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§1. Introduction.

In a recent work [4], L. Garding and B. Malgrange introduced
certain new types of partial differential operators that were called
partially hypoelliptic, partially elliptic, etc. And they characterized
them completely by the shapes of the complex zeros of their
corresponding characteristic polynomials.

The aim of our present paper is just to extend the results of
Garding and Malgrange [4] to the case of systems (generally
overdetermined) of differential operators. This problem of gener-
alization was one of the problems posed in [4]. It can also be
considered as a partial generalization of Hormander [5] and our
previous work [8].

§2. Notations and preliminaries.

Let C be the complex number field and C[X, Y] be the
polynomial ring over C in m-+wn variables X=(X,, -, X,,) and

Y=(Y,,:--,Y,). And we consider a matrix with p rows and g¢
columns

Pu(Xy Y) ot qu(X’ Y)
(1) PX,Y) = )

Po(X,Y) - Pp(X, Y)

with coefficients in C[X, Y]. Putting P;u(X, Y)=0 (j>p; k=
1,2, ,q) if necessary, we can always assume that p>gq.
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We denote by a the ideal of C[X, Y] generated by all the
(¢, ¢)-minors of the matrix (1), and call it the ideal attached to
the matriz (1).

Replacing the variables X and Y by the differential operators

Li=<L o . L,a_) 10 _(1 o 1 3) .

i ox \i ox,” i ox, and i oy \i oy 7 aw,) '

spectively in (1), we get a matrix of differential operators of
1 2 1 2\ . .

1 (F2.+2) =
general type P i’ T oy in the m-+#n real variable x
(%1, -, x,,) and y=(y,,-+,5,). Here ¢ denotes the imaginary unit.

Now consider the following system of differential equations
(2) p(+2, L2y,
1 Ox 1 Oy

Or, more generally,
(2) p(L 2, 12 ve i g,
1 0x 1 9y 1
where Q denotes an open set in (m+#n)-space R™" and o a

linear subspace of 9); (the space of distributions in Q)" which is
closed under the operations of partial differentiations; and

()
g

is an unknown vector function whose components are in 9.
It is easy to see that the equation

1 2 1 2
3 <_'—_v _.'__> e:0'
(3) Q i 9x 1 Qy “
or
: 19 Li) €4l
(3) Q(z or’ i 9y Uy o]

holds respectively for any k (1<k<{q) and for any Q(X, Y)€a.
In fact, by eliminating all the unknown functions other than #,
in the equation (2) (resp. in (2)), it is seen that (3) (resp. (3'))
holds when @ is one of the (g, ¢)-minors of the matrix (1); and

1) We use the notations of L. Schwartz [10].
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since these minors generate the ideal a, (3) (resp. (3')) is true for
any (X, Y) in a.

We decompose also the (m+n)-dimensional complex affine
space C™*” into two factors: C”*"=C" XC”; and the current coor-
dinates shall be written in the form (£, ) with &=(§, - ,¢§,),
7=(9,, =+, 7,). When a is the ideal attached to the matrix P(X, Y)
and V is the algebraic variety defined by a, we say also that V
is the variety attached to the matrix P(X, Y).

By definition of the variety V, the rank of the matrix P(§, )
is less than ¢ if (§, %) is in V. Therefore there exists a non zero
vector C=C(§, ) such that

(4) P&, n)C=0
for (&, )€ V. This implies that
(5) Ulx, y) = e'<"#+<m>.C

is a non zero solution of the equation (2), since

PG o Tap)U= oo R e = 0.
1 ox ¢t Oy

§3. Partially hypoelliptic systems.
First let us recall the definition of partial regularity (see [4]).

Definition 1. Let O be an open set in R” X R” and f(x, y) € 94
be a distribution. We say that f is regular in x if, for every
pair of open sets AT R"”, BCR", AXBZQ, and for any p€ 95,
the distribution in x

g(x) = | (e, D) dy

is a regular function, i.e. an indefinitely continuously differentiable
function.
Definition 2. A system of differential operators P<1—.—a?;,

-}— i) is called hypoelliptic in x if, for an open set Q, the com-

oy
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q
ponents of every solution Ue€ Il 95 of the equation (2) are regular
. 1
in x.
1 9

Theorem 1. For a system of differential operators P(i ErR
1 ©°

TW) to be hypoelliptic in x, it is mecessary and sufficient that
the variety V attached to P(X, Y) satisfies the following condition

(PH) When (&, 9)e V. RE is bounded if JIE and |y| are
bounded.”

