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1 .  Introduction

Consider a hyperbolic system with analytic coefficients

(1. 1) M [u ]  — Ak ( x, a
S

xu — B (x,t)u  =  O,
St 5 1

where the word hyperbolic means the following : E Ak (x, t)„ has,
for a n y  r e a l    and all (x, t), N  distinct real eigenvalues, X i (x, t
••• , XN (x, t ;  H e r e  u  are vector-valued functions with N  com-
ponents; A l,  and B  are real analytic functions o f x = (x i , ••• , xn )
and t.

In the present paper w e shall show th a t the fundamental
solutions of hyperbolic systems of partial differential equations with
analytic coefficients are analytic except on the characteristic conoid.
This property can also be expressed directly in  term s of the
solution of the equation : I f  at tim e t = 0  the initial data of a
solution u  is analytic in an open set containing all points which
l ie  o n  a  ray issuing from  som e given point (x ,,  t , ),  then u  is
analytic at x „  t„.

J . Hadamard proved this property for second order hyperbolic
equations [1 ]  and M. Riesz also treated this problem [8 ]. In  th e
case of constant coefficients, there are several papers which show

* )  A part of this work was done while the author was a Temporary Member of
the Institute o f Mathematical Sciences, New York University, during the academic year
1960-1961. This Temporary Membership Plan was supported by the National Science
Foundation, Contract No. NSF-G14520.
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this property. We quote among them a work of Petrowsky [7].
Recently, J. Leray published a series o f  works, which treat sys-
tem atically general partial differential equations with analytic
coefficients [3 ] and which elucidate this property. Now, we want
to present our method, which relies assentially on a paper of P. D.
Lax [2 ], in  which he uses an asymptotic expansion of solutions
and proves that, in the case of C - -coefficients, the fundamental
solutions are Cc° except on characteristic conoids.

W e have already shown, in the case of constant coefficients,
that the analyticity can be proved by using his method [5] ; the
present article is an extension to analytic coefficients of the work.
The reasoning in  both cases is essen tia lly  the same, but there
are some technical complications in the case of variable analytic
coefficients ;  fo r  example the phase functions t")(x, t; co ), which
existed globally in the case of constant A h, exist only for a certain
time interval in the present case. For C-  coefficients, D. Ludwing
[4 ]  has recently overcom e this d ifficulty by using the major
principle of Huygens (Hadamard's terminology). We shall discuss
this problem in another article.

Although we shall give our proof in detail later (Section 3),
we give here the sketch of our proof. The fundamental solution
e  is defined as that solution of the equation which at t= 0  i s  a
8-function, more precisely, one of its component is a 6-function
and the other components vanish. We proceed by constructing
explicitly approximate fundamental solution u p ,  p  an index which
eventually will be taken as large, i.e . a function with the follow-
ing properties :

i) up  satisfies the differential equation approximately ;

(1. 2) mEup1
where f p  has continuous partial derivatives up to oder p - i ,

ii) U1, satisties the initial conditions approximately, i.e.

up (x, 0) = a(x)-Fa(x)

where a is  an analytic function of x indepent of p .  The exact
fundamental solution can then be written as
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(1.3) e = u +u, + zP P

where wp  and z  are defined as solutions of the following initial
value problems :

(1.4) J M [ w ]  =  f
O ,

w p (x, 0) = O.
z(x, 0) = — a .

We are now  ready to show the analyticity o f  e  by finding
suitable estimates for the partial derivatives o f e. Let v  b e  a
multi-index, we choose

P=

It follows from (1. 3), by the triangle inequality that

D u b + 1  f rw  +
What we need is suitable estimates for the derivatives o f up , wp

and z.
The explicit construction of u p  is described in Section 2 ; w e

shall derive there a suitable estimate for D'u p  (Proposition 1 and
Theorem 1 of Section 3).

In section 3 we shall derive suitable estimates for the partial
derivatives up to order p  o f f p =M [u p ]. (Proposition 1  and its
corollary). By known estimates for solutions of hyperbolic differ-
ential equations, we can then estimate the solution wp  and its
partial derivatives up to order y in terms of the estimate derived
for f , ,  and its derivatives (to slightly higher order).

Finally, since z  i s  the solution of an analytic initial value
problem , it is itself analytic ;  since it is also independent o f p ,
suitable estimates for its derivatives are immediately available.

2 .  Construction of approximate fundamental solution.

Hereafter we follow the notation and the definitions o f [2],
and also those o f our previous paper D i Let /'°(x, t ;_co) be the
solution of

(2. 1) = X,; (x , t ; 4")

with the initial value r i ) (x, O; co) = x •co, w h e re  = (("i • • , wn) real



330 Sigeru Mizohata

=  1 .  Standard existence theorems guarantee that this solution
exists at least i f  (x , t) is not fa r from the origin, and that this
solution is an analytic function of (x, t ; CO. We consider the formal
expansion (cf. [2]) :

(2.2) u (x ,  t ) {W)(x, t ; co)+vi"(x, t ; co)/ + •-•

+ v ( x ,  t ; co)/en+•••Rn - ickda),

0

with the initial value u(x, 0) =

, .

We now modify this expression in the following way :

(2.3) u p (x, = t 1d exp (iri ) 0(74 +vi' ) / + • •• +142/e)c/cD
i-1 Do

-
+ exp (i/( i ) ) (  ( i l " a - i v" ) \drol

q=1. q "g2o

Then we have, as we shall show a t the end of this section,

471.(2.4) M [ u p ]  =  22, I S  - 2 d 6  e x p  (11'0 0 (
i / ( n

)
P  1 m [W ,]d o ,

i=i

f exp (17'9
\

 ( i l c i ) ) q - 2 M [K , ] ) d c o l
J q=2 q !

We denote this right-hand side by f p (x, t).
Next we define wp (x, t ) as the solution of

(1.4) M [w ]=  — f p (x , t), with initial value zero : w p (x, 0)=0.

The function u=u p +w p  satisfies the equation (1. 1), i f  i.e. satisties
the stated initial condition modulo analytic data a(x),

(2. 5) u(x, 0) +a (x ) ,

\(..) '0 '

because, as we shall explain later, VPi)(X, 0; 0- ) = , V;,:)(X, O ;
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0"

i  dco .

