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During the year 1961 a series of papers dealing with the
problem of imbedding of the Schwarzschild space-time was written
by one of the authors and other two, and many valuable results
were obtained [3]. The process by means of which the problem
was completely studied was recently applied to a treatment of
the imbedding of spherically symmetric space-time (abbreviated
s.s.space) [4]. The present paper is written as an addition to
the paper [4].

It is generally known that the fundamental form of s.s. space,
with respect to the time coordinate ¢ and spherical ones 7, 8, @,
is given by

eds® = G(t, r)df'— A(t, r)dr*—B(t, r) (d6"+sin® 0dg?) .

If the function B(f, ») is constant, such a space is called S,, space.
On the other hand, if B is not constant, it is shown that there
exists a transformation of coordinates such that B is reduced to
7r* [7,1]. The space is denoted by S, space. It has long been
known that any s.s.space is of class at most 2 in the sense of
imbedding [2].

Among S, spaces those of which the function A(¢, »)=1 have
some special properties. For example, those spaces are not of class
1, as proved by H. Takeno [7,III]. In the previous paper [4]
we excluded a discussion of those spaces, because the general
method used in the paper was not applicable to them.

The exceptional case will be treated in the present paper, and
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thus we consider s.s. space, the fundamental form being
0.1) eds’ = G(t, v)dt*—dr*—r*(d& +sin’ 6dp”) .

A part of this form dr’+7°(d6*+sin’® d¢?) is clearly the fundamental
form of an euclidean 3-space with respect to spherical coordinates.
In this point of view we shall generalize the dimensional number
of (0.1) and thus obtain a notion of a G-extension of an euclidean
n-space E" as follows. First we consider the product manifold
RXE” where R is a field of real numbers. Then we define on
this manifold a Lorentz metric

(0.2) eds* = G(«°, 7) (dx°)2—g‘, (dxi)?

where 2°€ R, r =/3)(x%)?, G is a positive-valued function of x°
and », and xf,7/=1, .-, n, are rectangular coordinates of E”. It
is obvious that, in the case #=3, the form (0.2) is equivalent to
the original (0. 1).

An effect of the above generalization will be seen in § 2, and
it will be shown that, if =2, there exist G-extensions of class 1.
In consequence of use of rectangular coordinates, the theory of
spaces of class 2 will be treated uniformly in 8§ 3-6. Thus we
shall give an almost complete theory of the imbedding of a special
class of s.s.space for which A(¢, »)=1.

§1. A G-extension of an euclidean space.

We consider a G-extension, whose fundamental form is given
by (0. 2), and denote it by G"*'. We use sometimes in the following

normalized coordinates (¥;), i=1, 2, ---, n, which are defined by
_x _ or
(1' 1) yl' - 7 axi .

from which it follows immediately that

2y; 1
(1.2) 22 =1, 2% = 7 (Bij_yiyj) .

Making use of (y;), Christoffel's symbols 1%,, «, 8, y=0, 1, -,
n, are



A special class of spherically symmetric space-times 99

1 3* l‘gOZZG—é) I-‘gizl‘?():zgéyi)
(1.3) e

o = > Vi other L'y =0,

and components of the curvature tensor R,gys are
(1.4) Ryo; = (P+Q)y:;—Q8;;,  other Rygys =0,
where we put
2
(1.5) P=-Coile =0
Furthermore, from the definitions of the Ricci tensor R,;=g"R,qss
and the scalar curvature R=g"R,, it follows that

1

(1' 6) Roo = (n_l)Q_P’ Roi =0, Rij: ERoioj;

1.7 :%{M—DQ—Pl

We shall find first a necessary and sufficient condition for
G™' to be flat, that is, the curvature tensor vanishes.

From (1.4) it follows that R,;¥;y;=P=0. Consequently, if
n=2, we have Q=0 from (1.6). Conversely, assuming #=2 and
Q=0, it is clear that P=0 by the definition and hence G"*' is
flat. In the case n=1, if P=0, it follows from (1.4) that R,,=0.
Therefore we have

Proposition 1. The necessary and sufficient condition for G™"'
to be flat is that P=0 for n=1, and Q=0 for n=2.

Next we consider components of the conformal curvature
tensor C,gys. If we put

1 R
1.9 s = 25 (R = £ )

then C,gys are expressed as

* Throughout the paper Greek indices take the values 0, 1, ---,»# and Latin 1, 2, -+, n.
We shall also indicate the partial derivatives of a function with respect to x* and r by
subscripts @ and 7 respectively with commas. We shall omit comma in case there is
no danger of confusion.
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(1.9) Coupys = Rapys — Gavlps — oslay+ uslpy + Loyl as -
By means of (1.6) and (1.7) we have
ly = = [(1=DQ—P1, 1;=0,

g = 229 (- Ls,)
= e\ %)

(1. 10)

and hence we obtain
—2) (P+ 1
Coioj = (—’L-H (J’iJ’j T 3.',‘) ’ Cojr =0,
(1.11)

P
Cijkl = (n——_‘_l-% [8ikyjyl + leyi.yk - Silyjyk - Sjkyiyl

- % (aikajl_ 3:’18]'12)] )

It is well known that G**', n=3, is conformally flat if and only
if C,eys=0. We see easily that the condition is given by P+@Q=0
for =3 in virtue of (1.11). On the other hand, G* is conformally
flat if and only if /.5,y —/,y;p=0%. From (1.3) and (1.10) it follows
that

n
loi;j_loi;i =0 ’

oyl = G5 [ B P+ @— @t @)] (3, 1 8,)

_ 1 G, _ _
Lijie—linij = nin—1)G [? (P+Q) (Pr+Qr)] Gijye—0uy;) .

