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On decomposable mappings of manifolds

By

Yoshihiro SAITO

(Received April 19, 1962)

In the present paper w e study som e relations between the
singularities o f  m appings and the decomposable mappings of
manifolds. Throughout this paper by a smooth mapping (function)
we understand a C- -mapping (C - -function) ; M " denotes an orien-
table closend n-dimensional C - -manifold, and I?" the n-dimensional
Euclidean space.

We shall now recall briefly the definitions of the singularities
S r ( f ) ,  S r / ( f ) ,  • • •  of a  mapping f :  M " - R ,  n p ,  [3 ] , [5 ] .

Let S r ( f )  denote the set of points of M " at which f  has rank
p - r .  Suppose that S r ( f )  is an m-dimensional submanifold of M".
Then S r ,,./(f ) is  d e f in ed  to  b e  the subset o f S r (f )  consisting of
points at which the mapping f  restridted on S r ( f )  has rank m - r'.
B y the sim ilar way we define the singularities S r  , r i  , r " (  f ) .

W e shall give a condition under which S r ( f )  is  a submanifold
of M " .  Let G (f )  be the graph of f ,  and associate to each point
p  o f M " the tangent space of G ( f )  a t  ( p ,  f ( p ) ) .  Then we have
a  mapping, denoted by d i f ,  o f M " to  B ,, the space of n-planes
in the tangent spaces o f M" X R .

B , is  a fibre bundle over M "x RP whose fibre is the Grassmann
manifold G „ the space o f n-planes in R 'n - P. Denote B 1 =  F r (q)

where F ( q ) = ( p - r , ••• , p - r ,  p , ,p )  i s  the Schubert variety  in
the fibre G (q ) over a point q  of M " x l?" .  Then B , is a submanifold
o f Bo . S in ce  w e  have S r ( f ) = d i r l ( B , ) ,  i t  fo l lo w s  th a t  if the
mapping d i f  is  t-regu lar (transverse regular) on B , then S r ( f )  is
a regular submanifold of M".

Now we suppose th a t d i f  is  t-regu lar on B , .  Let m  be the
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dimension of Sr(f ), and let H (q) denote the set of m-planes which
are contained in  n-p lanes regarded as points of the F r (q). Then
H = V  H (q) is a fibre bundle over B , and its fibre is Gm. DefinegEB,
d , f  to be a  mapping such that d , f ( p )  is  the tangent space of
S r( f )  at p .  For an in tger r' < p — r and a point q' E B , projected
to q, we denote by F  , (q/) the set of m -planes V"' (q') V" (q) which
are projected to RP with rank p— r — r'. Denote B 2 = V  F ',./(q') where

 q ,

q' E 131 . Then B ,  is  a  subm anifold of H  and S r / ( f ) =  d2f - (B).
Thus it follows that i f  d2 f  is  t-reg u la r  on B y  then S r  ,r / ( f )  is a
submanifold of S r ( f ) .  Furthermore we can obtain the similar con-
ditions under which the singularities o f  a  mapping a re  regular
subm anifo lds. A  mapping satisfying these conditions is called
generic mapping.

Let p :  R " - E3 R "  denote the projection, and let f  be a mapping
of M "  to  R " .  Then i f  there exists an immersion 1 : M "  4 2 " +'
satisfying f =  pi we say that f  is decomposable [1].

Given mappings f ,  f  : M "  R", if  th e  r - th  partial derivatives
of f  and f  are sufficiently close for all r < s ,  we say that f  is a
good s-approxim ation of f .

Our main results in  this paper are stated as follows.

Theorem 3 .  L et M 3 b e  an orientable closed smooth 3-manifold
and f  be a smooth mapping of 1113 t o  P .  Suppose that f  is  a  generic
debomposable m apping. T hen w e m ay  take a  good 0-approximation
f  of  f  so that S,,,Cf)= the empty set 0.

Theorem 4 .  L et M n be an orientable closed smooth n-manifold
and f  be a generic m apping of  M n to R n . Suppose that the singu-
larities of  f  satisf y  the following conditions.

S i ( f )  =  0  i  >  2, S , (  f ) 0 .

Then the mapping f  is  a  decomposable mapping.

1. We shall now consider the case for n= p = 3 . In this case
it is well-known [5 ]  that S i ( f )  0  for any generic mapping f  and

2. Hence we may consider only S 1( f ) , S 1 1( f )  and S ,,,,,(f). Given
a  point q E M 3 ,  we may take (local) coordinatate systems (x, y, z)
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a t q  and (X , Y, Z )  at f (q )  in which f  is represented by X = x , Y  =y
Z =h(x , y, z). Then the tangent space of the graph G (f )  is repre-
sented as follows

ah x , ah ah— o  , Y'—y/ = 0 and Z'— a x a y   y
, — az z

, — 0 ( 1 )

where (x ', y', z ') , (X ', Y', Z ')  are the bases of the tangent spaces.
Hence a---h = o if and only if the rank of the projection of theaz

tangent space of G (f ) to R 3 is 2. Thus the set S 1( f )  is represented
b y  - = 0 .  In th is case the normal coordinate o f F , is given byaz
211- - . This shows th at a condition for the t-regularity o f d i f  on
az

a2h a2h B , is that at least one of the derivatives  and  isaxaz' ayaz az'
not zero.

Next we shall consider S , , , ( f ) .  The tangent space of Si ( f )  is
represented by the equation (1) and

, a2h ,  a2hx + y  + z 0 ( 2 )axaz ayaz az2

a h  a2hHence — —0 if  and only if the rank of the projection ofa z  az 2

the tangent space o f S i (f )  to le  is 1. Therefore the set S 11 ( f )  is
represented by 

ah
 —

a2h 
— 0. In this case, the normal coordinate ofaz  az '

2h
F  H s g iv e n b y  

a
-. L et (z ', s') denote a basis of the tangent space

az 2

o f S , ( f ) .  Then a condition for the t-regularity o f d2f  on B2 is
a3h 3hthat at least one of the derivatives and a   is  n o t zero.asaz' az'

The tangent space of S 11 ( f )  is represented by the equations
(1), (2) and

a3h a3h a3hx '+ -  y' + 
 a z '

z' — 0 .
ax az 2  a y a e  

Note that S 1 1 1 ( f )  is  the set of points q E S ,,,( f )  such that the
tangent line of Sio (f ) at q is projected to R 3 with rank 0 .  Therefore
the set )  is represented by the following equations
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ah a 2 h
az a z '  a z '— — — 0

( 3 )a2h a 3 h a2h a 3 h
axaz  ayaz 2  ay az  a xaz 2

Since  i ss  a normal coordinate of FÇ' , the mapping d ,f  isaz'
34ht-regular on  F I' if and  only if az

2 .  The types of singularities. In  th is section w e suppose
that mapping f  o f R ' to R ' is generic and it m aps the origin 0
to  the origin O. T h e  singularities o f  f  are divided into three
types S „ S 1 ,1 and

Case 1 (0 is  a point of S,(f)— S,,,(f)) . We may take coordinate
systems in which f  is represented by

X  = x , Y  = y and Z  = h(x , y , z ).

Since 0  is a point of S i ( f )  the Taylor expansion of h  does not
contain the constant term and terms of the first order. Therefore
we have

Z = a(x, y)+a13xz+a23Y z+a33z 2 +R , ord y 3 1 )  .
Set

x ' =  x , y' = y, z ' = z , X ' = X , Y ' = Y  and Z' = Z— a(X , Y ).

