
 f * o n  x x {p } ,  where p  i s  a po int of ,eX,

is  a  continuous function on X  such that =1 on G, and 11 =0
on G , .  It follows that X  i s  a norm al sp ace . Now, let {G„} be
any locally fin ite collection of mutually non-intersecting closed
subsets of X .  P u t H,,=-V o t ,, Gp ,  then G ,, an d  H c,  are disjoint
closed subsets of X .  Therefore Clpx(G.)r\Clox(H.)=0 by the norma-

* )  Verification that C (sX ) is absolute retract for metric space is as follows : Let
M  be a metrizable space and let ço be a continuous mapping of a closed subspace G
o f M  into C (i3 X ) . By letting F(x, o <x> (p), we have a continuous function F  on
G X O X . Since MX BX  is normal, F  has a continuous extension F *  over XX X .  Let
F r * be the restriction of F* on {x} X $X, and put ço*<x>=Fx *, then v* is a continuous
extension of yo over X.
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lity of X .  Let g  a  continuous function on RX  such that g o,=1
o n  Clo x (H„), g„ =0 on C l ( G )  and 0< g c,< 1 .  Define a  bounded
continuous function F  on (V G ) x 4 X  by letting F(x, p )= 7 6 (x )g
g o, (p ) ,  where 7Ç(x) denotes the characteristic function of G .  (T h a t
is, F(x , p ) - - g ( p )  if  x E G „.)  From the assumption of the theorem,
F  has a continuous extension F* over Xx OX. Let F : denote the
restriction of F *  on {x} x0X, and put 14,--= {y E X : F:— F:11<
1/2' for each x E G „} . Then It4 ,1 is the desired family of open
subsets o f X .  Moreover, we can prove that i s  a  discrete
collection of open subsets of X .  (A  fa m ily  t  of subsets of X  is
said to be discrete if  each point x E X  has a  neighborhood which
intersects at most one member of K .)  L et z  be any point of X.
In case that HF? — <1/2 for some x E G„ , we have — PT1>

— F :II— IF: —  1 >1  /  2  fo r  each  y E Go(R +a ), since y E Gp

implies IIF? >  F t ( Y ) I  =F?(Y )=F(x , y )=1. Therefore
W (z)= ly E X : I F:— F;,K1 <1/21 does not intersects Up  f o r  each
0 + a .  In another case, where H F ? — F > 1 / 2  fo r each x EV G 0„
W (z)= {yE X :  HF?—F:11<1/2 2} does not intersects U0,  for each a.
For otherwise there would be a point y E U„ such that IF? — F <<
1/22 a n d  IF:— F:II<1 /2' f o r  som e x E G„ . It fo llo w s  th a t
IIF? — F:II <HF? —  +  < 1 / 2 ,  w h ic h  i s  c o n t r a d i c t o r y .
Therefore X  is  a collectionwise normal space.

B y the similar arguments done in the proof of Theorem 3.1
and Theorem 3. 2, we can obtain the following characterizations of
topologically complete spaces and real compact spaces respectively.

Theorem  3. 7. The following conditions on a space X  are equi-
valent.
(1) X  is topologically complete.
(2) For each point p  o f  48X— X, there is a  surroundidg V  fo r  X
such that Clx  px (V )n(X x  {p})-0.
( 3 )  Let p  be any Point o f $X .  I f  X x  {p} r\A(X)=0, then Xx {p}
and A (X ) are functionally separated by a member of C(Xx,8X).

Proof. The proof of the equivalence of (1) and (2) is entirely
sim ilar to that of Theorem 3. 1. We shall show that (1) is equi-
valent to  (3). Assume that X  is topologically complete and let p
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be a point of  ,9X — X . Then, there is a partition of unity CI)  =
E  —11 on X  such that p o u , x (o(rp,)) for each X, by virtue

of Theorem 2.6. P u t  d(x, y) = px(y)1 , then d has a con-
tinuous extension d* over X x RX by virtue of the lemma due to
G licksberg [10], as  we have shown in the proof of Theorem 3. 5.
It is easy to see that d*= 1  on xx {p } and that d* = 0 on A(X).
This proves the implication (1) ( 3 ) .  Conversely, i f  (xx Ipnn
A (X )= 0 , then p  is  a point of OX— X .  We can construct a  par-
tition o f unity 4)= {qix :  E  p = 1 }  such that C/g x ( 0 ( p ) )  p  for
each X, by the similar arguments done in  the proof of the impli-
cation (4) => (1) of Theorem 3. 1, and it follows that X  is topologic-
ally complete by Theorem 2. 6.