\ 6/
Then, we denote by z(x, t )  the solution of

(1.4) M [z ] = 0, with the initial condition z(x, 0) = —a(x),

we know that z(x, t )  is  an analytic function o f (x , t)  (cf. [6]).
We know by proposition 1  of Section 3, that f ( x )  is continuously
differentiable up to order (p — 1). Then, by Proposition of Section
3 , w e have estimates for the derivative o f wp (x, t )  up to order

— 2 — [ n ] ) .  About those o f up (x, t), we use Proposition 1. Now2
we shall define the v ,  and obtain estimates for these functions.

Now we return to (2 . 2). Apply the operator M  to the right-
hand side and set the coefficient of 1 / 1 equal to  0. We obtain

(2. 6) 44" —  A •U)v T  + = 0 ,  ( i  =  1, 2, • • • , N )

where v(21.=  ; the factor i  in the first term  is -\/ — 1.
B y the way, this operation M , more precisely, the differentiation
under the integral sign is justified as follows : For p> —1, we
interpret the expression exp f (x , t; co) cico as a distri-

clo
bution depending on the parameter t. This possibility comes from
the fact 4 +  O . (See the beginning of the proof of Fundamental
Lemma of Section 4). Therefore the above distribution is defined
as hm e x p  f(x, t ; co)cico, where the convergence is

)..° 1 620

in the topology of distributions.
Remarking that Vi ) (x, 0; co) = x•co we take the initial data

0

(2. 7) K (x , 0; co) =

6
(2. 8) t=. v ( x ,  0 ; co) 0 for m > 1 .

To express (2. 6) more exp lic itly , w e use the eigen-vectors
R z (x, t; co) (i=1, ••• , N )  o f A (x, t)•co ; R i  corresponds to the eigen-
value Xi (x, t; co); we assume that R i  are of unit length. We define

= 0, m > 1, a(x )— d exp (ix )
0 Q0
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.1? )(x, t; co) = R . ; (x, t ;  4 7  1 4 ° 1 )  ; th u s  R ;') (i, i  =1, • • • , N ) are
analytic functions o f (x, t; co). Now we put

(2.9)z 7 W )  = (01(x, t ; co) RV)(x, t ; co) ;

v;,;;) = t; co) R ( x ,  t; co) f o r  in >1  .

Moreover we use the left eigenvectors L i (x, t; co) corresponding to
Xi (x, t; co) : (X 11 — t.A.• co) L i (x, t ;  (0 )=0 . We normalize L i  in  such a
w ay that <L i , R i >=81, where <  , >  means usual scalar product ;
al i s  the Kronecker symbol. A nalogously to  R ;) ,  we define

t ; co) =L ; (x, t ; l.2 /  11,»1). Then <L` .1?(,»>= 81, and I :»  are
analytic functions o f (x, t ; co). Similarly, we define Xr ) (x, t ;  co)=

t ;'") 1 1 1 1 ) D.
Now, w e assume that 1V , v», ••• , are determined, and

want to show how to determine 4! ) .  Take the scalar product of
(2. 6) with LY ). Taking account o f (2. 1), we have

(2.10)
 

4') I (X --xY) — i <4 ) , M[K,1.1]> = 0 , w h e r e  i =  _ 1 .

In order that this system o f equations have a solution it is neces-
sary to assume that we have determined v1 1 in  such a way that

(2. 11) <L;'), = 0 .

We make this assumption. Then we have

(2. 12) (7-L-1(x, t ; co) = M [v1]>1 1 1 ' ) 1(V ) fo r  i l    j;

more explicitly, denoting the denominator by si ; (x, t; co),

(2. 13) a-L1(x, t; co) = s o (x, t; co) •[( L1)t + fo r  i  I j,

where LVi ) i s  a first order differential operator of the form

a(2. 14) = E t ; co).+ q '- ')(x , t ; 0 )) ,
3x ,

with analytic coefficients. Now we determine o<,' such a way that
(2. 11) is satisfied for v», namely

(2. 15) <L e , 111[0-L T V ]> —  E <LV ), ME0R(11>

Here the left-hand side is a differential operator acting on
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(2.16)L i [ ]  —  ( a — E a;» — b )[01.] ,St ax,
with a;» , A R »>. W e rem ark that the direction of differen-
tiation is that of the bicharacteristic of M  (cf. En  P .  630), there-
fore this direction is  r e a l .  Of course aV)(x, t ; co) and b( i) (x, t ; 0)
are real analytic functions.
Therefore, (2. 16) is written
(2. 17) =  —  E

h ; k * ,

where 1,;," ) are of the form (2. 14).
The initial condition of is determined by (2. 8), namely

(2.18)0 - ; ; :  (x, 0 ; co) = — E 0  ; co) .
j; i* ,

Finally, vW)=0- W nx , t; co) are determined by

(2. 19) Li [0-ô] 0 , w ith  the initial condition
(2. 20) o- (x, 0; co) =  0'(x; w ), w here

0

(2.21)i  = 0- i(x ; co) R i (x, 0 ; w) .

6
Now let us show how (2. 4) is obtained. Take an integrand

of (2. 3) :

(2. 22) exP (i/)(i/)q-1 
v n + q / e q >  2 ,

q!

where we omitted the index i. Apply M  to this integrand ; omit-
ting the factor exp W O we then have

(2. 23) i(i t  — A •l x ) (ioq -1 v  n 4  a I +41
,

, A • l x )  ( q - 1 ) ( i l ) 'v n , q l
q! q!

(il)q+ M[vn, .
q!

If (2. 6) is taken into account, this can be written as follows :
(il) q- '(2. 24) M P ) . (q "

11)6
'  2 MP) n+q-iilq! q!

+
M g '

q!
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Now we integrate the first term by parts :

-(2.25) f  e x p =Ji
-

+ exp (i/)(i/)q - 2 - 2 c/ — exp (d)(i/) - 2 + exp (i/)(i/)q - 2 - 2 c / .

This is merely formal expression. For the rigorous justification,
see  the beginning of the proof o f th e  Fundamental Lemma of
Section 4. Then (2. 24) becomes

(2. 26) ((qing1)21M[v., q--11 2+ ( i l )Q ' M [v . i-d/eq!

+ ( i l ) q 2 M Evnia-iileq!

here the last term  expresses the integrated part.
From this, we can see easily (2. 4).