This gives, dropping primes,

X  = x , Y  = y, Z = a„xz + a„yz + a„z 2  + R

Since f  is generic, at least one of a„, a„ and a„ is not zero.
Further the origin is not the point of 5 1 ,1 ( f ) ,  therefore the tangent
space of S i ( f )  a t  0  i s  transversal to  the null space N(0) of f " .
s , ( f )  is now represented by the following equation

a1 3 x +a„y +2a 3 3 z +R z  = 0"

1) orch R  denotes the order o f R  with respect to the variable z.
2) Ar(p) denotes the null space of , f, the linear subspace of the tangent space which

is mapped to zero vector by the differential of f.
3 )  R„ denotes the first partial derivative o f R  with respect to z.
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and hence the equation of the tangent p lane of S i ( f )  a t  0  is
a1 3 x +a 2 3 v+2a 3 3 z = 0 .  Since this plane does not contain the z-axis,
we have ; 3 + 0 .  I f  a „+ 0  or a2 3 + 0  then we may represent f  in
suitable coordinates as follows :

X  = x ,  Y = y ,  Z = x z +a„z 2 +R , ord zR >  3 .

Set
x 'x  =  X ' , y  =  y ',  z  = z ' ,  X  = X' ,  Y =  Y'2a3, 

± (1 —2a„ .xv2 .and Z  = a„Z '
4ai,

Then we have, dropping primes,

X =  x ,  Y = y ,  Z = z 2  + R, o r d R >  3 .

Case 2  (0  is  a point of S,,,(f)—S,,,, i ( f ) ) .  In th is case the ex-
pansion of h  does not contain the term z 2 ,  because 0  belongs to
S i ,,(f ) .  Hence f  is represented in  a  new coordinates as follows :

X  =  x  , Y  =  y , Z  =  y z +R , ord 3 .

Since the expansion of h contains y z , we may omit in the ex-
pansion of R the terms which contain z  with at most order 1 .  Then
the formulas for X, Y and Z  becoms as follows in a new coordinate
systems :

X = x ,  Y = y ,  Z = y z + a , 3 3 xz 2 +a 2 3 3 yz 2 +a 3 3 3 z 3 +R , o r d R >  4 .

Set z '=z +a 2 3 3 z 2 then we have, z =z '+p (z /)  for small z ' where
ord 2 .  Therefore we have, dropping primes,

X =x , Y =y ,  Z = y z +a ,„x e +a„,z 3 +R , o rd R > _ 4 .

Then the equation of S 1 ,1 ( f )  are represented as follows :

y +2a„,xz+ 3a3 3 3 z 2 +R z  = O,
2a1 3 3 x +6a 3 3 3 z + Rz z  = O.

Hence the tangent line of S 1 1 ( f )  a t 0  is represented by the
following equations :

y  =  0 ,  a 1 3 3 x +3a 3 3 3 z  = 0 .
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Since 0  S,,,, i ( f ) ,  the tangent line of S 1 1( f )  a t  0  does not
coincide with the z-axis. Hence we have (13 3 3 +0.

Set

X  =-  y ' — ,
—  a33, z ' = —  4/ a„ z ,V ah a ' 

XYX ' = , Y '—    Z ' = Z  ,
4/a1,3— „a ,

then we have, dropping primes,

X =x , Y =y , Z = y z +a,„x e — e +R , ordR 4.

If a„ 3 0 ,  we set z '= z+ a
1 3

3 x .  Then we have, dropping primes,
3

X  =  x , Y = y , Z  = yz—z 3 +R , ord R > 4 .

Case (0 is  a point of  S i ,,,,(f ) )  By the same reason as in case
2, the expansion of h  becomes

Z  = x z +a 2 3 3 yz 2 +a 3 3 3 z 3 +R , ord R > 4.

Since 0  i s  a point of 
S i , i , i ( f ) ,  w e  have, a 3 3 3 =  0 . Since f  is

generic, this implies a 2 3 , O.
Set y '=a 3 3 3 y  and Y '=a 2 3 3 Y, then we have, dropping primes,

X =  x ,  Y  = y , Z  = x z +y e+R , ordR 4.

The last equation contains x z  and y e , and so we may omit
in R the terms of fourth order which contain z  with at most order 2.

Then we have

Z  = x z +y ed-ax e+by e+ce+R , ord R > 5.

Set z i=z +ae , then we have z= z' + rp(z') for small z ', where
ord (/) 3. Th is  coordinate transformation g iv e s  us, dropping
primes,

Z  = xz+yed-byz 3 +c e +R , ord R  5 .

Now the set S i (f )  and S,,,(f) are represented by the following
equations :
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S i(f ): F(x , y, z ) = x+2yz+3byz 3 +4 ce+R z = 0;
Si,i(f ) : F(x, y, z ) = 0,

G(x, y, z) = 2y +6byz +12cz 2 +R z z  = 0.

Since f  is generic, we have c +0.
Set

—  x y '—  —6 — 6 
y ,  z

,
C c i z ,,   

—6X ' — v  —76_1  X  Y ' = Y  , Z ' = — 6Z ,
1cl

where 8 =Sgn c. Then we have, dropping primes,

X = x , Y  = y , Z  = x z +y z 2 +byz 3 —z4 +R , ordR> 5 .

Set z '= z + y  then we have, dropping primes,
4

X = x ,  Y  = y , Z =x z +y e— z 4 +R , ordR> 5 .

3 .  Deformation of the singularities. We shall consider in
this section deformations o f th e  singularities. First o f  all we
c3nsider the elimination of the cusp points of generic mapping"
of R 2 to  R 2.

Lemma 1. Let f  be a mapping o f R 2 to  R 2 represented by

X  = x  , Y =p(x )y — y 3 ,

w h e re  p (± a)=0 , p (x )<0  f o r  lxi < a  and —
d p

dx ± a
I O. Then the

   

singularities S , ( f )  a re  two points (± a, 0) which are the cusp points
off; W e may takes, in a neighborhood U of  the C={ (x , 0 ); x 1 < a },
a good 0-approximation f  of f  such that S 1,1(7 )=0 .

Proo f. Put 6 '=  2  M a x  p (x ) . We may take smooth functions0< 1=1 < a + e
v (x )  and n(x) which have the following properties :

0, v (x ) -= 0 for Ix a+6 , v (x )> —  p(x ), (4 )
(x) 0 fo r I x > a+6 , 27(x) > 0 fo r I x l<  a+8 ,

v (x )6 ' 2

T i ( x )  
< P(x)•97(x) <  v (x ) for a <1 x l< a+6 . ( 5 )

4 )  In [4 ]  the generic mapping is refered to as the excellent mapping.
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Put
(x, y) = —9(x)y 3 +1(x)y,

and take a  smooth function gx, y) with the following properties ;

9 JP(x)13(x, y) = a(x, y ) for Ii < JAT) n(x) '

(x, y) = 0 for ly I iVi
v
v((x

x j,13 

/9(x, y) and r y  are monotone for 1
9
.0

 ,V ,7
1)(

( xl yl ,V , 71 x/. •

Let f ' : R 2 R 2 b e  a  mapping represented by

X = x, Y = p(x)y—y3 +13(x, y) .
Then f '  is  a  good 0-approximation of f  in the neighborhood

of C .  The singularity S1(f 1) is represented by

F(x, y) p ( x ) - 3 y 2 +3-P- = 0
ay

In the consideration of Si ,i (f ') we may suppose that 'x i So +&.