Proof. Necessity of (PH). LetAxB<Q be the product of
open cubes in R™ and R”. We denote by €U the space of all the
solutions U(x, y) of the equation (2) that are definined and con-
tinuous in Q with the topology of uniform convergence on every
compact set in . Since this topology is stronger than the induced

q
topology from 1I 95, U becomes a Fréchet space. Now let us
1

consider, for any ¢ € 9p, the mapping
UG = | Ulx, 9)g5)dy

q
which carries U into 1I &, according to the hypothesis of hy-
1
poellipticity in x. Since the mapping is clearly a closed linear
q
mapping and since U and 11 £, are Fréchet spaces, it must be
1

continuous by the closed graph theorem ([2], p. 37). Hence, for
any compact set K< A, there exists a compact set LZQ and a
constant ¢(p) such that we have

985 | < ¢(p) 3) max | u,(x, 3)|
xk s=1 L

(k=1,2,,m; j=1,2,-,q)
for all Ue U, with

U=<u.1 \  and G=<gl).
b .

Now let (§, 7)€V and let J§ and |5| be bounded. Assume

(6) max

2) % stands for “the real part of”, J for “the imaginary part of ”.
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specifically that
(7) IJEI<M and [7|<M.

We are to show that RE is bounded. Since the rank of P(§, ») is
less than ¢, there exist solutions (5) of the equation (2) (see §1)
with suitable constante C=C(¢, )

)

(8) max|c;| =1

Here we can suppose that

where the suffix j for which ¢;=1 holds might depend on (§, )€ V.
Let us apply the inequality (6) to these solutions. For these U,

Gx) = [ rPr . Cugly)dy

= e <" P(n)C.
Therefore

gi(x) = e~ P(n)c;(§, n)
and (6) becomes

(9) (max e =< 30) [ H(n) | €] |¢,(&, )|
<clg) 37 le(E, m) (max e~ 30—, 3n).

Since ¢(%) is a non zero entire function (if @=+0) defined by

#n) = | e p9)dy,
we can suppose (by a suitable modification if necessary)® that

10) [P =d if  [9|<M

with a positive constant d. Now choose a suffix j=j(, ») such
that |c;| =1, and add the the inequalities (9) with £ running from
1 to m. Then, by (7), (8) and (10), we get

3) This modification is easily done by some linear transformation of coordinates
and by multiplying a certain exponential factor.
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(11) (max ¢~¥1<) 3% |£,|

< % () (m?x MUY DY |

From this inequality we can easily see that R is bounded since
3¢ is bounded.

Sufficiency of (PH). We know already that (PH) is a sufficient
condition for the hypoellipticity in x in the case of a single
operator. (see [4], 3, Theorem 1). But since the equation (3) holds
for any @ €a, for the proof, it is enough to prove the following

Lemma 1. If (PH) holds for V, there exists a polynomial
Qea such that (PH) holds for the hypersurface Vo defined by
QX, Y)=0.

Let us prove this lemma. Consider first the homomorphism
C[X, Y]—C[X, Y, Z] which carries each polynomial F(X, Y) into
F(X, Y, Z) by the following fomula

FX, Y, Z) = F(X lzzﬂ)
where Z is a new variable: Z=(Z,,:--,Z,). And let @ be the
ideal of C[X, Y, Z] generated by the totality of images of poly-
nomials in a. Consider the variety V in €™ "**" defined by @ and
take its intersection by the linear variety defined by iZ+ Y =0.
We denote by V this intersection. Then it is clear that V is of
the form

12) V= {& nin)lE eV},

Let @ be the ideal determined by V. Now, according to Lech’s
theorem (see [7]), we can find a polynomial L€ a such that

(13) d(r, V) =c-d(r, V)

holds for any real/ point r of C™+"*" with a positive constant ¢
independent of 7. (Generally, for a point p and for a S, d(p, S)
denotes the distance between p and S, i.e. d(p, S)= pllel;fl =701

Now put
RX,Y)=L(X,Y,:Y).
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From (12) it is clear that R vanishes on the variety V. Therefore,
there exists a positive integer s such that @ =R° belongs to the
ideal a. (see [13] p. 6). Let us prove that this @Q(X, Y) satisfies
the requirement of the lemma, i.e.