Theorem 3. 8. T he follow ing cond itions on  a space X  are
equivalent.
(1) X  is real compact.
(2) For each point p of  AX— X , there is a strongly stable surrounding
V f o r X  such that Clx  ox (1 7 ) n (X x  {p})—Ø.
( 3 )  L e t  p  b e  an y  Po in t o f  RX. I f  (X x {P})n A (X )= 0, then
x x  {p }  an d  A (X ) are  f unctionally  separated by  a  member of
ex(X X OX)

Proo f. The proofs of the implications (1) <=> (2) and (1) ( 3 )
are entirely similar to those of (1)<=> (2) and (1) ( 3 )  in  Theorem
3. 2. If (3) is valid, then we can construct a  countable star-finite
partition of unity 41= {(p„: E  p n =1} such that Cipx (0 (p „ ) )  p for
each n ,  b y  th e  similar arguments done in  th e  proof of the
implication (3) ( 1 )  of Theorem 3. 2, and it follows that X  is real
compact by virtue of Theorem 2. 5.

We now characterize some topological properties of a space
X  by the properties of the product of X  with some compact space.

A  space X  is  sa id  to  be countably  paracom pact i f  every
countable open covering of X  has a  locally finite open refinement.
F .  Ish ikaw a [16] proved that X is countably paracompact if and
only if  fo r  every countable descending chain o f  closed subsets
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{F„} of X  with empty intersection, there is a countable descending
chain {Un } of open subsets of X whose closure have empty inter-
section such that F n Un  fo r each n.

Theorem 3. 9. Le t M  be  any  compact metrizable space con-
taining infinitely many points. Then X  is  countably paracompact i f
and o n ly  if  G and XxC are separated by open subsets of  X x M
whenever G and XxC are disjoint closed subsets of  XxM .

P roo f. Assume that X  is countably paracompact. L e t  {W, }
be a  countable family of open neighborhoods of C M  such that
r\,7„--1 W =C  a n d  C/m(WOC W . ,  fo r  each n , a n d  le t  G  b e  a
closed subset o f  X x M  such that G n (X xC)= 0. P u t  F.—
Pr x [(X xC lm ( W„))r\G], then F is a  closed subset of X, for each
n, because Pr x  is  a  closed mapping. (Pry  denotes the projection
of X x M  onto X .)  Put Gx --- --Gr\({x} xM), then there is a  147„ such
that (X x Clm ( W„))n Gx = 0 , fo r each x EX .  It follows that {F„}
is a countable descending chain of closed subset o f X  with empty
intersection. (We may assume that F n   I  0 for each n .) By virtue of
Ishikawa's characterization, there is a descending chain {U} of open
subsets o f  X  su ch  that F„ U,„ a n d  [v., C l (U )= Ø. Put
V, =U[X—C/ x (U„)] x W + „  then V, is an open subset of X x M
containing Xx C .  O n  th e  other hand, it is easy to see that
C/x xm ( Vi )n G= 0, and therefore V,—(X x M)—C/x „m ( V,) is an open
subset o f  Xx M  containing G  such that Vi n V 2 = 0 .  Thus, the
necessity of the condition is proved. Conversely, let { F }  be a
descending chain of closed subsets of X  with empty intersection.
Let p  be a point of M  a n d  le t  {W }  be a  countable family of
open neighborhoods of p  such that A7= 1 W„=p and C/m (
for each n. Put G =V =1F„x (M —  W.), then G is a  closed subset
of Xx M  such that G n (X x{p })=  0. L et V „  V, be open subsets
of X x M  such that V ,  G, V ( X  x C) and Vi n V 2 = 0 . Pu t un=
X—Prx [P fx (M —  r\ [(X X M) - Tin  then {U„} is  a  descend-
ing chain of open subsets of X , and LIn F n  fo r each n. Let us
put further Hn =X—Pr x [EXx(M—Clm ( W A r\ V a  then we have
H„ Clx ( U„) for each n  and  r\7_1. H =Ø . Consequently, we see
that {U, } is  a  descending chain of open subsets o f X  such that
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for each n  and [ -V7_1C/x (U „)= 0 . It fo llow s that X  is
countably paracompact. The proof is completed.