Case 1 ) : a<ix i<a+6 . The functions (p(x)-3y 2) a n d  - are
3y

monotone for 0 ly  I <A/3:7((xx)
) , and F(x, 0)=p(0)+ v(0)>0. On the

other hand, it follows from (3) that — and (p(x) —3y2) are negative
ay

P(x)I  P(3 )for ly x  )  Hence F(x, y)=0 has only tow solu-Ai ontx)
tions for a fixed x.

, I  v(x) Case 2) : Ix I a . In this case, if ly 1<i/ 3,i(x) then (p(x)— 31)

and —

3 , 8  

are negative.
3y

We have

F(x, y) = —3(1+ v(x))1+ (p(x)+ v(x)) for I i 4 3')97( (xx)
) ,

and 1 +n(x)>0 ane p(x )+(x )>O . Hence F(x, y )  has only two
solutions in U for i x i < a+ 6 .  From these results we conclude that
S1 1 (r )  is empty.
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Given a  generic mapping f  of 1113 t o  l e  and a point p  of
of S,,,,,(f), we shall define the index at p  as follows.

Definition o f  th e  in d e x . Take a  fixed orientation of M 3 , and
let p  be a point of ), Then f  is represented in suitable coordi-
nate systems at p  and at f ( p )  as follows :

X = x ,  Y = y ,  Z= xz + yzz — z 4 + R, ordR>_5.

Let x(p), y (p) and z (p) be the tangent vectors of x -, y -  and
z-axis at p  whose orientations are given  by the direction of
coordinate a x e s . Consider th e  oriented frame {x(p), y(p), z(p)}.
Then we define that the index of p is  +1  o r — 1  according as the
orientation of the frame coincide with that of A P or not.

Lemma 2. The above definition o f  th e  in d e x  does not depend
on the choice o f  coordinate systems.

P ro o f. Take two pairs of coordinate systems {(x, y, z ), (X,
Y, Z ) }  and {(c, y, 2), ,  '1.") ; 2 ) } .  We may suppose that f  is repre-
sented in  these coordinate systems as follows :

X = x ,  Y = y ,  Z = x z + z4+R, o rd R > 5 ,
X =  2, = y  , -2 = x 2+y -22- -2- 4+R , ord R > 5.

Let
X = q)(x, y , z) , y = *(x , y, z) , 2 = p(x, y , z) ,

= (I)(X , Y, Z ) , = ■11(X, Y, Z) , 2 = P ( X , Y, Z).

Then the following relations hold :

(1)(x, y , xz+ yz 2 — z4 +R ) = p(x , y , z) ( 6 )
‘P(x, y, xz+ —  z 4 +R) = *(x , y , z ) ( 7 )
P(x, y , xz+ yz 2 — z4 +R ) =

P(x, Y, 4-13 (x, y ,  4 — *(x, .Y , 4.(P(x, y ,  4 ) 2

— (P(x, .11, 4) 4 + P (§0 , *, P) ( 8 )

Put qiiik I 0 @xjayiaz
k p(0, 0, 0) and J = x  +2yz -4z 3 + R001.

By applying a t o  ( 6 )  and (7), it follows that Pooi o = Pooi 0 = 0az
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for i < 3 .  Since ((A *, p )  is a coordinate transformation on R 3 we
have

    

P001 1 0 0 ( 9 )

By applying to

   

( 8 ) ,  we have

 

aya z 0

    

(q)010 I 0)-(p00 1= poio l

Furthermore applying of a'
0  =  0 ,  *0'0

24
and =

0 az4

I o .

to ( 8 )  imply
oa y a z 2

P00,10 = (*01010) • (P00110) 2

and
(10)

P001  I 0 (13001 I 0 ) 4 • (11)

From ( 9 ) ,  ( 1 0 )  and ( 1 1 )  we have

O10 11>0. (12)

2a
Applying of to ( 8 )  impliesaxaz

P00110 = (P10010) • (P00110) •

Hence we have

((Pm° I o) • (Paolo) — (P00110) 4 >  0  •

Consequently the J a c o b ia n  of the transformation  (q), J r ,1

positive at p.
p) is

Definition of  the positive and negative sides at a point of
Let p E S1 1 1 ( f )  be a point, and consider the tangent plane

Ts ,( f ) ( p )  of S 1 ( f )  at p  and the null space N (p) at p .  Then the side
in  Ts i (  f ) ( p )  with respect to N (p) which contains the tangent vector
y(p) of the y-axis is called positive. The another side is called
negative.

The inequality ( 1 2 )  justifies this definition.
Let p  be a point of S 1 ,1 (f)— S i ,,, i ( f ) .  Then, in a neighborhood

of p ,  the mapping f  is represented in suitable coordinate systems
as follows :

X =  x ,  Y =  y ,Z =  y z — e d -R ,  o r d R >  4  .
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Lem m a 3 .  L et T s i ( f ) (p ) be the tangent plane of  S i ( f )  at p .
T he tangent vector y (p) o f  th e  y -ax is  is  transversal to  T s i ( f ) (p).
For any  choice o f  coordinate system s, vestoy  y(p) dirests the same
side w ith respect to  T s i ( f ) (p).

P r o o f .  Suppose that f  is represented in  another coordinate
systems as follows :

x,17- = y , = y2-2 3 +1?, ord 4.

Then the similar method in the last lemma proves

ay
ax

ay= o , —
0 ay o

=  o.

      

Definition of  the positiv e and negative sides at a point of  S 1 ,1 .
Let p E S 1 1 ( f )  be point, and consider the tangent space Tm 3(P)

of M 3 at p  and the tangent plane T s i ( f ) (p) of S 1 ( f )  at p .  Then
the side in  Tm 3(p) with respect to  Ts i ( f ) (p )  which contains the
tangent vector y (p) of the y-axis is called positive. The another
side is called negative.

This definition is justified by Lemma 3.

Theorem  1 .  L e t f  be a  generic mapping of  M ° to R 3 ,  and let
p and q  be points of  S ,,,,,(f ). Suppose that the following conditions:

1) p and  q  are  in  the same connected component of  S ,(f ).
2) T here is a  sm ooth sim ple curv e C  in  S i ( f )  w hich starts

f rom  p into the negative side, ends at q f rom  the negative side and
does not touch any  other singularities S ,,,(f ).

3) The indices o f  p and q  are different.
Then we may take, in a tubular neighborhood U(C) o f  C , a good

2-approx im ation f  of  f  such that S ,,,,,(f- )r\U(C)= 0.
Before proving this theorem we prepare the following lemmas.

Lemma 4. Under the same conditions as in the last theorem,
we may choose a coordinate system (x, y , z ) in U(C) and a parameter
system (X , Y , Z ) in f (U (C )) in w hich C is represented as the set
{(0 , y, O); Y i < 1 } , an d  f  is represented as follows:

= x  , Y  = ,y , Z  = xz  + p(y)z 2 — z4 + R , ordz, R  5
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with smooth function p(y ) satisfying p (± 1 )=0 , p (y )<0  f o r !y !<1 ,

+—
d

d

y

p

(- 1 ) < 0  and
d
—

p
( 1 ) > 0 .

dy

P r o o f . Take a  Riemannian metric in  M 3 ,  and  consider a
smooth open curve C' C .  Let 6  be a  sufficient small positive
number. Parametrize C' by ( -1 — 6, 1+6) and C by [ — I, 1]. T ak e
a smooth vector field {V p }  on C ' such that each vector Vp  is trans-
versal to the tangent vector of C' and the null space N (p) at p .  For
each point p c  C ', consider the geodesic g p  whose tangent vector
a t  p  i s  V .  L e t  Dp  b e  the set of points q  of g p  such that the
length of the geodesic between p  and q  is less than  8 , and put
D = \ I  D .  T h en , fo r sufficient small 6, D is an open 2-disk which