In the first place, equations (/;,;—Z:;.0)¥;=0 and (/;;.p—li. ;)67 =0
give P+Q =c G (c =constant). Hence we have /,;—/;,=(Q,—
(G,](2G)Q)=0, so that Q,/Q@=G,/(2G), and then we have easily
P+@Q=0, the same result as derived for the general case n=3.
The converse is obvious. Thus we have

Proposition 2. The necessary and sufficient condition for G,
n=2, to be conformally flat is that P+@Q=0.

* Throughout the paper semicolons denote covariant derivatives.
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In particular, we are interested in the case where G**' is an
Einstein space from the physical point of view. We have, however,
the following theorem.

Theorem 1. If G"*', n=2, is an Einstein space, then G is
necessarily flat.
In fact, if G"*' is an Einstein space, that is R,s=(R/(n+1))g.g,
it follows from (1.6) and (1.7) that

2
n—1)Q—P = m[(n‘l)Q—P] )
(P+Q)y;y;,—Q0;; = —Z%[(n_l)Q—P:IBiJW

The first equation gives (n—1)@ —P=0 and then we have from
the second that R,;,;=0.

§2. A G-extension G"*' of class one.

Since G* is a S, space such that A(¢, »)=1, it is known that
G* is not of class 1, in consequence of the theorem proved by
Takeno [7, III]. However, we generalized the dimensional number
as defined in the introduction, and hence we may expect the
existence of a G*' of class 1. In this section such a G"" will
be considered.

A space G**' is of class 1, that is, G™*' is looked upon as a
hypersurface of a pseudo-euclidean E”*+* if and only if there exist
e==1 and b,(=b,,), satisfying the Gauss equation

Gy eR,pys = byybps—bysbey
and the Codazzi equation
(Cl) baﬂ;v_bm'v;ﬂ =0.

The sign ¢ in (G,) is an indicator of the normal of G"*!, and b,
are components of the second fundamental tensor of G"*'. By
means of (1.4), (G, is expressed

(2 1) eRoioj = boobij_boiboj ,
(2~ 2) bojbik_bokbij =0 ’
(2.3) birbjr—bibjr = 0.
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From (2.3) it follows immediately that the rank of the matrix (b;;)
is at most 1.

We consider first the case where b4;;=0, 7, j=1, 2, -+, n.
Making use of (1.4), the equation (2.1) is written concretely
(2. 4) QB,] = (P+Q)yiyj+ebo,'boj .

The matrix, whose elements are right-hand members of (2. 4), is of
rank at most 2. Since we should assume that G"*' under consid-
eration be not flat, the quantity € does not vanish by Proposition
1. Therefore we know from (2.4) that #=2 is necessary in this
case.
Contracting (2.4) by y;, we have
Py;+eby+b,;y; = 0.

If b,;¥;==0, there exists a factor A such that b,;=\y;. Substitu-
tion of this into (2.4) gives a contradiction n=1. Therefore we
have

(2.5) by;y; =0, P=0.

Thus (2.4) is a system of three equations
QO;;—y:y;) = ebyby;, ¢, 7j=1,2,

from which we obtain easily

(2.6) by = M9, A==xVeQ, i, j=1,2,

where e+1 must be taken as ¢Q >0, and we used skew-symmetric
quantities &; such that &,=—¢, =1, &,=¢,=0.

Next we consider the case where the rank of (b;;)=1. Then
there exist b;, i=1, 2, ---, n, such that

(2. 7) b;j = 'l]b;bj y n = ﬂ:l .

From (2.2) we see also an existence of §,, by means of which b,
are expressed in the form

(2. 8) b()] = 7]bobj .
We substitute in (2.1) from (2.7) and (2. 8), and then obtain
(2.9 Q3;; = (P+Q)y:y;—e(nby,—b3)bb; .
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The process which was used to obtain #=2 from (2.4) applied
equally well to (2.9), and then we have =2 as well. Further
contraction of (2.9) by y; gives

Pyi_e(ﬂboo_'bg)bi'bfyf =0.

If (9b,—b5)b;¥;=£0, there exists A such that & =2X\y;, and substitu-
tion in (2.9) leads to a contradiction. But, if 3b,,—b=0, we have
again a contradiction from (2.9). Hence we obtain

(2.10) bjy; =0, P=0,

similar to (2.5). Finally we solve (2.9) for b; and obtain

2.11) by = pi;9;, p=EtV—eQ[(nby—b3), &, j=1,2.
Summarizing the results of the above two cases we obtain
Proposition 3. If non-flat G*', n=2, is of class one, it is

necessary that n=2 and the quantity P=0. Then we have only two

systems of solutions e=+1 and b,z of the Gauss equation (G,) as
follows.