Theorem 3. 10.* )  L e t  M  be any  compact m etrizab le space con-
taining infinitely  many points. Then, X is coun tab ly compact if and
only i f  the projection Prm  o f  X x M  onto M  i s  a  closed mapping.
(In other words, X is countably c o m p a c t  i f  and only any two disjoint
closed subsets X x C  and F  o f X x M  are separated by  open sets of
the form  X xU  and X x V.)

Proof. Suppose that X is not countably compact, then there
i s  a  countable covering {U„} o f  X  such that V k „Uk IDX for
each n. Let p  b e a po int of M  and let {W „} b e  a  countable
fam ily o f open  neighborhoods of p  such that A7=1 Wn=p and
C/m(WOC W„_, for each n .  Put F = U 1E X — \ knUk1xCM -

then F  is  a  closed subset of X x M  su ch  th a t (X x {P})r\ F=0.
Evidently p E Clm (P rm [F ] )  and it follows that Prm  is not closed.
Conversely, if the projection Prm  is not closed , then  there is a
closed subset F  of Xx M  such that Prm (F ) is not closed. Let p
be a point of C/m(Prm(F)) — Prm (F ), and let {W„} be a countable
fam ily of open neighborhoods of p  such  th at r\;_,C/m ( W„)= .p.
Put Un = X— Pr x [(X x Cl m(W n)) F], then Un i s  an open subset of
X, since Prx  is  a  closed mapping. On the other hand, it is easy
to  see that I Q  i s  a  covering of X .  Obviously, (Xx C/m (W„))n
F+(P for each n , and therefore no finite subfamily of {Un } can
cover X .  It follows that X is not countably compact. The proof
is completed.

Theorem 3 . 1 1 .  L e t Z  b e  an y  compact space containing in-
f initely  m any  points. Then, X  i s  pseudo-compact if and only  i f
P r z [Z (F )]  is closed fo r  each FEC (X xZ ), where Z (F ) denotes the
zero-set of  F. (Prz  denotes the projection of X xZ onto Z . )  I n  other
words, X is  pseudo-compact if and only i f  Z (F ) and a closed subset
X xC  can be separated by open subsets of the f orm  X x U  and Xx V,
whenever they are disjoint.

* )  A  slightly stronger result than this is valid . C f. [10].
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Proof. In  [28 ], the author proved that th e  following con-
ditions on the product X x Y of pseudo-compact spaces (containing
infinitely many points) are equivalent.
(1) Both X and Y are pseudo-compact and Pr x [Z (F ) ]  is  a  closed
subset of X  for each F E C(Xx Y),
(2) Both X and Y are pseudo-compact and Pr y [Z (F ) ]  is  a  closed
subset of Y  for each F E C(Xx Y),
(3) reXx0Y=i3(Xx Y).
(4) X x Y is  pseudo-compact.
(The equivalence o f (3 ) and (4 ) i s  due to Henriksen and Isbell
[12] and Glicksberg [10]. ) The necessity of the condition follows
immediately from this facts :  Since Z  is  compact, Pr x  is  a  closed
mapping and hence X x Z is pseudo-compact. Therefore Pr x [Z (F )]
i s  a  clased subset o f  Z  fo r  each F  C (X x  Z ) .  To prove the
sufficiency of the condition, let us note th at if  Z  i s  a compact
space containing infinitely many points, then there is a  continuous
function f  E C(Z) whose zero-set is not open (C. f .  [2 8 ]. )  Suppose
that X  is not pseudo-compact and let h(x) be an unbounded con-
tinuous function on X .  Define a  continuous function F E C(XxZ)
by letting F(x, p)= Ih(x)1• f(P)1 -1, where f (p )  is  a  continuous
function on Z  whose zero-set is  no t open. Then, Pr [ Z ( f ) ]  is
not closed as may easily be seen.

Theorem  3 . 1 2 .  X  is  compact if and only if the projection P r x

of X x Z  onto Z  is  a closed mapping fo r  any  compact space E.