Finally, we state again our

M a in  T h e o re m . The fundam ental solutions e k (x , t), t > 0 :

(2. 27) M [e k ] --= O, w i t h  the initial data e k (x, 0) i  k ,

( * ) ,

(k = 1, 2, • • • , N) ,

are analy tic functions of  (x , t) ex cept on  the  characteristic conoids
issuing f rom  the origin.

R e m a rk . As we have remarked earlier, our proof is, in  general,
valid only in a neighborhood of the origin.

3 .  Proof o f  M a in  Theorem.

A t  first we state Theorem  1 ,  Proposition 1  and 2. Using
these, we shall prove Main Theorem.

From Position 5  of Section 5 , we have

Theorem 1. T here ex ists a  complex neighborhood V . o f  f 2 ,  such
that all v ;2(x , t; co) can be ex tended analy tically  there and



(3.2) su p  D cp (x , t)I< C ,C P (q  Iv1)!  A
,i)Eu plut

f o r  v>  ,
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sup Ir n v ( x ,  t ;  co) K ( m +  1v 1)1AtviwEv-,
f o r  0 t t o (-_< 1) ,

sup I D•M [v;V ] (m+ +1)!K,n
wEv, iid+1 A ,

rm = 0, 1, 2, • • • -1
Li1 ,  •  • •  ,  N ,

where K , A , and p  are constants.

Remark 1. We derived Proposition 3, 4, and 5, by assuming co real.
However, these propositions are also true even if  we extend these
functions 0 ( x ,  t; co) analytically in  a  small complex neighborhood
of the real unit sphere n o . This fact follows from the analyticity
o f all functions which appear in  (2. 13), (2. 14), an d  (2. 16), and
from the fact that the direction of differentiation of (2. 16) is real
if  co is real.

Remark 2 .  In above statement, we have mentioned nothing about
the domain of x .  This domain, together with to ,  depends on that
of the phase  functions / ( "(x, t ; 60). About t ,  we assumed t 0 <1.
This lim itation does not diminish th e  generality, because by a
linear transform ation in t ,  we can always bring any fixed point
to to< 1 .

W e state th e  following two key propositions, whose proofs
shall be given later (section 4).

Proposition 1. Consider the mapping : ( i l ) P + (x ,  t ;  (0)—> p(x, t)

defined by

(P(x, 1.) exp (i/ )(d )P * (x ,  t ; co)dco
00

L et us f ix  a com pact set U  in  (x, t)-space, which does not meet the
characteristic conoid w ith vertex  a t  the origin. A ssum e

(3. 1) s u p t ;  co)1 <
(q + 11,1)!

A  , for > 0 .
( - , , t )E U , 0E V

Then we have

prov ided p  is sm all : p  < P o •  Po depends on  U  and V i,. M oreover,
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for 11,1 <p , q )(x , t)  i s  a  continuous function, and  (2. 2) is true f or
any  com pact set U  (i.e. w ithout abov e condition); C an d  Co a re
constants depending only  on  U  and  K., they  are  independent of  q
and A.

According to Proposition 1, consider now the following simpler
transformation :

(3. 3) p(x, t) exp (ii)(d)Pqr(x, t ; (Oda) .
00

As we see it in the proof of the above proposition, we have the
same property as above, namely.

C o ro lla ry  1. Let U be a compact set (without the condition in Prop.
1), A ssume (3. 1), then w e have (3. 2). p(x , t) is an analytic function
in x .

As we see in (2. 3), we should also consider the distribution
of the form

(3. 4) cp(x, t) exp t; (o )d ,

where r  is an integer positive 0 or negative. Let U be a compact
set satisfying the condition of Proposition 1 ; assume  k (x , t; co)
satisfies (3. 1), then we have

C o ro lla ry  2 .  q,(x , t) is an analy tic function in  x  f o r x E  U.
In order to estimate the derivatives of w (1 . 4), we use the

Proposition 2 . "  Consider the mapping f(x, t)— >v(x, t) defined by
M [v ]= f (x , t), v (x , 0)=0. L et U  be a com pact set in the space

t = t o . W e  assume

(3. 5)

sup I f(x, t)1 < ( q + HD! A  0 < t  < t
0
f o r  9 1 < k  + [ 1 + 1— 2

then there ex ist constants C, and p o such that

(3.6) sup 1Dv(x, W .<  C i
( q L'1)!A

xEtT Piti I
f or

1 )  Since the proof is given in [ 6 ] ,  we don't reproduce it here.
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Cl an d  po are  independent of  f .  More precisely, they depend on U,
and are independent of  q, k, and A .

Remark. Here we assumed p fixed. What is needed for the proof
of Main Theorem is that C , and p, can be taken independently
o f q  and k. Here we need not assume that f  is analytic in x.
T h e  estim ate (3. 6) claim s only fo r  11, 1< k ,  assuming (3. 5) for

Iv I <  k +[—)2 ]+  1. The symbol sup of the left-hand side of (3 .6)
2

is taken in the domain defined as follows : we choose first a fixed
retrograde convex cone C such that the domain of dependence with
respect to any point (x, t )  is contained in (x, t )+ C , (for instance,
we take as C the cone Tl <m ax (sup t; (D) ), q-< 0 .  Then

the domain swept by (x, t o ) + C  when x runs a neighborhood of U
replies to our demand.

N ow  w e prov e M ain  T heorem . T ake a po in t (x 0 , to) which
does not belong to the characteristic conoid. We want to prove
the distribution u(x, to) —up (x, t o ) +w p (x, to), up  and wp  being difined
by (2. 3) and (1. 4), is analytic in x  a t x = xo . We choose a small
neighborhood U of xo in the space t= t0 in  such a way that it has
a positive distance from the characteristic conoid.

Decompose (2. 3) in two parts : u =u ° + ü ,  where

. N  -
(3.7)u ° ( x ,  t )  —  E 1(1 exp ( v(1)/V)da) .

Q0 j=0

By the Corollary 2 or Proposition 1, we see that u°(x, to) is analytic
in x  for x E U.

Take an arbitrary v. According to this v, we fix p  by

(3. 8) p =  

2) 1 P--n + 2

and consider up  and wp  corresponding to this p .  By Proposition 1
and Theorem 1, we have

sup DM p (x, t o )I < C o N A ± C q ( n +  q+ Iv 1 )1  ( 1 r  If n+q
.eu q!