Case 1. b, is arbitrary, b; =0,
boj = Mk Ve, ,, j, k=1, 2,
A= EvVeQ, eQ>0.

Case 2. b, is arbitrary, b;; = nbb;,
by; = nbb; , n==+1, i, 5, k=12,
b; = wepude, wB= £V —eQ/(nby,— b3)-

The following theorem is a consequence of the above proposi-
tion and Proposition 2.

Theorem 2. If G™', n=2, is conformally flat, and of class
one, then n=2 and G is flat.

In this place we observe that, in both of the above two cases,
the matrix (b,s) is of rank less than 3. It is generally known
that, if the rank is more than 3, the Codazzi equation (C,) are
automatically satisfied as a consequence of (G,) [1, p. 281], [6].
That is, however, not the case for our problem, and hence we must
treat furthermore the equation (C)).
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Now, (C)) is, by means of (1.3), expressible in the form

G G, G

(2 12) boo,i— boi,o_ boo éz;‘ yi+boi 2—G+biiyj —ZL =0 ’
G, G,

2.13) boi j—boj i— by 5G Y;i+by; acYi = 0,
G,

(2.14) byi j—bij o+ by ocYi = 0,

(2. ].5) bij,k_bik_j = 0 .

Case 1. We shall first treat the case 1 in the proposition 3.
Since b;;=0, (2.15) is trivial. We see easily from (2.5) and (1.2)
that

1

boj,oyj =0, b,y = Y by; .

Accordingly, applying contraction of (2.14) by y;, we obtain

G, _ 1
2. 16) Sr =

It is easily verified that the condition P=0 as shown in the above
proposition is obtained as direct result of (2.16).

We now return to consideration of (2.14) itself which is
written

1
boi,j+boj 7)/, =0.
Substituting from (2. 6), the above equation can be rewritten
A
2.17) AiCin Ve +7 (Ei;—CuyeyitEuyey) = 0.

It is easily seen that identities

(2.18) Ei—Cu V)i T Ei iy =0

hold, and hence (2.17) gives A;=0 only. On the other hand, we
have from (2. 16)

(2.19) G=rgx), Q=gx",

where g is a function of x° alone. Therefore ;=0 are automa-
tically satisfied.
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Equation (2.13) is clearly obtained from (2.14). Finally we
are concerned with (2.12), which, in virtue of (2.6) and (2.19), is
rewritten as follows.

1
boo,i -

7booyi =0 ’

and hence we have b,=7b(x°), where b is an arbitrary function of

x°. Consequently, in the case 1, we obtain e¢ and b, satisfying

(C,) as follows.
boozrb(xo)’ bij :O;
(2.20) by = AEjuhs
A= tVeg(x®, egx) >0, where G =7rgx).

Case 2. If follows from (2.10) that
_ 1
bj,oJ’j =0, bj,iyj = T b;.
With the aid of (2.11), equation (2.14) is written

(o, p;b0) Esr i+ % by (Ei;—EinVy;)
@. 21) .
—2ppo€ir Y€1 Y1+ pb, 2—(’; Y€y = 0.

In applying contraction by y;, we have
G 1
Sy (Zr. — 1) =
/"bo 1]yx (2G 7 ) 0 .
These equations lead us to classify this case into

Case 2-1: b,=0. In this case (2.21) gives u,=0.

Case 2-2: b,==0, and G,/(2G)=r""'. In this case, making use
of (2.18), we have from (2.21)

(2. 22) #0s j+ by = 28 1Yy -

Next we consider (2.15), which, making use of (2.18), is
expressed in the form

2(1s€ Y5 — :u'jgkhyh) Euyi+ % (Ei€in—Cii€m)yn = 0.
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Since n=2, this is equivalent to the single equation
(2.23) 2u; y,-+—';f— =0.

It is clear that (2.13) is automatically satisfied from (2.14).
Finally we shall deal with (2.12). In the case 2-1, the equa-
tions are of the form

G, , _
boo,i_booz_Gyi =0 )

and hence we obtain b,,=(G)"*b(x°), where b is an arbitrary func-
tion of x°. From the definition of x4 we have

P

7 Gb(x°)"
Because of u,=0 as above obtained, @ is expressed in the form
(2.24) Q = VGb(x)h(x?),

where %(x?) is independent of x°. Now (2. 23) is written hxi= —#,
from which it follows that %(x', #°) is homogeneous function of
degree —1. By means of P=0 and (2.24), we have ri(x))=1/b(x")=c
(=constant). Consequently we have, in the case 2-1

bij = — e%c i1V,
(2. 25) —
VG

oc

b; =0, by , where G,=2./G .

We now turn to a consideration of (2.12) in the case 2-2.
Equation (2.12) is written

1. _ G,
(2 26) boo,i - boo 73’;’ = ﬂeijyj <bo,o:u'+b0/"o Z—Gb(“w) .

Since the condition (2.19) has been imposed as well, we obtain
from the definition of u

2.27) by = (b~ eg%)) .

