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§ 1 .  Introduction.

In a recent work [4], L. Garding and B. Malgrange introduced
certain new types of partial differential operators that were called
partially hypoelliptic, partially elliptic, etc. And they characterized
them completely by the shapes o f th e  complex zeros o f  their
corresponding characteristic polynomials.

The aim o f our present paper is just to extend the results of
GArding and Malgrange [4] to  the case of systems (generally
overdetermined) o f differential operators. This problem o f gener-
alization was one of the problems posed in  [4 ] .  It can also be
considered as a partial generalization of Wirmander [5] and our
previous work En

§  2 .  Notations and preliminaries.

Let C  b e  the complex number field and C [X , Y ]  b e  the
polynomial ring over C  in  m +n  variables X =(X „ ••• , X „,) and
Y=(Y„ ••• , Y ). And we consider a  matrix with p  rows and q
columns

( 1 ) P(X , Y ) =

w ith  coefficients in C [X , Y ] .  Putting P i k(X , Y )= 0  ( i> p ; k =
1, 2, ••• , q) i f  necessary, we can always assume that p > q .

( P i a ,  Y ) P i ,(X , Y ) )

P p i (X , Y) ••• Pp,(X , Y)
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W e denote by a  th e  ideal of C[X, Y ] generated by all the
(q, q)-minors of the matrix (1), and c a ll it  the ideal attached to
the matrix (1).

Replacing the variables X  and Y by the differential operators
1  a  (  1   a1  a1   a ( 1  a1  aa n d  i  a y   — ayi ayn )

_ re-ax i  ax l •  '  i  ax„,/
spectively in  (1), w e  g e t a  m atrix  o f  differential operators of
general typ e  P (  1.  a   , a   )  in  th e  m + n  re a l variable x =z a x z
(x„••• and Y= (y1 ,"• Y.). H e re  i  denotes the imaginary unit.

Now consider the following system of differential equations

( 2 ) (  1 a  , 1  a  ) U = 0 .
\ z ax i

Or, more generally,

p ( 1   a a uE lrl
\ i a x i ay) 1 Q '

where f 2  denotes an  open  set in  (m+ n)-space .1?"2 -Fn and S I . a
linear subspace of 2 L  (the space of distributions in s-2)1) which is
closed under the operations of partial differentiations ; and

U =

U q

is  an  unknown vector function whose components are in  _g)L
It is easy to see that the equation

/ 1 a 1   a\• , u k 0 .

\z a x ay /

1 )  We use the notations of L. Schwartz [10].

( 2')

( 3  )

Or

( 3')
Q(  1. a  a  ) uk  E

\  z  ax i  a.Y

holds respectively for an y  k  (1 < k < q )  and for any Q(X, Y) E a.
In fact, by elim inating all th e  unknown functions other than uk

in the equation (2) (resp. in  (2')), it  is  seen  th a t (3) (resp. (3'))
holds when Q  is  one of the (q, q)-minors of the matrix (1) ; and
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since these minors generate the ideal a, (3) (resp. (3')) is true for
any Q(X , Y) in a.

We decompose also th e (m +n)-d im ensional complex affine
space C'11- n into two factors : C'n+n=Cm x C"; and the current coor-
dinates shall be written in  th e  form  (e , n )  w ith  e =(e „ ••• , e„,),
97= (97„ ••• , nn ). When a is the ideal attached to the matrix P(X , Y )
and V is  the algebraic variety defined by a, w e say a lso  that V
is  the variety  attached to the m atrix  P(X , Y ).

By definition of the variety V, the rank of the matrix n)
is less than q  i f  (e, n) is  in  V .  Therefore there exists a non zero
vector C=C(e, n) such that

( 4 ) P(e, n)C = 0

for (e, 97) E V . Th is implies that

( 5  ) U(x, y) = •C

is  a non zero solution of the equation (2), since

(  1 aa ) ,. . u  = e i <x, t> i<Y , v>p(e, n)C = O.
ax

§  3 .  Partially hypoelliptic systems.

First let us recall the definition of partial regularity (see [4]).