Since we can assume C, K > 2 , we have
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(3.9) sup I DI' eip(x, to) <  (2 C oN 14) ( n + P + I v D 1 ( 1 ) 1''' CPKnfp
13!

In order to estimate D w p (x, t o ) ,  at first we estimate f p (x, t). By
proposition 1 and its corollary 1, we have for 0<t<t0 ,

sup ID: f  p (x , t)j < (C oN A)CP-1(+ 1  +n+p)!1 
13!

1 y1+1
K n + P

+ (C oN A) C' -2(1141+1+n+ q-1)! 1(
0=2 q! P

y4+1

< (3 C oN A )C P -1 "I +1+n+ 13)! l y n i+ 1

K n "

P! \P

fo r I/1,1< p  1= HI +[ n
2 ]+ 1. Then, by Proposition 2, we have

(3. 10)
i( 1)1 +1 +n +p)!(1)Iv i± i

K n "st5) wp(x, to) I <s. C,(3CoNA)C P -

p! P

Since p o < P
 combining this estimate with (3. 9), we have

(3.11) s , t, ip  MO' p(x, t w p(x , 0)} 1<(C K ) P ( n  P + 1 ± 1 v 1 ) ! (1Y1 B,
p ! P

where B =(2C oN A +3C oNAC,)1 p0 .

W e remark here ( n + P 4 - 1 + 1 1 )  ) ! <(n+1)! 2n 1 P " 1 0 ' 1 12,1! .
P!

Therefore taking account of (3.8) and of the analyticity of u°(x, t o ),
we see easily that sup D z'u(x , t o ) I is majorized by the fo rm  

z e j 11,1

for v >  0 . This shows u(x, to)  is analytic in  x on x E U.
The solution ek (x , to) =u(x , t o) + z(x, to)  is thus analytic in x on U,
because z (x , t) is  an analytic function. The proof is thus complete,
since th e  analyticity in  (x, t )  o f  ek (x , t )  follows from Cauchy-
Kowalewski Theorem.

4 .  Proof of Proposition 1.

W e rely on the following fundamental lemma :

Fundamental lemma. Consider the function g(x ), more precisely,
distribution defined by
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-
(4. 1 ) g(x) = d exp f (x ; (0)dco , p>o, q> — 2 .

Denote

(4. 2) L  = max (2, sup I /(x; D
T',.

w here U satisf ies the condition of  proposition 1.
Then there ex ist constants C , and 8(<1) such that

(4.3) sup g(x )1<
(
q 2 ) 1 L P M  If ; V0 } CO 3AErT8 q _ ,  2

where M {  f; V 0 }  = sup,eu,
and 8 and C , depend only on U and V ,; they do not depend on p, q
a n d  f .  Moreover, i f  p > q + 2 ,  w e need not to  assum e on U the
condition that U does not m eet the characteristic conoid w ith vertex
at  the origin.

We shall give the proof of this lemma at the end, and we admit
this lemma as proved.

Now we want to estimate Dvg(x), where

(4. 4) g(x) -2ck exp f (x ; (0)&0 .
1 52,

We assnme

(4. 5) sup 1D1'f(x; co)1<(
r +

Since /(x; co) is an analytic function o f x  and co, we assume

(4.6) sup ; co) <   11 !  L ,f o r 11, 1> 1 .
xEtT, -Fr P/11,1-1

For the simplicity o f estimates, we assume L > 1.
I f  necessary, by taking p ' smaller we can assume that

8  (4. 7) p' 
<

2 L  
8 being defined in Fundamental Lemma.

Moreover, we assume (by taking p  smaller in (4. 5)) that

(4.8)P < P / 1 8 .

Under this condition, we want to show that

f ( x  ; (0)1,



( 1—  (xi + • • + x.)
1 

*k( 1
) (

2
)

k(k+ 1)(k +2) ••• (k+ 11)

)k
, namely

— 1) = — C1( 1' 1-1 1v1!.v!
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(4.9) sup 1D vg(x )1< ( r  + 11)1)1 3Co LP A .
EUp 1 1 , 1

Now we operate D to (4. 4). We shall denote hereafter D"
instead of D .  T h e n , under the sign of integration, we have

(4. 10) CW {exp (i1)(il)P1

Now again by Leibniz,

{exp (i/)(//)P1 = C;D x exp ( i1 )D " { ( i1 )}  .

Here, we have
vi (

D ' exp =  E  exp WO' 1  k
k=1 k! '

min (P,114)
{ ( i 1 ) }  = E  C7,ik(i0P - 11,, k ,

where
( D P i i ) ( D P 2 i ) (D P k i )

E
P i +  .±Pk=, \ p , !  /\ p2! \  P k ! /

where the summation is taken over all partitions of v into k  posi-
tive (1 P i >1) vectors.

Now, we want to estimate 1 k • We shall write simply
instead of sup k l (  •  A t first,

.EU • wEv

L k  (4.11) I  ,kl < v! E 1.

This last summation can be majorized by the coefficient of x ' in

S i n c e ,  Ct,4,
11,1-1<c1-1<2211,1-1, we have

(4.12)i v , k 1 < - 1 2 ' • 1 1 ) 1 !  (LP') k ( 1 ) I ' ' ' •

Now, we apply Fundamental Lemma to the integral

exp (i.:!)k 1X, k ( i l ) Pl t 4 -  x , k i dco
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This function can be majorized by

Co { (L
8Pi ) k 

 2
1  ( : X I! I  ILP - v (Lpt)k i 21  ( : ,

)11, -xl It t  x 1 1 1 0 + t h
) ! Pl.

Since (L P )
( 2 j  and fortiori (Lpt)k i  < ( 1-

2 ) k i  w e see the fol-

lowing : In order to m ajorize TY'g(x), we expand (4.10) by Leibniz,
and we majorize there

1 k  b y  ( 11- " 11)1!( 4 )Iv1 ;2
Therefore, we can m arjorize D g (x )  by

co E C4 E Cqlxl! ( 4 Y r ( 1-0 r1)
k ---1

X(ItZ - Xl! (4,/4  )I" 1(   1  

)

/ ± 1  Lp_ (r + )! A .
P11, - ridp' k'=-1 2 

Since th e  first facto r < (— , and  the second  facto r4 )Im 1 
2

1/.6-X  1 I-LP, the term between {•••} is majorized by
4 ) 1p-2,1

2

(4.13)
( 2 1)2LP(p4' r  E C I ; J X . 1 !