In order to find solutions of (2.22), (2.23), (2.26) and (2.27) con-
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cretely, we now suppose that both of b,(x°, x', ¥*) and u(x°, x*, x°)
depend upon x° and r only. Then (2.23) is written in the form
2u,+(u/r)=0, and hence we have u=f(x")/\/7, where f is a
function of x°. Next (2.22) is expressible as

(2- 22,) (/"bo)ry i = 2/"/"081' ke -

Contraction of these by y; gives ub,=h(x°), where % is a function
of x°. Hence (2.22") gives p,=0 only, from which it follows that
the above function f is necessarily constant. If we denote by ¢
the constant f, then we obtain p=c/\/7, b,=~7h(x")/c. In
virtue of (2.27) we have b,=nr(h*—eg)/c®. If we substitute the
expression of b, into (2.26), and integrate the resulting equations,
then we have h=c\/¢g, where {=+1, £g>0 and ¢ is an another
constant. Finally we obtain

by = TED (o), by = e/ EE N,

(2.28) b;; = % €y, m, & e==x1, §g>0,
c(==0), ¢ = constants, where G = r’g(x°),

in the case 2-2, under the restriction that both of &, and wx are
function of x° and 7.

Thus we obtained three systems of solutions (2.20), (2.25),
and (2.28). We observe that (2.20) and (2.28) were obtained
under the condition that the function G is expressed as 7°g(x°).
On the other hand (2. 25) was found when G satisfies the equation
G,=2\/G, from which G=(r+g(x°))’, where g depends on x° alone.
Furthermore it is observed that there remain some freedoms of
determinations of ¢ and b,s, and hence G® as a hypersurface of E*
is not rigid. Summarizing those results we have established

Theorem 3. A G-extension G"', n=2, is of class 1 if and
only if n=2 and the function G(x°,r) is of the form

G = r’g(x") or G = (r+g(x°).

Then G® of class 1 is not vigid as a hypersurface of a pseudo-
euclidean 4-space.
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§3. The Gauss equations of G"*' of class 2, L.

In this and the following sections we shall be concerned with
a space G"™', n=2, of class 2. Since G"' is looked upon as a
subspace of a pseudo-euclidean (#+ 3)-space, we take two mutually
orthogonal unit vectors normal to G"*'. Then we denote by ¢ and
¢ (= =x1) indicators of normals and by b, and ¢, the second
fundamental tensors with respect to these normals. These quantities
should satisfy the Gauss and Codazzi equations.

In this and the next sections we shall deal with the Gauss
equation
(Gy) Ropys = €(Daybps — basbpy) + € (CayCos — CusCoy) -
We observe that this equation is algebraic in character. It is
clear that a system of solutions e, ¢, b,s and ¢,z of (G,) will be
uniquely determined, because two mutually orthogonal unit normals
may be chosen arbitrarily, and hence a system of solutions will be
transformed to an another one according as normals are changed
[5].

In this section we shall assume that there exists a system of
two normals such that

3.1) by =+=0, ¢,=0

hold, while we shall consider, in the next section, the case where
there does not exist such a system of normals. For details on a
transformation of the second fundamental tensors corresponding
to a transformation of normals, we refer to a forthcoming book
[5].

Now, when (3.1) is satisfied, (G,) is of the form

(3.2) Ry,; = e (boobij_ boiboj) —€/ChiCo;
(3.3) €(bobir— borbi;) + € (CojCin—cConCi;) = 0,
(3.4) e(bipbj;—bibjp)+€ (CinCiji—CisCir) = 0.

The first of them is rewritten as
(3.2) bi; = bi (Roioj + €byiby; + €'Coico;) -
00

We substitute in (3. 3) from (3.2’), and obtain
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n 1 ! ,
(3.3) b (boj Ryior. — by Roso5) +b'e" Coi (DojCor — bosCo;) + € (CojCir— ConCi;) =0 .
00 00
Multiplying (3.3") by ¢, and summing three equations obtained
from it by cyclic permutation of indices j, # and /, we have

(3° 5) Roioj (bokcol - bolcok) + Roiok (bolcoj - bojcol) + Roiol (bojcok - bokcoj) = O .

It follows from (1.4) that the det. R;,;=P(—@)""". Since we
are concerned with non-flat G**, the quantity @ does not vanish
by Proposition 1. It will be convenient that det.R;,; does not
vanish, and hence we will assume P==0 for a while. Then there
exists an inverse matrix (S”) of the (R,,;), and we see easily

55 = (p+a) 3=
In applying contraction of (3.5) by S#, we obtain
3.6) (n—2) (bojCor—borcos) = 0.
Therefore, if we suppose
3.7 P=+=0, and #»n=3,

then we have b,;c,.—bnc,;=0. From this we see that there are
only two possible cases as follows.

L. boj:()’ j=1, 2, cee, K
II. At least one of b,; does not vanish.

In the latter case there exists a factor p such that
3.8) Coj = Pbyj, JF=1,2, -, n.