Definition 1. Let S2 be an open set in R'" x R" and f (x , y) E gL
b e a distribution. W e say that f  i s  regular in  x  if, fo r  every
pair of open sets A .R "  ,  B R", A x B S-2, and for any cp E 2/3,
the distribution in x

g ( x )  =  f (x , y )rp(y)dy

is a regular function, i. e . an indefinitely continuously differentiable
function.

Definition 2 .  A  system  o f  differential operators P(
1

.  
 a  

ax '
a ) is called hypoelliptic in  x  if, for an open set f 2 , the com-i  ay
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ponents of every solution UE h _g;12 of the equation (2) are regular

in x.

Theorem 1 .  For a system  o f  dif ferential operators P(
i

.  
 a  

z a x  '
a  ) to be hypoelliptic in  x ,  it is necessary  and sufficient thati ay

the variety  V  attached to P(X , Y ) satisf ies the following condition:

(P H )  When n) E V. is bounded i f and  1971 are
bounded. 2 )

P roo f. Necessity  o f  (PH). LetA x BCD , be the product of
open cubes in I r  and R .  We denote by 6U the space of all the
solutions U(x, y) of the equation (2) that are definined and con-
tinuous in 12 with the topology o f uniform convergence on every
compact set in 12. Since this topology is stronger than the induced

topology from h ,  6U  becomes a Fréchet space. Now let us

consider, for any p e  g B ,  the mapping

U  G (x ) = U (x , y )(p(y )dy

which carries 'V  in to  l C A  according to the hypothesis of hy-i
poellipticity in  x .  Since the mapping is clearly a  closed linear

mapping and since '0 and heA  are Fréchet spaces, it must be

continuous by the closed graph theorem ([2], p . 37). Hence, for
any compact set KcA, there exists a compact set L cZ ui and a
constant c(q)) such that we have

<c(cp) max I us(x, Y)
s = 1

(k  = 1, 2, ••• , m ; j  = 1, 2, ••• , q)

for all UE cIJ, with

U a n d  G =  (  g , \ .

N ow  let 27) E V and let and ( be bounded. Assume

2 ) 91  stands for "the rea l part o f " ,  j  for "the im aginary part o f

( 6 ) max ag;

axk
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specifically that

( 7  ) I < M  a n d  lyi G M .

We are to show that 9 1  is bounded. Since the rank of y )  is
less than q, there exist solutions (5 ) of the equation (2) (see § 1)
with suitable constante C =C (,

C  =  (  C  \ .

q )

Here we can suppose that

( 8 ) = 1

where the suffix j  for which ci =1 holds might depend on E V.
Let us apply the inequality (6) to these solutions. For these U,

G(x) = •C•p(y)dy

= ei'x''(1,(9))C
Therefore

g1(x) 0 (n )c ( , ?I)

and (6) becomes

( 9  ) (max e—<x, 3 0 )10(n)1 ( k A  97)1

...<_c(q)) E c , n) (max e—<x, 3n>) .
s= 1

Since 0(n) is a non zero entire function (if cp+  0) defined by

0(77) = 99(Y)dY

we can suppose (by a suitable modification if necessary) that

(10) I OW I if y  G M

with a positive constant d. Now choose a suffix j= X ,  y) such
that c  = 1 ,  and add the the inequalities (9) with k running from
1  to m .  Then, by (7), (8) and (10), we get

3 )  This modification is easily done by some linear transformation of coordinates
and by multiplying a certain exponential factor.
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(11) (max cmIxr)
k = 1

 c(p) (max em( lx+-").

From this inequality we can easily see that 91 is bounded since
ae is bounded.

Sufficiency of (PH). We know already that (PH) is a sufficient
condition for the hypoellipticity in  x  in the case of a single
operator. (see [4], 3, Theorem 1). But since the equation (3) holds
for any Q E a , for the proof, it is enough to prove the following

L em m a 1 .  I f  (PH ) holds for V , there exists a poly nom ial
Q E a such that (P H ) holds f o r  t h e  hypersur fa c e  V Q  defined by
Q(X, Y)= O.