A EC'

contains C , and the mapping fi D  is  a local homeomorphism. Let
L f ( a )  denote the line segment which is normal to f ( D )  a t f (q).
Then it follows that M q = { f - i(L f ,,,) ; qE D}  is  a  fam ily of curves
and that the set of points r G M  (qE D) is a  tubular neighborhood
of C In  virtue of the above definitions of C ',D p , L f ( , ) and
M q ,  w e m ay take the following coordinate system (x, y, z )  in  a
small tubular neighborhood U(C) of C  and the following parameter
system (X , Y , Z ) in f (U (C )) . Let r be a point of U(C), then r is
a point of M g , q E D , and q  is  a  po in t o f g p ,  p c  C '.  We take
(x, y, z )  as coordinates of r such that

i) x is  the length in gp  from p  to q.
ii) y  is  the parameter on C'.

iii) z  is  the length in M q  from q  to r.
For the set f (U(C)), we may define (X, Y , Z )  as follows : Let

f  ( r)  be a point of f  (U(C)) and (x, y, z )  be the coordinate of r.
We set

X = x , Y — y  and Z— the length in  L f ( a )  from f  (q) to f (r) .

Then the mapping f  is represented in the neighborhood U(C)
as follows :

X— x , Y — y , Z = h (x ,y ,z )  .

Expanding h  with respect to z , we have
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Z = pi(x, y)zi+R, ordz R > 5 .

In  virtue o f the definition of the parameters z , Z , we have
Z =0  if z = 0. H en ce  w e  have po (x, y)= O. Consider now the set
S i(f )  represented by

p,(x, y)+2p 2 (x, y)z+3p 3 (x, y)z 2 +4p 4 (x, y)z 3 + Rz  = 0 .

Since the y-axis is contained in S ,(f ), we have p1(0, y)= O.
Hence We may set

Pi(x, y) = Pii(Y)x+ Pi2(x, Y)x 2 and P2(x, y) = P20(Y)+P21(x, Y)x

Then we have

Z = p„(y)xz + p„(x, y)x 2 z+ p„(y)z 2 + p„(x, y)xz 2

+ p,(x, y)z 3 + p4 (x, y)z 4 +RR .

Since C'r■Si ,,(f )  are only two points (0, ±1, 0), we have

p„(±1) = 0 and p2 0 (y) 0 for y ± 1 . (13)

Now the mapping f  is generic, therefore the expansion of h
must contain the term of order 2 . Hence we have p„(± 1) I O.

The equation 3) in Section 1 and 13) show that

dp 2 c, 1 ) dP20( + 1) > 0 (14)
dy dy

The condition 3) in Theorem 1 and 14) show that p„(-1)p„(+ 1)

Take a  smooth function (41 (y ) such that pÇi (y)  I  0 and p 1 (y)
= p„(y) for y  near ±1 , and set

= pli(y)x, Pii(Y)
p11(y )

Pii(Y)

Then we have p, 1(y )=1 for y near ± 1  and, dropping primes,
we have

Z = p„(y)xz+ [3 12(x, Y)x 2 z+P20(Y)z 2 +P21(x, y)xz 2 + p(x, y)z 3

+ p(x, y)z 4 + R ' , ordz k  >  5 .

Consider now a  smooth function defined by

>0.
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0(y ) _  P ii( y ) - 1

2p20(y)
and set

x ' = X, y ' = y ,  z ' = z+13(y )x

W e have, dropping primes,

X = x ,  Y =y , Z = x z + p 2(x , y)e+p,(x, y)z 3

+1) 4(x, Y)z 4 +P- , ord z  R >  5 ,

with MO, y)= P.(Y).
Set

x ' =  x  , y ' =  y  , z ' =  z+ p„(x, y),z 3

where P2(x, = P20(Y) + P21(x, y)x.
Then we have, dropping primes,

X  = x ,  Y = y ,  Z = x z + P 2 0 ( Y ) e + P , ( x ,  y)2.3

+p,(x, y)z 4 +R , ord, 5 .
Set

x ' =  x , y ' =  y ,  z ' = z + y)z3

where T),(x, y) = p„(y)+ p 31(x, y)x.
Then we have, dropping primes,

X = x , Y =y ,Z = x z + P20(Y )Z + P,o(y )z 3

P4(X 1 y)z 4 +  ,  ord z 5  .

Since the points (0, ±1, 0 )  are the points of Si,i,i(f ), the argu-
ment in Section 1  follows that

P30( ± 1) = 0 .( 1 5 )

Hence we may define the following coordinate transformation

x  = x ' ,  Y  y ',  z  — P 3 0 (l)  z ,2

2 P 2 0 ( Y ) *

Then we have, dropping primes,

X =x , Y — y , Z = x z + p (x , y )z 2 — v(x, y)z 4 + R , ord z  R 5 .

The function p(x, y ) satisfies the following conditions :
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P(0 , = P20(Y) , P(0, ±1) =  0 ,
p(0, 0  for y ± 1 ,
al ) (0, — 1) .3_e (0, + 1) < o .ay a y

From the above properties o f p, it follows that there exist
smooth functions p(x) and IJr(x) satisfying the following conditions :

p(x, p(x)) = 0, q3(0) = —1; p(x, ilf(x)) = 0, p(0) = 1.

Set

x =  x ',  y  = x')— ( x'))(Y '
2
+  1 )+ p( ,  z  = z ' ,

X  X ',  Y =  (*(X ') cp(X '))( 171
2
+  1

)  + p(X') , Z =  Z '.

Then we have

X ' =  x ' , Y' =  y' ,  Z' x' z' + p/(x', y').z/ 2 — v(x', y')z"+R'

ord z
, R' 5 , with p'(x', y')= p(x', (11f(x')— (x ')) 

( Y '
 2
+ 1

) + (p(x')).

The function p' has the following properties

p'(x ', ±1) =  0 , p'(0, y') = p(0, y') .

We may now define a  smooth function

cr(x/ , y , ) 19'(X') y ' )

PV ) ,  y')

We have Œ(x', y') > 0 fo r  I x' I < &  and  I y' I < 1 +  6.

Set
1 N/o-(x', y') X , y '  = y ,  z ' — z

X ' =  /G (X ', Y') X, Y ' = Y , Z ' =  Z .

We have

X =  x ,  Y = y ,Z =  x z +  p (0 , y )z 2 — v"(x, y)e+R, ord z  R  5.

Take the expansion

v"(x, y) v(Y) + vi(x, y)x ,

(16)
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and set
x ' = x , y ' = y , z ' z— v,(x, y)z4 .

Then we have, dropping primes,

X = x ,  Y = y ,  Z =  x z + P ( Y ) z 2 — v ( y ) z 4 + R ,  ord z R  5.

where p(y)=p(0, y) and (y)= V'(0, y).
Since f  is generic, we have v(±1) -I= 0. We may suppose that

v ( - 1 ) > 0 .  Then the condition 2) in Theorem 1  follows that

dp -- (  1 )  <  0  and p ( y ) < O fo r IY <  1 .
dy

Therefore the condition 2) in  Theorem 1  and 14) show that
v(+1)>0.

Now we may take a smooth function V (y )>0  such that v'(y)=
v(y) for y near

Set

X ' 1   X  
y '

t u t ( y )  z
4/11 CY)

1 X  Y' Y , Z' Z  .
V (Y )

Then we have, dropping primes,

X = x , Y = y , Z =  x z + p (y )z 2 — (y)z 4 +R  , ord z  R 5.