Case I. Equations (3.2") and (3.3") are of the simple forms
(3 2 //) bij = bioo (Roioj+e,coicoj) ’

/]
3.37) CoiCit —CoCi; = 0,

respectively. We shall show that ¢,; are all equal to zero. For,
otherwise (3.3”) gives immediately

(3. 9) Cij = >\’coicoj ’
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where A is a function. Substituting in (3. 4) from (3.2"”) and (3. 9)
we obtain

/
Roz‘okanoI - Roz‘olRojok +e (Roiokcojcol + Rojolcoicok

(3.10)
- Roiolcojcok - Rojokcoicol) =0 y

and contraction by S/ gives
(3.11) (n—1) Ryiop+€ Roior*CojCotS* + €' (n—2) cpicor = 0.
Furthermore, contracting by S** we obtain

nn—1)+2¢ (n—1)c,;c,S* = 0.

It follows from this that c,;c,,S’=—n/(2¢), and hence we have
Ry;=—2¢c,ic,; from (3.11), where we made use of (3.7). It implies
that the det. R;,;=0, contrary to our hypothesis.

Therefore we have all of ¢,; =0 in this case. Then (3.3")
holds good and (3.2") gives b;;=eR,;,;/b,. Hence, because of our
assumption the det. d;; does not vanish also. Now (3.4) and the
uniqueness theorem [6, 1, p. 200] lead us to ¢;; =pb;;, p= x1.
Substituting in (3.4) we see that ¢/=—e. Thus we have arrived
at the conclusion for the case I as follows.

boo:}:O» Coo=0’ bojzcoj:()’

(3.12) b;; = b'e_Roioj ,  Ci; = pby;,
e/:_e, Pzﬂ:l, i,j:]-yz»'"’n'

Case II. We substitute in (3.2") from (3. 8), and obtain
(3.13) bi; = bi (Ryioj +(e+p%€) byidy;) .
On the other hand, we substitute in (3.3") and obtain
b,; <bioo R(,,-O,,+e’pc,~k> — b, <bl00 R0;0j+e’/)c¢j) =0,

from which it follows that there exists a factor A such that

1

Ro,fn,--l—e’[)c,-j = R‘boiboj .
bOO

Since an assumption p=0 leads immediately to a contradiction
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det. R;,;=0, the above equation are written in the form
/x e/

3.14 Cir = E2bobo— 6~ Ry; -

( ) 7 P 0i%0j Pboo 0i07

We substitute for &;; and c¢;; in (3.4) expressions of the forms
(3.13) and (3.14) respectively, and the resulting equations are of
the form

(3 15) ’C(RoiokRojol_RoiolRojok)+0—(Roiokbojbol

. +Rojolboibok_Roiolbojbok_Rojokboibol) =0 ’

where putting

e e e(e+p) e
K= s+ —505 o = — .
0 P*b5o b3o P%boo

The process by means of which we obtained the det. Ry;,;=0 from
(3.10) is applied to (3.15) as well, and it is easily seen that
k=0=0. Hence we have A=0, p==+1 and ¢'= —e. Consequently
we have arrived at the conclusion in the case II as follows.

bm:*:O’ co":O’ COJ':PbOJ" P=:i:1,

(3.17) bi; = bi Rooj, €ij = pbij, €= —e,
00

i, j=1,2, .-, n, where at least one of b,; does not vanish.

Thus we obtain only two system of solutions (3.12) and (3. 17),
under the hypothesis (3.7). We can, however, see that those are
still solutions, even if =2 or P=0. Furthermore, if we take
b,;=0, j=1,2, ---, n, in (3.17), then we have (3.12). Therefore we
conclude that

Proposition 4. The Gauss equation (G,) for a space G",
n=2, of class 2 have a system of solutions
Coj = Pby;, Ciy=pby;, p= %1,
(3.18)

e ..
bij=b—'R0|'0j? eI= —e, Z)J:17 2) b nr
00

provided that b,,==0 and c,,=0.

§4. The Gauss equations of G"*' of class 2, II.

In the preceding section we dealt with a general case where
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there exists a system of two normals such that b,:1-0 and ¢,=0.
This is, however, not always the case [5]. That is, we have first
a case where both of b,, and c,, vanish, and secondly a case where
¢ =—e¢ and b3,=c,=+=0. But we shall show that the first does not
take place, provided (3.7). In fact, in this case (3.2) gives

— ’
Roioj - eboiboj —€CyiCyj

from which it follows that the rank of (R,,;) is less than 3, contrary
to (3.7). In this section, we shall continue to suppose (3.7) for
a while.

Now we shall consider in the following the second case, namely

4.1) e = —e, ¢u=pbo=F0, p==x1.
Then equation (G,) can be written

4.2) eRyio; = (bi;— pCij) boo— boiboj+ CoiCoj
4.3) bojbik_bokbx‘j = CojCir —CorCij »

4.4) bikbjl'_ bilbjk = CirCj1—CitCjp «

We have first from (4. 2)
4.2) b;; = pci;+ bi (eRyioj + buiboj— C4iCoj) -

Substitution of this into (4.3) gives

Cir(Pbo; — Co5) — Cij (Pbor— Cor)

4.3
4.3 - (R buRe) =i buse—but) = 0.