Let us prove this lemma. Consider first the homomorphism
Y]—> C[X, Y, Z ]  which carries each polynomial F(X , Y ) into

F (X , Y , Z ) by the following fomula

F(X, Y , Z ) =  F (X , Y) ,
2

where Z  i s  a  new variable : Z=(Z„••• And let a  b e  the
ideal o f  G[X, Y, Z ]  generated by the totality of images of poly-
nomials in  a . Consider the variety V in Cm"" defined by  and
tak e  its  intersection b y  the linear variety defined by iZ+  Y=O.
We denote by V this intersection. T hen it is clear that V  is of
the form

(12) = 97, in) I( ,
97) E V}

Let ci b e  the ideal determ ined by V . Now, according to Lech's
theorem (see U R we can find a polynomial Leek such that

(13) d (r,IL )> c•d (r,

holds fo r an y  real point r  o f C'" 4 "+ " with a positive constant c
independent o f r. (Generally, for a point p and for a  s, s)
denotes the distance between p and S, i. e. d(p, infjp— p' 1.)

y  es
Now put

R(X, Y ) = L(X, Y, iY ) .
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From (12) it is clear that R  vanishes on the variety V .  Therefore,
there exists a positive integer s  such that Q = Rs belongs to the
ideal a. (see [13] p . 6). Let us prove that this Q(X , Y )  satisfies
the requirement of the lemma, i. e.

(14) 1/0 = n) I W, 77, i77)

satisfies the condition (PH).
Let n) be in  VQ and assume that N  and I n I are bounded.

Specifically, we put

(15) 1 ,11< M  a n d  17/1< M .

We are to show that Ne is bounded.
Let us apply the inequality (13) to the real points r=(91,9177, —a77).
Since 1'  a  closed set, d(r, P. )  is attained by a point (e, i77')
in  V. Hence we have that

(16) 2M> INI +
> d ( ( * , (e, 97, in))
>d (r,T T̂L )>c•d(r,

= c•cl((* ,  N/7, —can), (e, n', in))
= c• {191 -91 1 12 +  aei2+ 19in - 91n/ 12 + lan'1 2

+ — a i l  +  9 1 9 7/ I 21112 •

Thus, in particular, we have that

(17) <22/1 , I919/ < 2 M
 a n d 91' I < 2 M  .

From these inequalities, we see that Ne is bounded since (e',
is in  V which satisfies the condition (PH ). But since from (16)
we see that

M -91e <  2 M  ,

9 1  should be bounded. T h is completes th e  proof.

Theorem 2 .  (Inhomogeneous equation). L et P( 1.   1   3   )
O X  i ay

be a system o f  differential operators which is hypoelliptic in  x . A n d
le t  F  be a  vector whose components are distributions defined and
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regular in  x  in  an  open set 12  o f  R m + n. T hen, a l l  the solutions

U E 1E gL  of  the equation

p (
 a a  )

U = F. .
z a x  z  ay

are regular in  x.

P r o o f .  L e t S .  b e  the space o f  a ll the distributions in n,
which are regular in x. Since St. is closed under the operations
of partial differentiations as is easily seen, (3 ') holds for any Q G a.
By Lemma 1, we can take as Q  a polynomial which is hypoelliptic
in x. Since the theorem is true when P(X , Y )  is a single poly-
nomial (see [4 ]  3 . ,  Theorem 1 , Remark 2.), we see from (3 ') that
the theorem is true for general systems also.

§  4 . Partially elliptic systems.

Definition 3. Let 12 be an open set in R'n x Rn and f ( x ,  y ) e
.0L be a distribution. We say that f  is analy tic in  x  if, for any
pair of open sets  A c R m, B Rn , A x B S-2,, and for any yoE

the distribution in x

g (x )  =  f (x ,  y ) ( p ( y ) d y

is an analytic function.

Definition 4 .  A  system o f  differential operators

is called elliptic
i  ay

p (  1. a  
'\ i a x '

i n  x  if, for an open set  12CR"i X R",

every solution UE
 if

O a  of the equation (2) is analytic in x.