The summation is majorized by E Cris! (L.s=o - s )! . Now by (4.8)

4 1 1 y id  ( 

4

3  yi( 2 yy,1

3

(  2  y p i 3  y i

p '  
<-

2 p
• Since 

(2p
 -  —   fo r IX

3p) 10) 4
(4. 13) is marjorized by

(32py  I L I , 14  csÉoo (  43  y tz (  2  y i ,,1 L i ,

319)

Finally, we see that  D g (x )  is marjorized by

C„LP ( r v l ) !  A ( 2 y _ 3coLp(rH-) ! A .\ 3

This completes the proof (4. 9) and therefore that of Proposition 1.

i l  b y  L ;  D f  by (r + H-1-4)1A.
p lY

Proof o f th e  Fundamental Lemma.

The proof is carried out in  the same way as in [5 ]. Namely,



342 Sigeru Mi zohat a

we follow the w ay of P. D. Lax ( [2 ] ) .  However, we need a more
precise argument. We adapted an argument of L . Schwartz to
our case (cf. [9 ], Exposé 6).

A t first, we remark that the integral

(4.1)g ( x )  = e ca"-Lo exp (i1)(i1)-1) f ( x  ; co)do)

has no more meaning as function when q >  —1. We understand
g ( x )  in the following way : g (x ) i s  the distribution defined by,

(6 > 0 ),

(4. 14) lim  e5 de x p  {(il & )} h (x ; (Oda) , h(x ; ca) = (11)P f
8 +0 o

where the convergence is taken  in  the topology of distribution
(i.e. 1 ') .  We can also define g (x ) as follows : For p(x)E D.

<g(x), q,(x)> = 1 dw exp h(x; (0)(p(x)dx .

We see that g(x) is a continuous linear form on D. T h is  fact relies
on the condition l„ -I,  0. Namely, by taking 1 as one of local coordi-
nates, we can show that the integral d o )  exp (il)h(x ; (0) p(x)dx

i s  majorized b y  Cm w h e r e  C m  i s  a constant majorized by
C (m , K ) E  Dvq,11,1 for cpE DK  ( K  is  a compact), and here we can

11, 16.

take m as large as we like.
Now we return to our purpose. We remark that in (4. 14) we

can take (i/—&)P instead o f (il)P. Then, if p > 1 , the integration
by parts gives

exp {(il —6) } (il — 6)PCk
-

-= exp (il — &)(11 — exp {(il —6) } (11-6)P - 1  e - 1 .(k ,

here we assume q > 1 .  We denote this relation by

exp (i/)(i1)Pc/ exp (d )(d )q - ' — q  exp (11)(11)P ' de .

Therefore, for p > q > 0 ,  the integration by parts yields

(4. 15) - exp ( i/ O (d )P ed e ,-,---, ex p  (il)
0 + 1

 (-1 )- 1 q(q —1)...(q — j +2)(11)P -  ,1 
1 1
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where 0! = 1, ( — 1) ! =1. Therefore we have

(4. 16) e exp (i/)(i0Pf (x  ; (0) do)
620

( - 1)l q(q — 1) • • (q —  j + 2) exp (i/)(i/)P - jf  (x ; co) c/co ,
f o r  p > q >  0 ,

(the same term as above)+q(q— 1) • • • (q — p + 1) - P
x exp f (x ; (D) do) , for q >  p > 0 .

G O

We see here that in the first case (i.e. p >q  > 0), the integral is
a continuous function.

Now consider

(4. 17) h(x) = rn d e x p  (iM f  (x  ; co) do,,

We want to prove that there exist 8 (<1) and C , such that

(4.18) s u p  h (x ) l<  ( m  + 2 ) !  M  If; , f o r  m >  — 1,TEu- - 8 r n  2

where 8 and Q, depend only on U and 17, ,  they don't depend on
m  and f .
A t first we assume that /(x ; (0) does not vanish on the sphere 120 ,

namely

(4. 19) /(x ; (0)1>  8' >  0 f o r  x E U and Co E u2,.

We assume here a ' < 1 . W e rem ark  that h(x ) is defined by

h(x ) = lirn è- exp {(il — E)} f (x ; (0) ,
E -1.0 J 1

where the convergence is taken in the topology of 1Y . T h en , by
integration by parts, we have

(4. 20)

exp {(il — &) }e" = exp (il )— m("1  — 1 ) (m  —  i 2)—  1)i .1-1( i / - 6 ) 1
Hence

sup Ih(x)1< 
( m , + 1 ) !  

sup f  ( x  co) I
On ' : xe(1,,,,E510

I f  we consider the case m = —1, — 2, we have

= I

m = q— p .
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(4. 21) h (x )i< 2 ( m  + 2)1 sup If (x ; (0)1 11,1, f o r  m >  —2 .8 m  2

Consider now the general situation. We denote Vx =  ;  / (x  ;  0 )
= 0 1 .  The hypothesis that U  (w e can assume hereafter U  small
set) has a positive distance from the characteristic conoid implies
that, on V ,  1-+  0 (see [2 ]  p. 6 4 5 ). Then, w e can take /  as one
of the local coordinates in the neighborhood o f V , on f2 0 . We
introduce also analytic local coordinates (u„ ••• ,u n _2)  o f V „, then
(u„ • • • , un _2 , 1) =(u , 1 ) forms analytic local coordinates on f2 , (see
our previous paper, [ 5 ] ) .  We can cover the V, by such a finite
number of local coordinates, and define a partition of unity sub-

ordinate to this covering :  E a i (u) = 1 .  Then, take a function 13(l)

1 (x ) = Qaexp (//)a .f (u),8(1) f cla) .

About h i (x ) there is nothing to say, because this case is essentially
the same one as l - 1-0 on f 2 „ .  Now we consider h P . d a) =J ; (u, 1)dudl,
where h is  an analytic function.

f  da) = f(u, 1) Ji (u, 1) dudl f ( u , 1 )  d u d l .

Here we have

(4.23)1  M  p u ,  1 ) i<  —  fk! m - f . v u i  — 1 , • • •  , p .
10 k  =  0, 1, 2, ... .

where p  does not depend on f ;  it depends on U  and Ve .

h ( x )  = de-Sai(u)duf  exp (iM 13(/)f3 (u, 1) dl .