It holds that r, ( y ) = l  for y near ±1.
Set

X  = y - y ,  

z_z+ (i)-(y ) 1 )  / 3

2 p (y ) Z

Then we have, dropping primes,

X = x , Y =  y , Z =  x z + r )(y )z 2 + v ( Y" z4+R, ord, R 5 .
2 P(Y)

Again set

x = x' , y  y  z  
4(P(.0)2 •

Then we have, dropping primes,

X =  x  , Y =  y , Z  =  xz+ p(x, y)z 2 —qx, y)z 4 + R , ord, R  5 ;
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P(x, y )  has the same properties a s  in  16) and E-i(0, y)=1 fo r I y I
<1+6.

Hence, by repeating the method in  th e  preceding part, we
may represent f  as follows :

X  =  x ,  Y  = y , Z  = x z+ p(y )e—  z 4 +R, ordz  R 5 .

The following lemma is easily proved by Lemma 4.

Lemma 5. In  the  same conditions as in the theorem 1, we may
take, in a neighborhood U of C, a good 4-approximation f  o f  f  which
is represented by the following equations:

X  = x , Y  = y , Z  = x z + p (y )z 2 - z 4 ,

d dowith osmooth function p(y) satisfying p(±1)=0, (-1 )<O , (+1)
dy dy

>0, p(y )<0 f o r  ly <1.

Proof o f Theorem 1. By Lemma 5, we m ay suppose that f
is represented as follows

X  =  x ,  Y  = y , Z  = x z + p(y )e—  z 4

where 1.Y1<1 -1- 6 ,  I xl < 6 , Iz d pl< 6 , p(±1)=0, ( d p-1)<O, (+1)
dy d y

> 0  and P(Y)< 0 fo r  ly <1.
N./6' Let 6'> 0  be a positive number such that 2  < .  Then we

may take a positive number 6" such that 6 " < 8  a n d  2 Max
1< i ) 1 < t + e "

P(Y)< 6 '.
W e m ay now  take a  smooth function 1)(y) w hich  has the

following properties :

v(Y)> 0 f o r  lid< 1 4- &", v(y) =  0  for yl l+&",

v(Y)> — P(Y) •

Put

no(z) 
8

and take a smooth function n(z) satisfying the following properties :
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(z)= (z ) fo r I z I \ v(z )=0  fo r  Izl 2 ,

d?/9  —ii) 97(z), d z  are monotone for -0 .\/8/ < 1 2 •
W e m ay then take a positive number 6" w h ich  has the

following properties.
4 A/ 6'1) If x I >6"/, w e  h av e  I x+2P(Y ) z —  4z3 I > 12 f o r

I.Y1<1+ 5 , 2 .

6

"
> 2 ( y) A/ f o r

 I y I <1 + &.
6"  is sufficiently small i f  so is 6'. Hence we may suppose

that 2&" < 6 .  For such 6" , we may take a  smooth function q(x )
satisfying the following properties :

P(x)=T( —  x) 0 ,  y (x )=1  fo r I x <6", T(x) = 0 fo r I x I 3&"/,
1

•dx &"'
Now we may define a  mapping 7  by the following equation :

X  = x , . Y = y , Z= xz+ p(y)e—  z 4 —p(x) v(y) 27(z) .

Then we have f(x , y, z)=/(x, y, z ) fo r I x 36" or ly 1 +&"
\/Vo r  I z2  •

Hence the mapping 7 is a  good 1-approximation of f .  We
shall next consider the singularities of 7 . In  this case we may

-■/Vsuppose that I x I < 38 " /, y l< 1 + 6 "  an d  z I < - 2— . The set Si(f
is represented by

F(x, y , z ) = x +2p(y )z -4z 3 +(p(x)v(y) (z) = O.
dz

We have
dfpd yFx = 1— (
d x

a n d
L) " Y ' dz

dp dn
dx LY ) dz

„..v(v)
6"  3 'V

   

Hence the set S1( 7 )  is a  regular submanifold and the set
S1,1(7 )  is represented by

F(x, y , z ) = 0, G(x, y , z) = 2p( y ) _12 z 2— (x ) = O.
dz

and
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If x 1>& '", then we have Fq= 0. I f  lz ,  then we have

G < 0 because of 6 / 2 9 7   > 0  and p ( y ) < .  Therefore we may sup

pose th a t  x l< 6 " ' and

-
2

In this case, the set S ,,,(f )I IzI <V12*
is represented by

+ 2(p(y) + v(y))z— 4 (1 + 2 ') ( Y) ) —  0 ,
8'

(p(y )+(y )) —  6 (1 + 2 v ( Y) ) z2 = 0 .

Hence, for a fixed y, ,S,,i(f ) in  U  consists of only two points :

\ \  /8 ' M 3?) ± P(Y))A  / & V (Y) P(V))\
( V (  V )  +  19 v ) /  V  6(2v(Y )+ 6 ') Y'

Y
 6(2(Y) + 6 ') ) •

Moreover we consider G,(x , y , z ) for points of SI, i ( f )  in  U.

T hen w e have Gz (x, y, z )= —24 (1 + 2 ,v ) ) z  because o f  Ix I <&"'

a n d  I z
I < I V *

 H e n c e  w e  h a v e  Gz (x, y ,  z) =I- 0  fo r po in ts o fU
S , , , ( f )  i n  U .  S ince S , , , , , ( f )  is  rep re sen ted  b y  F=G =G z =0,
S ,,, , ,( f ) r\U -

Lemma 6 .  Let C be a circle or a simple arc in S, 1( f). Suppose
that C  contains no point of S1,1,1(f). Then the mapping f  is repre-
sented in a neighborhood o f C  as follows:

X =  x ,  Y  y ,  Z  y z — z 3 +R  , ordz4  ,

where C is represented by y =z = 0, and x , X  are real numbers mod
1  or real numbers in  [0 , 1 ]  according as C  is a circle or a simple
arc.

Proof. Consider a  Riemannian metric tn  1113 . Then we may
take a  vector field {Vp }  on C  such that each V  the normal
vector o f S i (f )  a t  p .  For each p E C , consider th e  geodesic g i ,
whose tangent vector at p  i s  Vp . Let Di , be the set of points q
of the geodesic g p  such  that the length of the geodesic between
p and q  is less than 8 an d  p u t D =  D p . Then, for small 6', D

PE C
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is homeomorphic to C x I where I  is  a interval. Now the mapping
f i D  is  a local hom eom orphism . Let L f ,, , denote the line segment
which is normal to f (D )  a t f (q). Then {M q = f - '(L f ( q ) ) ;  qED}
is  a fam ily o f smooth curves. Consequence, as in the proof of
Lemma 4 , we may take param enter systems (x, y, z ) o f U(C) and
(X , Y, Z )  of f (U(C)) in which f  is represented by

X  =  x, Y  =  y ,  Z  =  h(x, y, z) .

Expand h with respect to z :

h(x, y, z) = ai(x, z i  +R  , ord z R  4 .,=0

Then, in the above choice of parameters, we have
The set S i ( f )  is represented by

ai(x, y)+2a2(x, y)+3a,(x, y) z 2 + R, = O.

Since C is contained in S , ( f ) ,  w e  have a,(x, y)= O. Hence we
may put a,(x, y)=a,,(x , Y )y . We h av ea„ (x , 0 )  0  since f  is generic.

Set

x' x , y' = aii(x, Y )Y , z' =  z, X' X ,  Y '  = a„(X , Y)Y, Z' Z .