(14) Vo = & nILE 9, in) = 0}
satisfies the condition (PH).

Let (£, ») be in V, and assume that J& and |7| are bounded.
Specifically, we put

(15) IJEI<M  and  [9|<M.

We are to show that RE is bounded.

Let us apply the inequality (13) to the real points r=(R&, Ry, —I7).
Since V is a closed set, d(7, 17) is attained by a point (&, %/, i)
in V. Hence we have that

(16) 2MZ=>|JE| + 7]
>d((RE, Ry, —Jn), &, n, in))
>d(r, V) =cd(r, V)
= c-d(RE, Ry, —Jn), (&, v/, in))
= ¢ {|RE-NRE |+ [JE°+ | Ry — Ry’ |+ |9 |*
+ =017+ | Ry’ |72

Thus, in particular, we have that
) 981<2, 101 <P ana 10 1<EL

From these inequalities, we see that R is bounded since (&, 7’)
is in V which satisfies the condition (PH). But since from (16)
we see that

lmf—%éwgz—c"i,

RE should be bounded. This completes the proof.

Theorem 2. (Inhomogeneous equation). Let P(li , 1 9 >
i Ox 1 Oy

be a system of differential operators which is hypoelliptic in x. And

let F be a vector whose components are distributions defined and
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regular in x in an open set Q of R™". Then, all the solutions

Ue 11 D, of the equation
1

are regular in x.

Proof. Let ¥, be the space of all the distributions in Q
which are regular in x. Since Yy is closed under the operations
of partial differentiations as is easily seen, (3’) holds for any Q€ a.
By Lemma 1, we can take as § a polynomial which is hypoelliptic
in x. Since the theorem is true when P(X, Y) is a single poly-
nomial (see [4] 3., Theorem 1, Remark 2.), we see from (3') that
the theorem is true for general systems also.

§ 4. Partially elliptic systems.

Definition 3. Let Q be an open set in R”X R” and f(x, y)€
9% be a distribution. We say that f is analytic in x if, for any
pair of open sets AT R™, BT R", AXxBZQ, and for any p€ 9Dy
the distribution in x

g(x) = | £tx, ) p(9)dy

is an analytic function.

Definition 4. A system of differential operators P(%%,
%%) is called elliptic in x if, for an open set QT R”X R",
every solution U¢€ I 94 of the equation (2) is analytic in x.

1

Theorem 3. For a system of differential operators P<%% ,
%%) to be elliptic in x, it is necessary and sufficient that the

variety V attached to the matrix P(X, Y) satisfies the following
condition :

(PE) There exists a positive constant M such that the inequality
IREI<MQA+ |JE+ (1)
holds when (£, n)€ V.
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Proof. Necessity of (PE). The necessity of the condition
can be proved quite analoguously to in the case of a single oper-
ator. We need only replace single exponential solutions by the
solution vectors (5) of the equation (2) as we did in the proof of
Theorem 1. (See the proof of [4] 4., Theorem 2.)

Sufficiency of (PE). Since we know already that (PE) is a
sufficient condition for a single operator to be elliptic in x and
since the equation (3) holds for any @ €a, for the proof, it is
enough to prove the following

Lemma 2. If (PE) holds for V, there exists a polynomial
Q€a such that (PE) holds for the hypersurface Vo defined by
QX, Y)=0.