By integration by parts, the last integral is equal to

exp Dr+2 [V) f  i (u, 1)] d l

1 
2 e x p IR(/)Dr±2f1+ E c',!' -' 2M3D7+2 - 'f.} d l.

(— Om + s * ,

of small support, which is 1  in a small neighborhood of / = 0, and
P

0 < $ (l) < 1 .  Then h(x )=h i (x )+ h n x ) ,  where

111( x )  =  i e " d L o exp WO [1 —0(/)]fc/co,
(4.22){
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Now look at the integral

exp worn& D'in+2 - s f ; d1 .

Integration by parts gives,

=  ( - 1 ) 'R '( / ) D r 1 {exp (d )  Dr , "  dl .

Since

D rif e x p D r + ' = exp C ;-1 (i)tD r1-t f

taking into account of the fact that 111> 8 ' ,  where ,8'(l)  I  0 ,  and
applying (4. 21), we see that

5- 2 c k a ; ( u ) d u  exp (il ) DL8 D r 's  f ;  dl

is majorized by

(4.24)2  E  C ; - 1   t l  ( n 1 + 1  t ) 1 M { f  ; V ,} S il,

where S ; =1 a 5 (u)I0V )Idudl .

Denote

(4. 25) 8 1  m i n  ( 8 ,, to
2

then, (4. 24) is majorized by

(m+1)!2   (s -1 )/ 1 / { f  ; V e }S ; J .
(2 8 )" '

Finally, h ( x )  is majorized by

2 ( m + 2 ) 1 M { f - V } [S °+  2 8   S •JE C T (s  - 1)1(28r+ 2 m+ 2, *0

where S°= 5 d c o . The quantity between [  ]  is  m ajorized  by
gto

2m+2(S° + / V =  2m 2S .
Therefore

( /1(2 ) (x) <  2 
(m  +  2) !

{ f ;  V t.} , j  =  1, 2, • •• , p .8m +2
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Since

h1(x)1< 2 ( m
8 L 2) 1 sup I f ( x ,  (0)1 I , we have finally

(4. 26) h(x)1< ( m + 2 ) 1 /1/{f ; K.} C0 .
8 m  2

where C„-- 211'2,1 +2 IÊ  S .  T h is  is nothing but (4. 18).

Now we want to prove (4. 3). From (4. 16) we get
i) for p > q  > 0, Ig(x)1< L P q! 111,1 sup I f (x ; (01

0 J  S-20

ii) for q > p > 0 ,

sup g(x)1< LP q! 11-20 1 sup I f (x ; cOl ( ±2)! {f  V c }C, .
k V  0 1 5 a 1 2

Therefore, if  we take

(4. 27)C >  110,

we get (4. 3). Now we look a t the case q =  —1, —2. F o r  q =  —2,
(4. 3) is evidently true . F o r q= —1, we have

— exp (il) + exp (i/ )(i/ )P ' - 2 c/ ,
f o r  p > 1 ;

exp , f o r  p = O .

Therefore, for p > i ,

g(x)1<2LP '42,1 sup f (x ; a) )  o  V  42„1 sup If (x ; co)I ;

for p= 0, by (4. 18) we have
1sup g (x )!<  -  I f i f  

•
• KT C'

'Eu ° •

This completes the proof of Fundamental Lemma.

5 .  Proof o f Theorem  1.* )

We start from the

* )  The part (p. 347-352) is the same as that of our previous paper (i.e. p. 275-281) :
Solutions nu lles et so lu tions non  analytiques, J .  M ath . Kyoto Univ. 1-2 (1962). To
m ake th is artic le  self-contained, we reproduce it.

'exp (i/)(d)P - ' c/
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Lemma 1 . L et a(x ) and b(x ) be two analytic functions, we assume

ilY 'a(x)1 < ( r  + I)! A k > 1 ,(k p)i

Ip v b(x)I < ( s H I ) !  B
l I

w here r and s are non negativ e integers. T hen w e have the follow-
ing estim ate:

ID '(ab)(x )I<
( r  +  s  +  H p !

 (k I k —1) AB I .
p pt

Proof:

D '(ab)= E C D P 'a • D b  .  Since E c..<q?1, we have

AB11)'(ab)l < 2 ,C ,'''( r+P)!(s+lv  - p ) !  ( 1 / k ) ..
p p, P = 0

C 3 + 1 1, 4 2 -
N o w  q ( r+P ) !  (s+1 1)i — P)! = C ( r ± s + I v 1 ) ! <(r+s+ H 1)!IC ;+ 8

because >

Hence,

AB(r+s+11)1)!EI'l ( i l k ?11:P(ab)l <
C;:+s /P I p-o

and the last factor <k lk  —1 .
Consider the equation L [u ]=f (x , t) , where

L  = —a + ai (x, t)  a   +b(x , t) ,at ,== axi

where ai (x , t) are functions with real v a lu es . We assume :
ai  and  b are real analytic functions,

(5. 1) <(1v1 -1 )!
( 3 p r -

H I! 7

(3p)
I I

namely :

ai (x, t)1 < 7 ,

.

Under this condition, we want to estimate the solution

(5.2)L [ u ] f ,  w ith  m itai data  O :  u(x, 0) ---= O.
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Lemma 2 .  Assume

(5.3)f ( x ,  t ) 
< ( r

' 1)1 exp (7t)K(t)r+ , where r  > 1  .

Then

(5.4) I t)I < 2 ( r 1)1 exp (7t)K(trIvi Al 7n ,

where K(t)— exp (7nt)(1+ ynt) .

Proof. A t first,

u(x, t) r ! exp (7t)A t K(s)r ds

< r !  exp (7t) (1+ 7nt)r exp (r7nt)
r(yn)

this proves (5. 4) for v=0.
Now we want to prove (5 . 4) as  follows :  Denote U m (t) =

max sup u(x, t)1.