We multiply (4.3) by b,, and sum three equations obtained from
it by cyclic permutation of indices j, &, /. Then we have
(4' 5) Cij (bokcol—bolcok)+cik (bolcoj_bojcol)+ci1 (bojcok_bokcoj) = 0 .

Next multiplying (4.3’) by ¢, and using an entirely similar way,
we have in virtue of (4.5)

(4 6) Roioj (bokcol - bolcok) + Roiok (bolcoj - bojcol) + Roiol (bojcole - bokcoj) =0 .

By means of our hypothesis (3.7), we can make use of contraction
of (4.6) by S, and it follows that b,;c,.— buc,; =0 from (4.6),
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Similarly to the classification in the last section, we have the follow-
ing two cases.

L. b,;=0, j=1,2, - n

IL. At least one of b,; does not vanish.
In the latter case, there exists a factor A such that
4.7 Coy =Nb;, F=1,2 -, n.

Case I. Equations (4.2") and (4. 3) are written

(4.8) b;; = pci; +bl00 (eRsi0; —CoiCo;) »
(4. 9) cojc,‘k_cokc,‘j = 0

respectively. The process which was used in the last section to
obtain ¢,;=0 from (3.2”), (3.9) and (3.4) is applied to this case
as well, and we see then ¢,; =0, j=1,2, .-, n, from (4.9). Thus
(4. 8) is rewritten '

(4. 8,) b,'j = PC,‘j+ Ze— Roinj .
We put (4. 8" into (4. 4), and obtain
1
b (RoiokRojol - RoiolRojok) +ep (Roz'olzcjl + RyjosCir— RoioiC ik Rojokcil) =0.

Contraction of this by S’/ and furthermore by S¢* leads us to the
following two equations.

bl (n_ 1) Roink""ePRoiok'CjISjl"'"eP (n—2) Cir = 0 ’
bl(; nn—1)+ep2(n—1)c; S = 0.

From the above three systems of equations and (4.8) we obtain

Coo=Pboo=|=O) P=:|:1,
(4. 10) by; = ¢ =0, e;= —pb;,

€ / ..
bi’i:mRoioj» e =—e, 1,7 =.1, 2, e, m.

This is the conclusion in the case I,
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Case II. The equation (4.2") is then written
(4.11) bij = Pt 5 (eRuoy+ (1N by

where (4.7) was used. On the other hand, substituting from (4. 7)
in (4.3), we deduce equations, which mean that there exists a
factor g such that

e

B Roioj+(p—N)Cij = pboiby;
00

The assumption p—A(=0c)=0 leads us to a contradiction, namely
det. R,;,;=0. Thus o does not vanish, and hence the above equa-
tion gives

(4 12) Ci; = % boiboj_ o‘i Roioj .

Substituting in (4.11), we obtain

1—\?
bOO

(4.13) b;; = (%_EJ‘F ) boz‘boj_—e}\_l Ryo; -

by,
Substitution of these expressions (4.12) and (4. 13) into (4. 4) gives
16 (RosorBojor — RoiolRojok)

+ 7 (Roiorbojbor + Rojorboibor — Roiorbo;bor — Rojorboibor) = 0,
where coefficients « and = are
_AR—1 T:e,u,(l—x,o)_X(l—kz)e.

r = ;
o? go ’ bgo O-b(ZJO

(4.14)

Equation (4.14) has the similar form with (3.15), and hence
kt=7=0 is obtained as well, from which it follows that A= +1,
m(1—np)=0. The supposition x==0 gives, however, A=p, that is
0=0. Therefore we have px=0. Since both p and A are equal
to +1 and p—A=0=0, we have A=—p, 0=2p. Thus (4.12) and
(4.13) give the final equations:

coo:pboo:‘:O’ P=ﬁ:1,
Coj = —pboj,  Ci; = —pbi;,

(4.15) by —

e .
R . ¢ = —¢ 7 =12 . n
2b00 0207 ’ » ] ’ ’ ’ >

at least one of b,; does not vanish.
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We should notice the fact that, if all of &,; are put to be zero,
from (4.15) we have (4.10). Further, we see that those are still
solutions, even if our assumption (3.7) is removed. Therefore we
establish

Proposition 5. The equation (G,) has a system of solutions

Coj = —pPby;, Ci; = —pby,
(4.16) e .
b”=217_oo 007 > e’: —-e, 27.7:1’ 2; e, Ry,
provided that c,,=pby,==0, p==x1.
The following proposition is a consequence of the above two
propositions.

Proposition 6. Let G*' be such that n=3, and the quantity
P==0. Then Gauss equation (G,) has only two systems of solutions
e, €, bua, Cus, those given by (3.18) and (4.16).

On the other hand, if #=2 or P=0, we may think that there
exists a lot of solutions of different type. However it seems
us to be complicated to discuss such a special case completely.

8 5. Codazzi and Ricci equations of G"*' of class 2, L.

Quantities e, ¢/, b,s, and c,, satisfying the Gauss equation (G,)
were found in the preceding sections. We know that a space
G"+' under consideration is of class two, if and only if there exist
e, €, b, c,p and further v, satisfying (G,) and the following two

systems of equations. The first is Codazzi equation
wa;'Y - bas’Y:ﬂ = —¢ (Cmﬂu'y - C,WV,;) s
Cupiy —Cavip = e(basﬁ”"y - bwv”ﬂ) ’

(C)

and the second is Ricci equation
(R,) Vaip— Vpiat 8" (DyaCos— bysCsa) = 0.