Theorem 3 .  For a system  o f  dif ferential operators P ( 1.   a  
ax '

to be elliptic in  x , it is necessary  and  suf f icient that the

v ariety  V attached to the  m atrix  P(X , Y ) satisf ies th e  following
condition:

(P E )  There exists a positive constant M such that the inequality

1 9 1 I< M (1 + 1 1 + 1 a iiI )

holds when 97)E V.

i ay
l a  )
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P r o o f .  N ecessity  of  (P E ). T h e  necessity of the condition
can be proved quite analoguously to in the case of a single oper-
ator. W e need only replace single exponential solutions by the
solution vectors (5) of the equation (2) as we did in the proof of
Theorem 1. (See the proof o f [4] 4., Theorem 2.)

Sufficiency o f  (P E ). Since we know already that (PE ) is  a
sufficient condition for a single operator to be elliptic in x and
since the equation (3) holds for any QE a, for the proof, it is
enough to prove the following

L em m a 2 .  I f  (P E ) holds f o r V , there  ex is ts  a polynomial
QG a  su c h  th at (P E ) holds f or the hy persurf ace V Q  defined by
Q(X , Y )= O.

Let us prove the lemma. According to Lech's theorem [7],
we can find a polynomial Q  in a such that

(18) d(r, V Q )>c •d (r, V)

holds fo r any real point r  of Cm+ " w ith  a positive constant c
independent o f  r. Let us show that this polynomial Q  satisfies
the requirement of the lemma. We are to show that there exists
a constant A  such that

(19) (*1 < A (1 + IZ s '( +  ayl)
holds when TI) G VQ .  Let y ) be in  VQ and apply the inequa-
lity  (18) to  the real points r = ( * ,  917/). Since V is a closed set,
d(r, V ) is attained by a point (se ', n ')  in  V .  Hence we have that

(20) I 1,a971 NO, n))
> d(r, V Q )>c •d (r, V)
= c • d((R, ni7), n'))

c u m  a w 1 2 +  l a e l 2+0 1 , 7 , 1 2 +  l a v , 12} i/2 •

From this, we have in particular that, with new constants A , and
A2

(21) 1*—Nel<A1(1+1,;_l'el+

(21') (1+ lael+  lanio<A,(1+lai+ !No •
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But since V satisfies the condition (PE), we have that

(22) I <M ( 1 + + Ia , 7/ D.
From (21), (21') and (22), we have that

(23) 19I _A(1+

with A = A i + MA 2. This completes the proof.
 a  \Theorem 4 .  (Inhomogeneous equation). Let P( 

1   a  

ax ' ay 1
be a  system  o f  dif ferential operators w hich is elliptic i n  x .  And
l e t  F  be a  vector whose components a re d istr ib u tion s defined and
analy tic in  x  in  a n  open set 12 o f  R m ± n  . T hen all th e so lu tion s o f
th e  equation

po  a 1  a  )

U = F\ i a x  i  ay
a re  analytic in  x.

P roo f. Let rglo b e  the space o f a l l  the distributions in  1 2
which are analytic in x .  Since a g a  is closed under the operations
of partial differentiations as is easily seen, (3') holds for any Q E a.
By Lemma 2 , we can take as Q  a polynomial which is elliptic in
x .  Since the theorem is true when P(X , Y ) is a single polynomial
(see [ 4 ]  4 .  Remark after the proof of Theorem 2), we see from
(3') that the theorem is true for general systems also.

§ 5 .  Conditionally elliptic systems.

aDefinition 5 .  A  system  o f  differential operators P(  
a x  '

a  ) is called  conditionally  elliptic in  x  if, for an open set  12,i  ay
the components o f  every solution Ue 11 o f th e  equation (2)

that are analytic in y are analytic in x  and y.
aTheorem 5 .  F or a  system  of  dif ferential operators P(  

a x  '
a  ) to be conditionally elliptic in  x , it is necessary and sufficienti  ay

th a t  t h e  v arie ty  V  attached  to  P(X , Y )  satisf ies t h e  following
condition:
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(C E ) There exists a positive constant M  such that the inequality

N I< M (1 +  I a e  +  I 9/1)

hold when ( , i 7 ) G  V.

P roo f. Though we may proceed as in the proof of Theorem
1 , we employ here a  different method which does not use Lech's
theorem.