Then, w e shall have, taking the differentiation of (5. 2), and
taking account of (5.1), 2 )

(
dt
d 7 — mn7)u n i (t) <  f , ( t )+ um _ p (t)(C ;7 „n + C  h

I
')  '  7  .

p 1 2 (M P

Assume here that for um _p (t), p> 1, the inequality (5.4) is true.
Hence, in the above inequality, the term u,,,_(t) •••, can be majorized
by

(1/ 3)P (C7,„ )  ( r  +In—  1 —P)1 P1 2A exp (70 K(t)r+nz- p
n 

2 )  The argument is the same as given in  [ 6 ] ,  even simpler. Let us reproduce it.
We operate Di ( —,

o
a  ) to  ( 5 .  2 ) .  Then
x

L [D iu ]+ (D itio (D k .)+  (D 1b ) ( u )  = D f .
k=1

In general we have

(D i b ak )(D i i — bi p . - D i„p k u ) +  E  E  ( D ip p i g a k ) ( D i i
— b i p • A g

k =i  p=i k  P,4
• • • D i . D k U ) +  •  •  •  + ( D i i •  •  • Di „,ak )(D k u)+

+ (D i p b)(131 1 . • • 1L)i p . D i  u ) + ( D  D i q b )(D 1 1 • • •
P,q

+  (D i  i •  -D i.b ) (u )  = D i  t . • • D i f

Taking account of ( 5 .1 ) ,  we have the desired differential inequality.

,a - • .D,.,„u)+ •••
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Since (r + m - 1 -  p ) !  p ! + m-1)! C;; ' ,  and C 1<mC?,
C;; -"a- l> C ;', we have

(C
1

';„+—
n

C ;) ( r+ m — l — P ) !P ! ‹ . ( r+ r n - 1)!(m +-1 )

< ( r + m -1 ) ! (m + 1 ) .

Hence
P( r + m  1 ) 1  2A exp (7t) K(t)r ' (m +1) i 'n (  .•••p--i Pm

S i n c e  f  <
(r + m)! exp (7t)K(t) "  A , the integration gives,

Pm

U m (t) < (r + m 1)! e x p  ( 7 0  Kor n, 7 n  ± (r +  m  1)! e x p  ( 7 0  K y r m  A

X (m + 1) / (r + m) (y n) .

Since r> 1 , (m+1)/(r +m )<1 , the above inequality shows that (5.4)
is true fo r 12)1<m .

L e m m a  3. Under the sam e condition as lemma 2, consider the solu-
tion u  o f  L [u ] -= 0 . W e assum e on the in t ia l value

!D:iu(x, 0)1 < ( r  + 1') i ) !  A r >  0  then w e have

D'nu (x , t)1 < 2 0+ !

 e x p  (y  t) K ( t )
1
'  A  .

Since the proof can be carried ou t in  the sam e w ay as the
previous, we omit the proof.

Proposition 3 .  Consider the solution u(x , t) o f  L [u ]=  f(x , t) with
the condition u(x, 0 )= 0 .  W e assume

(5. 5) I a'D 7f(x , t)1 <  ( r  +H I ) !  exp (7 t)K (t)r qLI'leynYA, r > 1 ,
p a +Iv'

then
— 1+q+ Hp!(5. 6) u ( x ,  t ) <  2 s - exp (7t)K(t) q ''''(7n)" A

P q

where y  and  p  satisfy , in addition to  (5. 1), the following condition :

(5. 7)>  min (6y„ 27) ; p <  1/18 .
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Proof. For q =0, (5 . 6) is nothing but Lemma 2. We are going to
prove this lemma by induction on q. Let us assume that (5. 6) is
true for q =0, 1, •••, p— i, and we want to prove for q = p. DIt'u(x, t)
is  the solution of

(5.8)L [ D u ]  =  f =  C ! !  . ±  (D r ai ) (D D i u)+ (Dr- so(au)} •

We put this second hand, = D' f+  p (x , t), and divide D'/u in
three functions :

D u = u 0 + + u2
where

1) uo (x , t) is defined by

L[u 0 ] 0, u o (x, 0) D't 'u(x, 0) ,

2) u„ u 2 a re  defined by

L [tti] = } with zero initial condition.
a u 2 ]  =

A t first, consider ui (x, t). By Lemma 2 , we have

(5.9)l a u , ( x ,  t)l <  ( r + P
-

1 +
 exp (ryt)K(t)r+P (7n)P A(  2  )

Now consider u2 (x, t). We want to estimate a p (x ,  t ) .  Take the
term (Drs a i )(Dgf D i u) in  (5. 8). The derivatives D", of this function
is  majorized, using Lemma 1, by

(r — i+p+ IVD! ( 1 ) P - s - 1 27/C;; -
1Y.:- 1  X exp (ryt)K(t)r l'I(711)" .

\ 3 I

For the simplicity, we write this fact by,

1 (D1,'- ' ( D D i u) (r — i+p+1 , 1 ) !(  3 
) P

2 7 ( 7 u ) s / •

In the same way, we have

(Drg b)(Bou) (r —1+ p + Iv1 ) !( - 1
3--) P  s  27(7n)s I .

Since C7/ C;:_4,3)- 1  < < p ,  and C;,1! - - 1 - > 0 _ 5 = C2 , we see that
cp(x, t) is  majorized by



Analyticity of the fundamental solutions of hyperbolic systems 351

( r — 1 +  p +  H I)!
 exp (7t)K(t) 2(  3 p+ —

1
) (ry n)(7n)P A .

2 2n

Then by Lemma 2, we have

(5. 10)

lau2(x, (r-14-P-Elv)! exp(ry t)K (t)r+P+I't
4(3  + 1 )

(7 n )p-i Al  2 P  2 n  
r+p-1+11)1} ,

3where the last factor is  majorized by 4 (  +   1   ) <4.2= 8.
2  2pn

Finally consider uo (x , t). Now we want to estimate D,.'u o (x ,t)
by means of Lemma 3. For this purpose, we are going to estimate

auo(x , 0) 0) .
(5.11)

P -2 n
Dl'u(x, 0) = D rif (x , 0)—E crilE (D r i - sai )(Ds,D i u )+(D r's )(D :u )}

— ( a i (D r i Di u )+b (D r l u))

W e put th is second member = W V +  v,(x)+ v2(x). A t  first, we
rem ark that th e  estim ate o f  14 v i ( x )  was obtained previously,
namely

(5 . 1 2 ), (r  2  + p+  ivt)!  2  { I ,3 p + 1 }
p p -1 -1 -1 1 2 ‘1' n

Or, since 2 {  23 (p— i)+ 1 }< 3 p , ( r+ p -1 + 1 ,-) ) > p

(5.13)i f f ' v 1 ( x ) 1 <
( r+p -1 +1 1 ) ) !