This and the following sections are devoted to the study of (C,)
and (R,) for solutions (3.18) and (4.16) respectively.

We shall be concerned here with (3.18). By means of (1.3),
equation (C,) is written
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6.1) boo,i — boi o — oo gé Yi+ by % +b;; %"J’j = —epveb,; ,

5:2) by bug— b o 3k by O 3 = ep(ba—ib)

(.3 bioj—bij 0+ b = ep (v;b;,—veb;;) ,

G,
e Yi
5.4) bij—bir; = ep(vebi;—v;bi)

G G,
(5.9) —by; o+ by 2?0 +0b;; 5 Vi = ep(Viby—viby;) .
It is easily seen that the other equations among (C,) are automa-
tically satisfied by the above and c¢,;=pb,;, c;;=pb;;. Furthermore
(R,) is written

(5. 6) Vo,i_ U;’,o + %‘ booboi = 0 ’
(5. 7) Vij—Vii= 0.

Now, in the first place, from (5.1) and (5.5) equation

Gr boo,i
(5.8) PV =G Vi G

is obtained. Then we define v»; by (5.8), and hence (5.1) is a
consequence of (5.5). If we substitute (5.8) and b;;=eR,;/b, in
(5. 4), the resulting equations are satisfied, as will be easily seen
from equation

G?
Roioj,k - Roiok,j = G (Bz'kyj - Bz’jyk) ,

which follows from (1.4) immediately. Next, equation (5.7) is
evidently satisfied in virtue of (5. 8).

If we substitute from (5.8) in (5.2), the resulting equation
is written in the form

()., = ()

from which it follows that there must exist a function A such that

(6.9 boi =4
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Substituting from (5.8) and (5.9) in (5.6), we have

ersos = (56=52), o

Integration of this gives

GO b00 o

(5.10) eP¥e =56~ —en+ f(x°),

where f(x°) is a function of x° only.

We have already (5.8), (5.9) and (5.10), and we are now in a
position to treat remaining equations (5.3) and (5.5). Inserting
these results in (5.3) we have first

/ G, 8 Rt f (G- =
(5.3) Nyt o s+ 03— & Ryt s (55—t ) Ruos = 0.

It seems us to be difficult to find a general A satisfying (5. 3’), and
in order to obtain a concrete form of A, we will assume, hence-
forth, that \ is @ function of x° and r. Then it is easily seen that

A, x,
Ao=NYi, A= (7\"—7) yiyj+73ij )
Making use of these expressions, (5.3’) is then written

A, Gy
[r -2 8o~ E(Pr@)+E P+

(G i) s o (Gover) o =o.

from which it follows evidently that

(5.11)

(5.12) R4S WA 4 <Qo Qf) ~0,

619 ot (G- D)0 - L@+ L P+ (St r) =

The first (5.12) gives immediately (\/ 2 —-ef\/G> —0,

r

and hence we obtain

_ ¢G,
(. 14) = 52

0)+\/G g(x%),
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where g(x°) is an arbitrary function of x°. It is easily verified
that (5.13) follows from (5.14). Substituting from (5.14) in (5.9),
we obtain expressions of b,; as follows.

_ e G,, , GG, G, 0
5. 15) b""_b_oo( S 0o 2\/Gg(x))

Finally we consider (5.5). These are now written

(%) [xo,+(e>» N, +(68%) ]y,-.

The fact that b3,/(2G) is a function of x° and r is easily verified
from the above, and hence we have by integration

eG?

2, = 2G <xo+%>& M+

where Z(x°) is as well an arbitrary function of 2°. Substitution
of (5.14) into the above equation gives

o (x°)) ’

2
bgo = < G00+iGG G >+2€Gfo+ 2\/Gg0
(5. 16)

Go_gyo6h.

VG
Therefore we have arrived at the end. That is, (5.16) gives b, ,
(5.15) b,;, (5.8) v;, and (5.10) v,. The final (5.10) is
_ G e e
erve = 3G be VG g,

where we put (5.14) into (5.10).

Three functions f, g and /2 of one variable x° are taken arbi-
trarily, and hence if we take those equal to zero, then we have
the simplest expressions as follows.

bt = ¢ (G +2C8:C1)

—eGf*+eg® —

(5.17)

4G
G,;  G,G;
bonboj - e< 2G >
G GG,
(5. 18) bOObij - e( 4G )
Go boo 0 boo,j

_ Yo Om, _ Y On
=G, YT 26 By
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We can state this result as follows.

Theorem 4. Let a space G*', n=2, be non-flat and the quantity

_ 5G: | G?
Goo + E-‘— Z
pseudo-euclidean (n+ 3)-space such that b,==0 and c,,=0. Equations

(3.18) and (5.18) give such an imbedding.

==0. Then there exists an imbedding of G"*' in a

8§ 6. Codazzi and Ricci equations of G**' of class 2, II.