Let us prove the lemma. According to Lech’s theorem [7],
we can find a polynomial @ in a such that

(18) d(r, Vo)=c+d(r, V)

holds for any real point » of C™*" with a positive constant ¢
independent of ». Let us show that this polynomial @ satisfies
the requirement of the lemma. We are to show that there exists
a constant A such that

19) IRE|<AQ+ [IEN+ [371)

holds when (&, »)e V,. Let (§ ) be in V, and apply the inequa-
lity (18) to the real points »=(RE Ry). Since V is a closed set,
d(r, V) is attained by a point (¢, ) in V. Hence we have that

(20) |JEN+ [ I | = d((RE, Ra), (&, 7))
2(1(7’, VQ)ZC'd(?’, V)
== C’d((mgy m"?)v (é:/r "]/))
=c{|RE—RE |2+ |JE "+ |Ryp— Ry |2+ |y’ | 2.
From this, we have in particular that, with new constants A4, and
A,,
(21) |RE-RET<AA+ [JEN+ 1J71)

@r) A+ I+ | NS AL+ [IE+ 1))
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But since V satisfies the condition (PE), we have that

(22) |RE|<MA+ |IE|+ (')
From (21), (21’) and (22), we have that
(23) IREN<AQ+ | FE|+ [J71)

with A=A,+MA,. This completes the proof. ‘

ECch Li)
i ox’ 1 Oy
be a system of differential operators which is elliptic in x. And
let F be a vector whose components arve distributions defined and
analytic in x in an open set Q of R™". Then all the solutions of
the equation

Theorem 4. (Inhomogeneous equation). Let P(

are analytic in x.

Proof. Let 4 be the space of all the distributions in O
which are analytic in x. Since H, is closed under the operations
of partial differentiations as is easily seen, (3') holds for any @€ a.
By Lemma 2, we can take as @ a polynomial which is elliptic in
x. Since the theorem is true when P(X, Y) is a single polynomial
(see [4] 4. Remark after the proof of Theorem 2), we see from
(%) that the theorem is true for general systems also.

§5. Conditionally elliptic systems.

Definition 5. A system of differential operators P(% 9

ox’
%%) is called conditionally elliptic in x if, for an open set Q,

q
the components of every solution U€ll 9, of the equation (2)
1

that are analytic in y are analytic in x and y.

Theorem 5. For a system of differential operators P(L 9

i ox’
_1_88_y> to be conditionally elliptic in x, it is necessary and sufficient

that the wvariety V attached to P(X,Y) satisfies the following
condition :
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(CE) There exists a positive constant M such that the inequality
|RE|<MA+ [JE+ [9])
hold when (€, n)€ V.

Proof. Though we may proceed as in the proof of Theorem
1, we employ here a different method which does not use Lech’s
theorem.

First, we embed canonically the affine space C”*" in the
complex projective space P,.,(C) of m+mn dimensions. A point

Of Cm+” With coordinates (51’ ces ’é':m’ Ny, o ,97”) iS identiﬁed With
the point of P,,.,(C) with homogeneous coordinates (1, &, ,§,,
7+, 7). And let us denotes by a* the homogeneous ideal

constructed canonically from a (see [9]), and let V* be the pro-
jective variety defined by a*. A point in V* but not in V is
called a point at infinity of V.

We notice that the following lemma holds.

Lemma 3. The condition (CE) on a variety V can be restated
as follows :

(CE’") The variety V has no point at infinity with homogeneous
coordinates of the form (0, &,---,&,, 0, ,0) with &=
¢&,, -+, &,) being a non-vanishing real vector.

First let us prove that (CE) implies (CE’). Suppose the con-
trary and assume that V has a real point at infinity of the form
(0, & 0). Then there exists a curve on V depending on a real
parameter s with |s| large

(24) g(s) = s+(& 0)+(&(s), w(s)eV

with condition : ELIE% (&'(s), 7(s))=0 (see [8]. Theorem 1). Sub-

stituting (24) into the inequality (CE), we get
|sE+RE (S IMA+ [IJE )]+ [7(s)]).

Dividing by s and letting s— oo, we get |§| =0. This contradicts
the fact that £ is a non vanishing vector.
Secondly, let us prove that (CE’) implies (CE). Since a* is a
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homogeneous ideal, there exists a basis of a* consisting of homo-
geneous polynomials F., -, F,. Let d; be the degree of F; and d
be the least common multiple of d,,-:-,d,. And put G;=F;%.