(7n) P - 1 A •3

02),(x)1< f r + P - 1 + 1 v 1 ) ! (7n)P(2-7 (1 +6p)(5. 14)
p P tIV I 7 •

In fact,

f r( a i •D rlD i u) = a i (D I'D r'D i u)+E  C ",(D a i ) ( D r'D r'D i u).
1., *0

The first term of the second hand is majorized by

27, ( r + P - 1 ±  HI ) !  (7n)P'A  ,
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the second term is majorized by

27 (
)

3  ( r - F -P - 2 + 1 v 1 ) 1  (7n)P - 1A ,2  P P -1 +1 1 ,1

and If ' { b(D r u)}  is majorized by

(  3 2 7

)

(r + P-1+ 1H)!  ( 7 n ) p_ A
2  

Since

M p r if(x , 0 ) <  ( r + P  1 +  I n )!
 (7n)P - 1A  ,  we have

p p+odi

D u o(x , 0 )  <  P  — 1 + I vl)! (771)P ( 4 +2 7 ° ±6p)App-1-11,1 ryn

Hence, by using Lemma 3, we have

(5. 15)

Dl'uo(x, t)I ‹  + P 1 + !(7n)P exp (70K(t)I2 ( 4 - + 2 7 -° + 6p) A .
yn

Adding (5. 9), (5. 10), and (5. 15) we have finally

(5. 16)
'YD7u(x , t)1-..< ( r  P , ±  11' 1)  exp (ryt)K(t) 1 P ( y n ) P 2 (

9
- -  + 2  +6 p)A

PP  +1 yn

By the condition on 7 and p , mentioned in the statement of this
lemma, the last factor is less than 2, which proves (5. 6) for q = .
Our proof is thus complete.

Proposition 4 .  Consider the solution u(x , t) o f  L [u] =0. Concern-
ing the initial v alue u(x , 0), we assume

(5.17) 1  D 41(x ,0)1< ( r  ± 1v 1)1 A , r  >  0, then
p lv 1

(5.18) 1 L)'/Y ,iu(x, t)l <  2 (r 4
-
 q  ± H  )1  exp (ryt)K(t) '''''''leyn)q A  ,
Pg +iv i

where y  and  p  are assum ed to satisfy  (5. 7) o f  Proposition 3.

Pro o f . For q = 0, (5. 18) is nothing but Lemma 3. For q > 1 , the
proof is almost same as the previous Lemma, so we omit it.
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N ow we turn to the estimate o f 0 • R em ark  th a t 0-;,; are
defined as follows : For i + j ,

(5.19)c r l i ( x ,  t ; co) =  s„(x , t; co) {01,2-1)t +

where L i") is  the first order differential operator of the form :

L [ u ]  = A ti)(x , t;
au

t ;  (0 )u
'ax , k

where all the coefficients, together with s , are analytic functions
of (x, t, co).

After (5. 19), we define finally (T„': as the solution of

(5. 20) Li [o ] — E Li")L[oInk] ,
k  ; I r * i

with the initial condition :

(5. 21) 0 (x ,  0 ;  w ) — E  o ( x ,  0 ;  w ) .
k ; k * ,

t ; w) are defined as follows : crV= 0, for i
fined as the solution of (5. 20), namely,

(5. 22) Li [o V] 0 , w ith  the initial value

(x, 0 ; (0)= 0-1(x ; w ), where

0

= o-i(x, w)Ri (x, 0 ; w) .
i=1

,

Then we have the following

Proposition 5. W e assume

cOl < 11)11A then
Pi '

are de-

(5. 23)

I DWI Gl(x, t ;  w ) < ( m
)  

l exp (7t)K (t)m +P+I'l nr+ P (2A)C'on ,

fo r  0 < t< 1 ,  where Co i s  a large constant conveniently chosen.
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P roo f. For m=0, (5. 22) and the assumption, yields, by Proposition
4,

D D  0- ir 1._< 2 +(P 1H ) l exp (yt)K(t)P -1 (yn)P A .pP

W e assume now  that (5. 23) i s  • tru e  fo r of, • •• , , and
prove (5. 23) for W e can  assume th a t a ll the coefficients of

together with si ;  have the rad ii of convergence greater than
3 p . Then, from (5. 19), by using Lemma 1 , w e have for

(5. 24)

I DI'DY crLii-,1 <  M ( m +
p

l +
+ ,+

P pt, 1 1')e x p  (ryt)K(t)m

where M  is determined by L e , su .
Next, putting

f . - E  L (ki  ) +a w e  d iv id e  0-;;,'+ 1 in  two functions :kti
01,:+1 k 2 + 1  +  „n ,  where
LV ) [ ]  = , w ith  zero  i n i t i t a l  value : (x, 0 ;0 ;

LV ) [ 8 n ]  =  0, w ith  th e  g iv en  in it ia l d a ta  g iv e n  b y  (5. 21) :
cr 4-1(x, 0 ; = ŒV;41(x, 0 ; co).

k i

B y the hypothesis, we have

f,(72,11 < m 2 (m + 2 +  p+  \
p'n+ 2 - ■ P+111

#jilL tin -1 - 1-- P  v k yn yn + PACon,

B y using Proposition 3 , w e have

(5.25)

Iff,'/Y;8;,';+11 < 2 M
2 ( m ± l ± P + 1 1 ) 1 ) !

 exp P 1nz+2+p rill +1■1(711\ m i l
) PAC"'0 •

On the other hand

IT48',gA (x, 0; co) <  M (N -1 ) (m + 1+ )  !  (7nr ± i ACon .

B y using Proposition 4 , w e have

(5. 26)

j);',1)';8.' <211„Ml /1(N -1 ) p m I l+ P±IlI
( m + 1 -  P+12, 1)! exP (7t)K(t)m±'±P± 1' 1 (ryn)"'"ACg'

P+Ivleynyn±i+PACg',
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Adding (5. 25) and (5. 26), we have

(5. 27) D ,6 0 7 ; < + 1  <
( " 1 + 1 +  P + 1 H )1

m ±i±p+Iv i

x exp eyt)K(tr+ 1+P+'''(7nr+ 1 +P2AC;; K(1) + M(N -1 )}

for 0 < t < 1 .  Therefore, if  we choose C, in  such a  way that

(5. 28) C, > 
1112

 K(1)+ M(N —1) ,

(5. 27) shows that (5. 23) is  tru e  for 0- 1 , which completes our
proof.
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