We now turn to a consideration of equations (C,) and (R,) for
solutions (4.16) of (G,). In this case, equation (C,) is

(6.:1) Buoy—boso—bin s 957+ by ot b3 5 30 = ep (bt mibis)
(6.2) b ;—bo;i— by g&—yﬂ‘ bo; g—é—yi = —ep (v;by;—v;b,;) ,

(6.3) by ;—bij ot by; g%yi = —ep(v;bio—vob;;) ,

(6.4) bij,k— bik,j = —ep (Dkbij— ”jbik) ,
(6 5) boo,j+ boj,o_ boo gé Yi— boj ZG—é - bjk 92"" Yr = €p (ijoo_ "’oboj) ’

and the orther equations among (C,) are satisfied as a consequence

of the above equations and c¢,;=—pb,;, ¢;;=—pb;;. Further, the
Ricci equation (R,) is of the form
2
(6 6) Yo, 77 Vi _GB booboj =0 y
(6. 7) Vii VY= 0.

We can first derive from (6.1) and (6.5) the following two
equations.

boo,j Gr
(6.8) by T oY = ervi,
G, G,
(6.9) boj,o_boj Z—é — by o Ie = _eP”oboj .

We notice that v; of (6.8) have the similar forms as one of (5. 8).
It is easily verified that (6. 4) holds good as a consequence of (6. 8)
and b;;=eR,;/(2b,). Similarly (6.7) is obtained in virtue of (6. 8).
Next, in similar manner as in the last section, (6.2) gives
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G
b_oox,..

Now, substituting from (6.8) and (6.10) in (6.6), the equa-
tion

(6. 10) by; =

boo,o Go o
(6. 11) epvo = 5 — g2t f(x)

is obtained, where f(x°) is an arbitrary function. Then (6.3) is
rewritten in the form

A‘1_1 +2G (A' y,1+)‘]y£) ZG ROin,O

(6.12)
e

G, _
+ZG<ZG 26h— f> Ruoy = 0.

By the same reason as in the last section, we assume that \ is a
Sfunction of x° and r. Then we obtain from (6.12)

6.13)  n+"Pr 2 (0 QG°+Qf)—0

G
630 noe(Gr D LA )

The first (6.13) gives by integration

EG 0 0
(6. 15) T f(x)+vG g%,

where g()°) is an arbitrary function. Further, it is easify verified
that the second is a consequence of (6. 15).

The preceding process is formaly analogous to the one used
in the last section. We have already seen there that (5.5) gave
the quantity &,,. On the other hand, (6.9) is not so. In fact we
obtain from (6.9)

eG;

2
A+ en 166

= h(x),

where /(x°) is another arbitrary function. Substitution of (6.15)
gives then

e 5GZ | G? e
(6. 16) 4( G, 426G Gr ) £

L, C &
ic i/ t¢cé -

1
VG VG
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Therefore we know here that f, g and % are not arbitrary. 1t is
concluded that there must exist three functions f, g and % of only
one variable x° such that (6.16) holds, in order that (4.16) satisfy
(C,) and (R,), provided that A is a function of x° and ». Thus
* (6.16) is thought of as a restriction for the function G.

However it may be, we have now quantities e, ¢, b,g, C,5, and
v, of the type (4.16) satisfying (C,) and (R,), as follows.

bb e( G GG)
Wi T2 4G

e GOJ GG Gj o
bubis = 5 (— 5 5) g e £,
6.17) b G 2e
epyy = 0= Bt g (2,
"= b, GG
bos G

i T b, 267
where b,,(==0) remains still arbitrarily. Thus we have

Theorem 5. Consider a non-flat G*+', n=2, such that there
exist three functions f, g and h of only one variable x° satisfying
(6.16). The G™*' can be imbedded in a pseudo-euclidean (n-+ 3)-space
such that ¢ = —e, c,,=pb,=0, p= 1. Such an imbedding is given
by (4.16) and (6.17).

We saw that Theorem 4 was not applicable to those spaces
for which the quantity

H = —Goo+iGG°+~
vanishes. On the other hand, Theorem 5 is fortunately applied to
those exceptional case. In fact, if we take f=g=#h=0, then (6. 16)
is redued to H=0. Then (6.17) is as follows.

e G;;  GG;
boobii = ?( 2 + 4G )
G, GG
(6. 18) booboi = % <_—§1+ 2GJ> ,
boo 0 Gn b"“'i. 97
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Thus we have the following, a supplement to Theorem 4.

Theorem 6. Let G, n=2, be such that the quantity H=0O.
Then G is imbedded in a pseudo-euclidean (n+ 3)-space, especially
to satisfy ¢ = —e, c,=pb,==0, p=+1. Such an imbedding is given
by (4.16) and (6. 18).

We consider the imbedding vector z and denote by m and =n
orthogonal unit normals to G**'. Then we have the Gauss formula

Zyp = €bgm—-e'c pn .
In the case of Theorem 6, these are written

Zo50 = eboo(m_Pn) ,

2y = eboj(m-kpn), Zy; = eb,-j(m-l- Pn) .

It will be easily verified that normals m—pn and m+ pn are not
orthogonal to each other, but both are null vectors.
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