Then we have, dropping primes,

X  x ,  Y = y ,  Z  = yz+ a 2 (x, y) z 2 + a,(x, y) z 3  + R.

Now S 1 1 ( f )  is represented by the following equations :

y +2a 2 (x , y )z+3a 3 (x, y)z 2 +R , = O,
2a2 (x, y)+ 6a3(x, y ) z  R z z  = O.

Since C  is contained in  Si, i ( f ) ,  w e  have a 2(x,0)= O. H ence
we may put a2(x, Y)=a21(x, Y)Y.

Set
x ' =  x ,  y' = y ,  Z ' = z +a 2 1 (x, y) z 2  .

Then we have, dropping primes,

X  =  x ,  Y = y ,  Z  = y z+a,(x , y )z 3 +R, ord, R 4 .

Since f  is generic, we have ci3 (x, 0) -+ O.

ao(x, Y )-0.
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Set

x ,  y' =    , —Va,(x, y) z ,

YX ' =  X ,  Y' =  i y a 3 c x y ) , Z ' =  Z .

Then we have, dropping primes,

X  =  x ,  Y  = y ,  Z =yz— z 3 +R , ord., R > 4 .

Then following lemma is easily obtained from the last lemma.

L em m a 7 .  Suppose that C  is  a circle or a sim ple arc in S 1 , 1( f )
an d  that C  n S i,i,i( f )—  0 . T hen the mapping f  h as , in  a tubular
neighborhood o f  C , a  good 3-approximation f  represented by

X  =  x ,  Y  = y ,  Z  = yz— z 3 .

L em m a 8 .  L et p  be a point of  S,, i (f )— S ,,,, i ( f ) ,  then we may
take, in a neighborhood U of  p ,  a good 2-approximation f  of  f  such
that S „(1 )n  U i s  a sim ple  curve and contains two points q, q' of
S i,i,i(f ). T he indices of  q  and  q ' are the sam e, and the positive
sides o f  q  and q ' are oposite w ith respect to S,,,( .7). I t  i s  possible
to take the indices of  q  and q ' as positive or negative.

P r o o f .  By the last lemma, we may suppose that f  is repre-
sented in  a  neighborhood U  as follows :

X  =  x, Y  =  y ,  Z  yz—z3 .

Consider a function a(z )= 
—1

 z 5 +2z 3 —62 z  for sufficiently small
8 2

& > 0 .  We may then take a  smooth function 0(z) satisfying :

0(z )— a(z ) f o r  z — 10
ii) , 9 ( z ) - 0  fo r I zI > 6,

9
0 (z ) , 0 (4 = d z  are monotone for 4-_-

0
6 ... 1z1 6 .

Take a  smooth function 11(x ) such that

0-(x) = cr( — 0< G- (x )  < 1 ,
6 6Œ(x) =  1  for I x I  c(x ) =  0  f o r  I x —

2  
•4
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Consider now the mapping y represented by

X  =  x ,  Y = y ,  Z = yz— z3 +0-(x)0- (y) 13(z+ x) .

T h e n  w e  h a v e  a(X) a( 11) 0(Z + X) = 0  fo r  (x, y, z) Ø  U  where
U= {(x, y, z) ; 1 xl <  &  Y  < 6 , z I < 2E} . Therefore f  i s  a  good
2-approximation of f  in the neighborhood U o f  y .  Now we shall
consider the singularities of f  in  U . S i ( ! )  is represented by the
following equation

F(x, y, z) = y-3z 2 +0- (x)Œ(y),81(z+ x) = 0 .

S ince 113'(z+ x)1 <6 2,  w e h a v e  F(.x, y, z)1> 0  f o r  1Y1> 1 •

Hence we may suppose that I and the equation of S1(7) is

y  — 3z2+0-(x)R'(z+ z) = 0 .

Thus the set S 1( f )  is  siotopic in  U to  S i ( f ) .  Consider S1,1(7)
which is represented by the following equations :

y — 3z2 +0- (x)0(z+ x) = O,
— 6z +0- (x)0"(z + x) = O.

Set z' = z+ x  and g(x,z')= —6(z' — x)+0- (x)R"(z').
& &

Case 1 :  T < x < - 2 -  .  W e  have [3"(zi) 0  fo r z' ‹—  A 4 6 .

3Hence we have g(x, z') > 0 .  For 4 -
5  

&< z' <  0, we have g(x, z')

— 206 4
8 ‹--= — 6(z'— x) + cr(x)( 6 2  ,2 1

3

 +12z
,

) >   4   & 1 0 6 > 0 . For A/  3 z'5  —  '
w e have ex, z') <  0  because z'— x > 0  and /3"(Y)‹ O. For 0 < z '
‹  a  6, we have

g(x, z') = 6(2o-(x) —1)z' —2 ( s ( x )  z'' + 6x .62

It 20-( x ) - 1 ‹  0, then g(x, z') is monotone decreasing, g(x, 0) > 0

and g(x) ,& <  0.

0 - ( x ) - 1If 2o-(x) — 1 >0, then g(x, z') > 0  for z' _A/
2

 10,7 ( x ) s.
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Hence g(x , z ')=0 has only one solution for x > .
4

8 8Case 2 :  — <.x <—
• By the same argument in case 1,2 4  

8we have that g(x , z ')=0 has only one solution for x<—  --.

Thus the setS,, i (f ) ,  fo r  8
4   < 1 x ,  i s  a simple curve.

8Case 3 : 1 x 1 < -
4

The set S 1 , 1 ( f )  is represented by

y =  3z2-0 '(z + x) ,
— 6z +R"(z + x) = 0 .

I f  I z+ xl> —
9

6, we have (z + x )z >0 . B y the definition of
— 10

we have ,8"(z+ x)•(z+ x)< O. Hence we have — 6z +,(3"(z + x)  I  0.
9_

I f  z +x i< 6 '  
the set S i ,,( f )  is represented by

10

y= 3z2 + —
5

(z + x)4— 6(z+ x)2+ 6 2  ,6 2

3z+ 6x— -1-1?(z+x) 3 =  0 .

Hence the set S 1,1, 1( f )  is represented by the above equations
together with

1  - -

1 0  
(z 0 .

26 7 7 , ,Thus S ,,,,,(f ) consists of two points {Q., q'}
{(± 3 \/ -1-0 , 60 -

± 5 81 1  .  This proves the first part.
3N/10

Expanding yz— z3+19(x+ z) a t q or q', we have

Z ' =  a+ p(x' , y') + (y' +4r(f))z' + (3x' + p(x'))z'' +bx'
5  +  ( ±   + ( x ' ) ordz, R '> 5 ,

\/106
) z " +  R ' ,

with ord 1P.> 1, ord p> 2, ord > 1.
Consequently we have
1 )  The indicds o f q and q' are the same.

4
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2 )  The positive side at q  is opposite to the positive side at
q ' with respect to S 1 1 (f )

This proves the second part.
Consider mapping f  given by

X ---- x, Y  =  y , Z  = yz— ,z3 +0- (x )a -(y),8(z— x) .

Then the above argument shows that the singularities of f
have the same properies as of f  except that the indices of f are
opposite to those of f .  This proves the last part.

4 .  Topological consideration. W e suppose that f
is a generic decomposable mapping, and /1/3 is an orientable closed
smooth manifold. By definition there exist a locally homeomorphic
mapping i  and a projection 7r of l e  to l e  such that z i— f.