Let us consider the polynomial defined by L= iGj(_}’,-, where G,
=1

is the polynomial with coefficients which are complex conjugates
of those of G;. It is clear that the real points at infinity of the
hyperplane defined by L=0 are just those of V*. (H is well-
defined since L is homogeneous.) Now we put

(25) QX Y)=L(1,X, 7).

It is clear, by its construction, that the (affine) hypersurface Vy
defined by @ =0 satisfies the condition (CE’) and that @ €a. Since
Ve contains V, it is enough, for the proof of Lemma 3, to prove
the following

Lemma 4. Vg satisfies the condition (CE). ‘

Let d be the degree of the polynomial @ and let @Q=Q,+
Q,_,+ - +Q, be the decomposition of € into homogeneous parts,
the degrees being indicated by the subscripts. Since @ satisfies
the condition (CE’), @,(&, 0)==0 for any non-vanishing real &.
Therefore Q4 ») has a positive lower bound in some complex
neighbourhood of the set defined by the conditions that |§| =1
(§: real), =0. Thus there exists come positive & and ¢ such that
we have

|Qu(0)|=c if [¢l=1 and [JE|+|7|<EIRE|
where £=(§, ). Since @, is homogeneous this gives
Qi) =l if  [JE|+ 9| EIRE|.

Estimating the lower order terms in an obvious fashion we get
with another constant ¢,

QO [ =l &= (18197 + -+ +1)
if JE+ [ <EIREN.

Hence Q(¢)=1-0 if |&|>c, (c, being a large constant) and if |JE&|+
|7|<E|ME|. Thus Q& 7)==0 if [REI>MA+ |IE|+ |»|) with
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M= max (7, ¢,). Or, |REIMA+ |JE|+ 7)) if (&, )€ Vo. This
completes the proof of Lemma 4.
Now let us return to the proof of the theorem.

Sufficiency of (CE). Since we know already that (CE) is a
sufficient condition for a single operator to be conditionally elliptic
in x (see [4] 5. Theorem 1) and since the equation (3) holds for
any Q€a, it is enough, for the proof, to notice that the poly-
nomial & € a defined in (25) has the property that the hypersurface
defined by Q(X, Y)=0 satisfies the condition (CE) (see Lemma 4).

Necessity of (CE). Although we may proceed as in [4] only
replacing single exponential solutions by the solution vectors (5)
of the equation (2), let us utilize here the null solutions for

general systems of differential operators constructed in [8].

Let P(l—a— —l——a~> be a system of differential operators

i ox’ 1 9
which is conditionally eﬁiptic in x, and suppose that the variety V
attached to P(X, Y) doesn’t satisfy the condition (CE). Since by
Lemma 3, (CE) is equivalent to (CE’), there exists a point at
infinity of V of the form (0, § 0) with & a non-vanishing real
vector. Therefore we have a non zero C” solution

Ux, y) = ( u,(,%, ¥) )
u (%, )

of the equation (2) of the form (see [8]).

>

(26) u%, ) = S‘.TM Culs)er <= stk g T (17 g
(k=1,2-,9),

where the integration is taken in the complex s-plane, with con-

ditions :

(i) For all &, |Cu(s) I

(ii) There exists a positive constant p such that

27) 0<p<p'<1l and gigg%f_) = Iim’l(_f) =0.

spo0 &

(iii) Ux,y) =0 if <x,& =28+ - +2,£,>0.
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Because of (27), the integral (26) converges uniformly even
when we allow the variable y to take any complex values. There-
fore u,(x, ¥) is analytic in »* for each fixed x. And it is easy to
show, by the Cauchy integral, that wu,(x, ¥) is analytic in y in the
sense of Definition 3. But since U(x, ) is non-trivial and vanishes
in an open half space according to (iii), there existe some %k for
which #,(x, ¥) is not analytic in both variables x and y. This con-
tradicts the assumption that P<l.i, —1——§—
i1 ox 1t 9y
elliptic in x. This completes the proof of the theorem.

) is conditionally

REMARKS. (1) An arbitrary basis of a cannot ajways play the
role played by that of the homogeneous ideal a* (see [9]).

(2) The Lech’s polynomial [4] also can play the same role
as that of @ defined in (25) (see [8] Corollary to Theorem 2).
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