First, we em bed canonically the affine space C"' - ' "  in the
complex projective space P,,, + „ (C )  o f m + n  dimensions. A point
o f C'n+" with coordinates (E—1, n t i )  is identified with
the point of P„,...„(C) with homogeneous coordinates (1, • • • ,
97„ ••• , n„). And let us denotes by a* the homogeneous ideal
constructed canonically from a (see [ 9 ] ) ,  and let V* be the pro-
jective variety defined by a*. A  point in  V* but not in  V  is
called a point at inf inity  of V.

We notice that the following lemma holds.

Lemma 3. The condition (CE) on a v ariety  V can be restated
as follows:

(C E ') The v ariety  V  has no point at infinity with homogeneous
coordinates o f th e  f o rm  (0, „ • • • 0, • • • , 0) with

, „z) being a non-vanishing real vector.

First let us prove that (CE) implies (C E ') . Suppose the con-
trary and assume th at V has a real point at infinity of the form
(0, 0 ) .  Then there exists a  curve on  V  depending on a real
parameter s  with I s I large

(24) •-(s) = s • 0) + ( s ) ,  ( s ) )  E  V

with condition : lim   1 ( e ( s ) ,  9 7 ' ( s ) )=  0 (see [ 8 ] .  Theorem 1).s Sub-
stituting (2 4 ) into the inequality (CE), we get

•9 + Ç.n t(s) I _<M(1 + I 1 ( s )  + 117'(s) ) •

Dividing by s  and letting 0 0 , w e ge t I  = 0 . T h is  contradicts
the fact that i s  a non vanishing vector.

Secondly, let us prove that (CE') implies (C E ). Since a* is  a
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homogeneous ideal, there exists a basis o f a* consisting o f homo-
geneous polynomials F„ ••• , F .  L e t  d5 b e  the degree of F 5 and d
be the least common multiple of d„ ••• ,c1„. And put Gi =F i did.i.

Let us consider the polynomial defined by L =  1 G5
-0 1 ,  where G5

J= 1

is the polynomial with coefficients which are complex conjugates
o f those o f G5 . It is clear that the real points at infinity of the
hyperplane defined by L = 0  are just those o f  V * .  (H  is well-
defined since L  is homogeneous.) Now we put

(25) Q(X, Y ) =  L(1, X , Y ) .

It  is  clear, by  its  construction, that the (affine) hypersurface VQ
defined by Q = 0  satisfies the condition (CE') and that Q G a. Since
V 0  contains V, it is enough, for the proof o f Lemma 3, to prove
the following

Lem m a 4. VQ satisfies the condition ("CE).

Let d  be the degree of the polynomial Q  and let Q =Q d +
Qd_ i +  • • •  ± Q ,  be the decomposition o f Q  into homogeneous parts,
the degrees being indicated by the subscripts. Since Q  satisfies
the condition (CE'), Qd ( ,  O)=1- 0  fo r  any non-vanishing real
Therefore Qd ( , 7 i)  has a positive lower bound in  some complex
neighbourhood of the set defined by the conditions that I e =1

: real), 27 = O. Thus there exists come positive 6 and c such that
we have

1Qd( ")1._c  if = 1  a n d  1,;( 1+

where n). Since Q d  is homogeneous this gives

Q d ()l_ c d  i f i j ( < & l J t •

Estimating the lower order terms in an obvious fashion we get
with another constant e,

1QM1._.c1 - 1d — c,(1 W - 1 + ..•  +1 )
i f 1 1+19)1<&191 1•

Hence Q( ) =1-- 0 i f  1- 1> c 2 (c ,  being a large constant) and if 1,/1+
in l<EIJW. Thus Q (> n)--■=0 if 19-W >M(1+ 1,:s 1+ In I) with
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M = max (& 1  c 2 ) .  Or, I I  <M (1 + +  y l )  if n)E  170 This
completes the proof o f Lemma 4.

Now let us return to the proof of the theorem.

Sufficiency o f  (C E ). Since w e know  already that (C E ) i s  a
sufficient condition for a single operator to be conditionally elliptic
in x  (see [ 4 ]  5 .  Theorem 1) and since the equation (3) holds for
an y Q ca, it is enough , for the proof, to notice that the poly-
nomial Q e a defined in (25) has the property that the hypersurface
defined by Q (X , Y )= 0  satisfies the condition (CE) (see Lemma 4).