We may take a vector field {Vp } on  R 4 such that these vectors
are projected to the null vector by cbr. Since i  is an immersion,
the differential of i  is an into-isomorshism from the tangent space
of AV to that o f le .  Let p  be a point of S 1( f )  then di(T  p )  con-
tains the vector 17

1 (p ) where d i is the differential o f i  and T p  is
the tangent space of M 3 at p .  Define now Vp = (di) 1 ( Vi(p)), then
{ Vp } is  a smooth vector field on S i ( f )  which is contained in the
null space N ( p ) .  This vector field is called the null vector field.

Lemma 9 .  L et f  be a  generic m apping. T hen the  connected
components of  S 1( f )  are orientable closed 2-manifolds.

Proo f. Since f  is generic, S i ( f )  is  a closed submsnifiold of
1113 . Since the local degree o f  f  can be defined at points of
11/13 —S3 ( f ) ,  it follows that the normal bundle o f  S i ( f )  is trivial.
Hence the lemma is proved.

Lemma 1 0 .  L et f  be a  generic mapping and D  be a connected
component o f  S ,( f ) .  Then we may tak e, in a neighborhood U  of D,
a good 2-approximation  J  of  f  such that the singularity  S 1 1(f)r\  U
i s  a connected set.

Proo f. Let E „••• ,E 1 be the singularities S, 1 ( f )  in  D, and p
be a point of E „  We may take E5  and a point qE E5  such that
the points p  and q  are connected by a curve on D  without touch-
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in g  any other point of S i , ,(f ) .  By Lemma 8 , w e m ay take in
neighborhoods o f p  and q  a  deformation f '  of f  such that the
indices of the points of S ,,,,,( f ')  near p  and q  are different. Then,
by Theorem 1 there exists a deformation f "  of f '  in  U(C) so that
E , and .E. ; a re  connected in the singularities S ,( f " ) .  By making
such deformations successively, we obtain the lemma.

Remark. The decomposability o f  mapping is invariant under
deformations i f  their first partial derivatives are close enough.
The deformations in Section 3  are such deformations. Hence we
may suppose th at if th e  mapping f  in the last lemma is decom-
posable then so is f .

Lemma 1 1 . Suppose th at the m apping f  is a generic decom-
posable m apping. Let D a connected component o f  51( f ) .  I f  S ,,,(f )
r\D =E  is a connected set then E divides D  into two connected parts.

Proo f. Let p  be a point of E .  Then w e m ay suppose that
the singularities o f f  is represented in  a  neighborhood of p  as
follows

5 1 ( f )  :  y - 32.2 0 ,  5 1 , 1 ( f )  =  z  O.

I f  E  does not divide D, w e m ay take a simple closed curve
C  in 51( f )  so that C  is  the intersection of  S 1( f )  and x = 0  in a
neighborhood o f p  and so  that C  intersects with E  a t  a single
point p .  Take an orientation in C .  Let T r  b e  the tangent vector
o f C  a t r  and N r  b e  the normal vector o f C  in the tangent plane
of S 1( f )  a t r. I f  r  is  a point of 5 1 ( f ) — S 1 , 1 ( f ) ,  then {T r , Nr,
is  a non-degenerate frame.

Take points p' -(0, 6, p"= (0, &, — A7-3 - )  on C for small
8 > 0 ,  and consider these frames at p ' and p " .  We may suppose

teat Vp — (  3
  ) (  

 a N ' = (   3
  )  an d  Np p - - )  .

a z  p"  P  a Z  P " '  P  a X  X  P "

Since the y-component o f  Tb , ,  and T i " are opposite, the frames
{7;/ , N t ', V p

, }  and { have opposite orientations.
This contradicts to the orientability of 1113 . This completes the
proof.
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Lemma 12. Suppose that the m apping f  is a  generic mapping.
L et p and q be points of  S 1 ,1 , 1 ( f )

 which are contained in a connected
component o f  S ,,,( f ) . S uppose  that there  is  no point of  S ,,,,,(f )
between p a n d  q .  Then the following two cases occur.

1) T he positive sides at p and q  are the same side with re-
spect to S 1 1 ( f )  in  S i ( f ) ,  and the indices of  p and q are different.

2) The positive sides at p and q are opposite w ith respect to
S

1  1 ( f )
 in S ,(f ), and the indices of  p and q are the sam e.

Proo f. Let C  be an open oriented subarc of S , 
1 ( f )  between

p and q. There exist coordinate systems at p and q  under which
f  is represented in the form in  the sence of Section 1. Take in
a  tubular neighborhood of C a  Riemannian metric which induces
Euclidean metric determined by the coordinate systems at p and
q. Let v i (p), v2 (p) and v 3 (p) denote respectively the tangent vectors
o f x-, y -  an d  z-ax is in  the coordinate system at p .  For q, use
th e  same notation.

Let s be a point of C .  Let T (s) denote the tangent vector of
S ,,,( f ) a t s, N (s) the null space at s , and W (s) the normal vector
to S ,( f ) .  The orientation of W (s) is determined by the direction
from the negative side to the positive.

Let r  be a point of C near p, and give N (r) the orientation
determined by the diredtion of z-axis in the coordinate system at
p .  Then the plane (W (r), N (r)) converges to  the p lane (v,(p),
v,(p)) if  r  converges to p .  Hence we can compare the orientation
o f  {W (r), N(r)}  with that o f {v,(p), v ,(p )}. We divide two cases
according as the z-component of the coordinate o f r  is negative
or positive.

Negative c as e : In  th is case, the directions of N (r)  and of
v2 (p) are the same in S1 ( f )  with respect to S 1 , 1 ( f ) ,  and the orienta-
tions o f {W (r), N(r)}  , {v,(p), 140  are opposite.

Positive c as e : In this case the directions of N (r) and of v2 (p)
are opposite in  S 1 ( f )  with respect to S 1 1 ( f )  and the orientations
o f {W (r), N (r)}  and of lv ,(p), v,(p)} are the same.

For r near p, N(r) is already oriented. These determine natur-
a l ly  the orientation of N (s) for an y  sE C . T h e n  {{W (s), T(s),
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Negative Case P o s i t i v e  C a s e

N(s)} , s E C l i s  a continous family of non-degenerate frames. We
may suppose that the direction of z-axis in the coordinate system
at q  is  the same to that of N (t) for a  poin t t  near q. Compare
now the orientations of {v,(p), v 2 (p), v ,(p)}  an d  o f {v,(q), v,(q),
v ,(q)} . It occurs two cases according as the directions of 2)2 (p)
and v 2 (q) are the same or not in S 1 ( f )  with respect to S i , i (f ).

Case I  (T he  d irec tions are  the  sam e). In  th is  case, if the
directions o f v2(P) and of N (r) are the same with respect to S 1 1(f)
then the directions of v 2 (q) and of N (t) are the same with respect
to  S i , i ( f ) .  Hence the above negative cases arises for (p , r) and
(t, q). Therefore it follows that the orientations of {v,(p), v,(P),
v,(p)}  and of {W(r), T(r), N(r)}  are opposite, and that the orienta-
tions o f {W (t), T (t), N (t)}  and of {vi (q), v,(q), v,(z)}  are the same.

If the directions of v2(P) and of N (r) are opposite in Si(f)
with respect to S, 1 ( f ) ,  then the directions of v 2 (q) and of N (t) are
opposite in 5 1 ( f )  with respect t o  S, 1 ( f ) .  T h u s  the above positive
case arises for (p , r)  and (t, q).

Hence we have that the orientations of {vi(P), v2(P), v3(P)} and
o f  {W (r), T (r), N O }  are the same, and that the orientations of
{W (t), T (t), N (t)}  and of {v 1 (q), v 2 (q), v,(q)}  are opposite.