We omit the proof, which is easy.
In  his paper [5 ], C. H. Dowker proved that the product of a

normal, countably paracompact space and a com pact metrizable
space is normal (and countably paracompact). On the other hand,
Theorem 3. 9 shows that if the product o f a  space X  with some
compact metrizable space is normal, then X  is  (normal and) count-
ably paracompact. Therefore, we have the following characteriza-
tion of normal and countably paracompact spaces.

Theorem  3 . 1 3 .  Let M  be any  compact metrizable space con-
taining inf initely  m any  points. Then, X  i s  normal and countably
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par acompact i f  and only  if  X x M is  normal.

§  4 .  Comments.

B y virtue o f  Theorem 3. 1, w e see that the normality of
Xx BX, where BX is any compactification of X , implies the para-
compactness o f  X .  Therefore, Michael's problem [1 9 ]  can be
reduced to ask whether the product of a paracompact space with
any metrizable space is normal or not, as the following theorem
shows.

Theorem 4 .1 .  T h e  f o llo w in g  conditions on a space X  are
equivalent.
(1) Xx Y  is  normal for any paracompact space Y .
(2) X x Y  is par acompact fo r  any par acompact space Y .

Proof. Let BX and B Y  denote any compactification of X  and
Y respectively. Assume that (1) is true, and consider the product
(X x Y )x(BX xBY )= X x(Y x BX x B Y ) .  Since Y x BXx B Y  is
paracompact, it follows that (X x Y) x (BXx B Y ) is  normal. On
the other hand, it is evident that BXx B Y  is  a compactification
of X x Y. Therefore, X x Y is paracompact by virtue of Theorem
3.1. T he im p lication  (2) (1 ) is evident.

We now notice again that a paracompact space is characterized
by the property that
(A) Xx Z  is  normal for any  compact space Z.
While, a normal and countably paracompact space X  is character-
ized (Theorem 3. 13) by the property that
(B) Xx M  is  normal for any  compact metrizable space M.
In  this point of view, it may be stated that th e  essential im-
portance of Michael's problem lies in  the following problem.

Problem 1. W h at is  the space X  satisf y ing the following
condition?

(C ) X  x  Y  is  normal for any paracompact space Y .
Now, let us call a  space X  satisfying condition (C) a 7r-space,

then we can see from Theorem 4. 1 that every 7r-space is para-
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compact and that X x Y  is a it-space if and only i f  both X and Y
are 71- -space. Thus, we see that the property (C) is a productive
property. In [19], E. Michael proved that every Œ-compact space
is a it-space.

Another problem concerning Michael's problem is as follows :

Problem 2. W hat is  the space X satisfy ing the following con-
dition?

(D) X x Y  is  normal f or any  metrizable space Y.
A n  answer to the Problem 2 has also been given by E. Michael.
[1 9 ].  He proved that a paracompact, perfectly normal space X
satifies condition (D). Recently, Z. Frolik [8] has proved that a
paracompact, topologically complete (in the sense o f E. 6ech [3])
space satisfies condition (D).

Likewise, several problems may be considered. Among them,
the following seems to be interesting.

Problem 3. W h at  is  th e  space X  satisf y ing the following
condition?

(E) X x Y  is  normal for any  second countable space Y.
Let E be any dense subspace o f  X  and let OE be the Stone-

C'ech compactification of E .  Since BX is a compactification of E,
BX is the image of OE under a (unique) continuous mapping by
virtue of Theorem 1. 1. It follows that Xx BX is  the image of
X x OE under a closed continuous mapping. Since the closed con-
tinuous image of a normal space is normal, we can see that the
normality of xx 0E implies the paracompactness of X .  However,
it is not known to the author whether the normality o f Xx BE,
where BE is any compactification of E, implies the paracompactness
o f X . "D o e s  the norm ality  o f  Xx B E im plies the norm ality  of
Xx O E ?"  This is closely related to the following problem pre-
sented by K. Nagami (c. f. [23 ].)

Problem 4 .  Let f  be a  closed continuous mapping o f X  onto
Y such that f ( y )  is  compact for each y E Y and that the image of
any proper closed subset o f  X  i s  a  proper closed subset o f  Y . I s
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i t  trus that X  is  normal whenever Y  is norm al?

It is obvious that the mapping o f X x R E onto Xx BE satisfies
the above condition.
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