Necessity o f  (C E ). Although we may proceed as in [ 4 ]  only
replacing single exponential solutions b y  the solution vectors (5)
o f th e  equation (2 ) , le t u s  utilize here th e  null solutions for
general systems o f differential operators constructed in  [8].

L e t
( aa   ) be a  system o f  differential operators

i ' i  ay
which is conditionally elliptic in x ,  and suppose that the variety V
attached to P(X , Y )  doesn't satisfy the condition (CE). Since by
Lemma 3 , (CE) is  equ ivalen t to  (C E ') , there ex ists a poin t at
infinity o f  V  o f th e form (0, 0 )  with a  non-vanishing real
vector. Therefore we have a non zero C "  solution

U(x, y) =  (

u a (x:, y) )

of the equation (2) of the fo rm  (see P l.
iT+ 0 0 / /

(26) uk(x, y) = Ck(s)ei<x•st-Fics),ei<y,,;(s)> Li- ) P  d s
i r -

(k  = 1, 2, • • • , q) ,

where the integration is taken in the complex s-p lane , with con-
ditions:

( i ) For a ll k, ICk(s)1 < 1 .

(ii)) There exists a positive constant p  such that

(27) 0 <  p < P '< 1  an d  lim  — lim 47 (s ) — O.
s, - sP

(iii) U(x, y) =  0  if <x, =  x ,C +  •  +  x,n& „> 0 .
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Because of (27), the integral (26) converges uniformly even
when we allow the variable y to take any complex va lu es . There-
fore uk (x, y ) is analytic in y) for each fixed x .  And it is easy to
show, by the Cauchy integral, that uk (x, y) is analytic in y in the
sense of Definition 3. But since U(x, y) is non-trivial and vanishes
in an open half space according to (iii), there existe some k  for
which uk (x, y ) is not analytic in both variables x  and  y . T h is con-

tradicts th e  assumption that
'

P(
1 .   a 1   a  

 )  

is conditionallyay
elliptic in  x. This completes the proof of the theorem.

R E M A R K S . (1) An arbitrary basis of a cannot always play the
role played by that of the homogeneous ideal a* (see [9]).

( 2 )  The Lech's polynomial [ 4 ]  also can play the same role
as that of Q defined in  (25) (see [8 ]  Corollary to Theorem 2).

REFERENCES

[  1  ]  Bourbaki, N., Topologie Générale, Chap. IX., Paris (1948).
[  2  ]  Bourbaki, N., Espaces vectoriels topologiques, Chap. I., Paris (1953).
[ 3 ] Frieberg, J., Partially hypoelliptic differential equation of finite type, Math. Scand.

9 (1961), 21-42.
[ 4 ] Garding, L . and Malgrange, B., Opérateurs différentiels partiellement hypoellip-

tiques et partiellement elliptiques, Math. Scand. 9 (1961), 5-21.
[ 5 ] Heirmander, L ., Differentiability properties of solutions of systems of differential

equations, Ark. Mat. 3 (1958), 527-535.
[  6 ] H6rmander, L., On the regularlity of solutions of boundary problems, Acta Math.

99 (1958), 225-264.
[  7  ]  Lech, C., A metric result about the zeros o f  a  complex polynomial ideal, Ark.

Mat. 3 (1958), 543-554.
[  8  ]  Matsuura, S., On general systems of partial differential operators with constant

coefficients, J. Math. Soc. Japan Vol. 13, No. 1 (1961), 94-103.
[  9  ]  Matsuura, S ., A  remark on ellipticity o f general systems of partial differential

operators with constant coefficients, J. Math. Kyoto Univ. 1-1 (1961) 71-74.
[10] Schwartz, L., Théorie des distributions, I, II, Paris 1950-1951.
[11] Schwartz, L., Distributions semi-régulières et changement de variables, J. Math.

Pures Appl. (9) 36 (1957), 109-127.
[12] Seidenberg, A .,  A  new decision method fo r  elementary algebra, Ann. of Math.

(2) 60 (1954), 365-374.
[13] Waerden, B. L . van der, Moderne Algebra, II. (2nd ed), Berlin (1955).

4 )  Analytic function in y in the ordinary sense.