As a consequence of the argument above it follows that the
indices of p  and of q  are different.

Case II (T he directions are opposite). In this case, the similar
consideration shows that the indices of p  and of q  are the same.

Corollary. Let f  be a generic mapping of  11/13  tn 1? 3 ,  where 1113
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i s  an o r ie n ta b le  closed smooth manifold. Let C  denote a connected
component o f S , , , ( f ) .  T hen the number of points of S 1  1 , 1 ( f )  in  C
is even.

Theorem 2 .  Let 1113 be  an orientable closed smooth 3-manifold
and f  be a  m apping o f  M 3 t o  R 3 . Suppose that f  i s  a  generic
decomposable mapping. Then we may take a good 2-approximation_
f  of f  so that S,,, , , ( f )  Is empty and S , , , ( i )  are boundaries of domains
o f  S 1 ( f ) .

Proo f. By Lemma 1 0 , w e m ay suppose that the part E  of
S 1, 1 ( f )

 which is contained in a connected component D  of S i ( f )  is
connected. Thus, by Lemma 1 1 , E  divides D  into two domains.
Now let p  and q  be points of S , , , , , ( f ) n E  between which there is
no point of S i , i , i ( f ) .

Case 1  ( The indices of p  and q  are dif f erent). In  th is case,
the positive sides at p  and at q  are the same side with respect to
E .  Now we may consider the curve C  running from p  to q  whose
interior is contained in  D — E and which starts from p  into the
negative side and which ends to q  from the negative side. Then,
by Theorem 1 , we may eliminate p  and q  from S1,1,1-

Case 2  (The indices of p  and q  are the same). In this case,
the positive sides at p  and at q  are opposite side with respect to
E .  Let r  be a point of E  between p  and q. By Lemma 8 , we
may take in a small neighborhood of r  a good 2-approximation f '
of f  so that there exist, between p  and q , two new point r '  and
r "  of S , , , , , ( f ' )  whose indices are different from those of p  and q.
Then applying the same method as in case 1  to ( p ,  r ' )  and (q, r),
it follows that we may eliminate p  and q  from S1,1,1.

The above argument shows that there exists an approximation

J  of f  such that S , , , , , ( f )  is empty.
It is easily shown that each connected component of Si, i( f )

is  the boundary of a  2-disk or of a domain in S1(7 ).

Lemma 1 3 .  Let E ' be a smooth circle in 1113 —S1 ( f ) ,  and sup-
pose that E ' is the boundary  of an orientable smooth 2-manifold D'
in AP— 51(f ). T hen w e m ay  tak e in a neighborhood U (D ') of D ' a
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good 0-approximation f '  of f  so  th at the m apping f ' is a generic
mapping and S i , i ( f ' ) n U ( D ' ) = E '

 a n d
 S i , i , i ( f ' ) n  U(D')=521.

P ro o f. For a given D ', there exist sets D„ D, such that
D '  D „ D 2nS 1(f  ) f25 and D 2 -D , is diffeomorphic to E ' x [- 1 ,  1].
Then we may take a  neighborhood U(D') of D ' which is diffeo-
morphic to D2 x  [ -1 , 1 ] and which is contained in 1113 -S 1(f ).

Take a smooth function p(x, t) having the following properties :
1) p(x, 0)= x, fo r I x l< 1 ,

P(x , t)- x  for 1 > x

3 )  P(x, t)= (4 t-1 )x 3+ (-2 t+ 1 )x , for 
1
— < t< 1 , I x l  < -

1

2 3

P(x, t)= x  for -

1
2 < t < 1 ,1 1 x 1 - 3- ,

t) > 0  for 1 < t< 1 , 1
> ix l> 1 .ax 2 3

We may take a  smooth function , (p )  on D.

v(P) 0  for p E D2 =  1 for p
1u(p) = if and only if pG E ',
2

2)(p) = 0 for pE aD2 •

Then we have a smooth mapping h of U(D') to  U(D') defined
by

h(P , x ) =  (P , p(x ,v(P )))

where p E D 2  x  E [-1 , 1].
Since the mapping h is  the identity on the boundary of U(D'),

h has an extension h' : M 3 M 3 so that h' 1M 3 - U(D ') = the identity.
It is now easily shown that the mapping f ' = f h ' satisfies the

conditions of the lemma.
Theorem 3 .  Let 1113 b e  an orientable closed smooth manifold,

and f  be a  generic decomposable mapping o f 1113 to  le . T h e n  w e
m ay take a good 0-approximation f  o f  f  so  th at S i,i( f )* 0 -

P ro o f. By Theorem 2, we may suppose that S1,1.1(.f ) is empty
and any circle o f Si, i ( f )  i s  the boundary o f  a  domain of Si(f).
Denote by E  one of the components of Si, i ( f ) .  By Lemma 7, we

2) ° (x, t) > 0  for 0 < t< 1 ,
ax 2

such that
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may take a coordinate system (x, y, z ) in a neighborhood of E and
the parameter system (X , Y , Z) in R ' so that a good 3-approxima-
tion f '  of f  is represented by

X  = x, Y  =  y , Z  y z — z 3 .

Let E ' be the set of points (x , --& , 0) where &>0 is suffici-
ently sm all. Then E ' satisfies the conditions of Lemma 13, and
hence we may take a good 0-approximation f "  of f ' which is repre-
sented by the following equations in a tubular neighborhood of E:

X  = x , Q  = y , Z  p (y )z — z 3 ,

where p(y) is a smooth function which has the following conditions :

p(y ) = 0  fo r  y = 0, = & ,
p(y) < O  f o r  0 < y < & ,

dp
"

dp0—  <  ,  — ( 8 ) >  0 .
dy dy

Applying Lemma 1 to each section : x= constant, we obtain a
good 0-approximation f "  of f '  so  that E  is eliminated from the
singularities S i ,,. By this methods we may obtain a good 0-ap-
proximation f  which satisfies the condition in the theorem.

Theorem 4 .  L et M " be an orientable closed smooth n-manifold
an d  f  be a  mapping o f  M " to R " .  Suppose that the singularities
o f  f  satisfy  the following conditions:

S i ( f )  = 0  ( i  2), 5 1 , 1 ( f )  = 0 .

Then the mapping f  is decomposable mapping.

Proo f. B y  the condition S i (f )=2f (i 2), S 1 ( f )  is  an (n— 1)-
dimensional smooth submanif old of M ". Since S ,,,(f )= 0, it follows
that f lS i ( f )  i s  a local homeomorphism. The null space N (p) is
transversal to S,( f) because of S,,,( f) .  Since M " is  orientable,
we may define the local degree of f  at points of M"—S 1 ( f ) .  Hence
the normal bundle of 5 1 ( f )  is  trivial, and we may take an orien-
tation in  N (p) so  th at IN (p); pE S ,(f )}  is  a transversal vector
field . Denote by L p  the geodesic segment whose tangent vector
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at p  is  N ( p )  Then U =  V  L i, is  a neighborhood of S , ( f ) .  Now
p c s , ( f )

we may take a smooth function g(q) on U  such that the derivative
of g(q) with respect to the vector N (p ) is not zero. For example,
w e m ay take as g (q )  the length o f L i ,  from p  to q. Then the
function g (q )  can be extended to a  smooth function g  on  Mn.
Denote h ( p )— ( f( p ) ,  g ( p ) ) ,  then h  is  a  smooth mapping o f M " to
R' 1 which is a local homeomorphism.

Thus the theorem is proved.
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