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During the year 1961 a  series o f  papers dealing with the
problem of imbedding of the Schwarzschild space-time was written
by  one of the authors and other two, and many valuable results
were obtained [3]. T h e  process by means o f which the problem
was completely studied was recently applied to a  treatment of
the imbedding o f  spherically symmetric space-time (abbreviated
s. s. space) [4]. T h e  present paper is written as an addition to
the paper [4].

It is generally known that the fundamental form of s. s. space,
with respect to  the time coordinate t  and spherical ones r, 0, p,
is given by

eds2 G ( t ,  r )d t 2 — A(t, r)dr 2 —B(t, r) (d0 2 + sin' Odp2 ) .

If the function B(t , r) is constant, such a space is called S„ space.
On the other hand, if B  is not constant, it is shown that there
exists a transformation o f coordinates such that B  is reduced to
r 2 [7 ,  I ] .  The space is denoted by S, space. It has long been
known that any s.s. space is o f  class at most 2 in  the sense of
imbedding [2].

Among S, spaces those o f which the function A(t, r)= 1 have
some special properties. For example, those spaces are not o f class
1, as proved by H. Takeno [7, III]. In  the previous paper [4]
we excluded a discussion of those spaces, because the general
method used in the paper was not applicable to them.

The exceptional case will be treated in the present paper, and
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thus we consider s.s. space, the fundamental form being

(0. 1) eds2 = G (t, r)dt 2 — dr2  —r2 (d02 + sin' 0 4 . 2 ).

A part of this form dr2 +r 2 (dB2 + sin' O&M is clearly the fundamental
form of an euclidean 3-space with respect to spherical coordinates.
In this point of view we shall generalize the dimensional number
of (0.1) and thus obtain a notion of a G-extension o f  an  euclidean
n-space  E " as follows. First we consider the product manifold
R xE n, where R  i s  a field of real numbers. Then we define on
this manifold a Lorentz metric

(0.2)e d s 2  =  G  ( x °  ,  r )  ( d x 0 )2 — ,

where x°E R , r = N/E (x 02, G  i s  a  positive-valued function of x°
and r ,  and xi, i =1, n ,  a re  rectangular coordinates o f En . I t
is obvious that, in the case n =3 , the form (O. 2 ) is equivalent to
the original (0.1).

An effect of the above generalization will be seen in § 2, and
it will be shown that, if  n =2 , there exist G-extensions of  class 1.
In consequence of use of rectangular coordinates, the theory of
spaces of  class 2  will be treated uniform ly in §§ 3-6. Thus we
shall give an almost complete theory of the imbedding of a special
class of s.s. space for which A (t, r)=1.

§  1 . A  G-extension of an euclidean space.

We consider a G-extension, whose fundamental form is given
by (0. 2), and denote it by G "± '. We use sometimes in the following
normalized coordinates (y e), i=1 , 2, •••, n , which are defined by

xia r
Yi — . •r

from which it follows immediately that
ay i1

(1. 2) E  (JO' 1 , a x ;  —  r  (°i; •

M aking use of (y e), Christoffel's symbols vp , a , 4, 7=0, 1,
n, are



-= 
G

r g i 1:?o
G

r  Y i  ,°° 2 G ' 2G

r t ; 0 2 G,. y i

(1. 3)*
o th e r 1737 = 0 ,
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and components of the curvature tensor R o 7 8  are

(1.4)R 010; =

where we put

o th e r R,0 , 8 =  O,

G   G 2

(1. 5) Y r +  r

2  4 G  '

Furthermore, from the definitions of the Ricci tensor Ro,p =  e R a y p s

and the scalar curvature R--- e R , o ,  it follows that

(1. 6)R „ o  =  ( n - 1 ) Q —  P  ,  R 0 1  = O, R i ;  = R 0 1 0 3 ,

(1.7) R  = —

2  

[(n —1)Q-- / ] .G

We shall find first a  necessary an d  sufficient condition for
Gn+1 to be flat, that is, the curvature tensor vanishes.

From (1. 4) it follows that R o i o i y i y i — P= O. Consequently, if
2 , we have Q = 0  from (1 . 6 ) . Conversely, assuming n 2 and

Q =0 , it is clear that P = 0  by the definition and  hence Gn+1 is
flat. In  the case n =1 , if  P =0 , it follows from (1. 4) that R „.=  O.
Therefore we have

P ro p o s it io n  1. The necessary and sufficient condition for G""
to be f lat is that P =0  fo r n =1 , and Q =0  f or 2.

Next we consider components o f  th e  conformal curvature
tensor C,,,py 8 . If we put

1(1. 8)— R  —'"3n - 1 ( 2n '-' 13)

then C„,0 7 8 a re  expressed as

*  Throughout the paper Greek indices take the values 0, 1, • • • , n  and Latin 1, 2 , ••• , n.
We shall also indicate the partial derivatives of a function with respect to .x(4 and r  by
subscripts a and r  respectively with commas. We shall omit comma in case there is
no danger of confusion.
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(1.9) C ,p18 R  0 7 8 g oy yi ps g  8 1  w y  g 1 07 +,gro .y1 8 .

By means of (1. 6) and (1. 7) we have

100 = [(n - 1)Q — P ] ,
(1 . 10)

1- —  P ± Q ( Y d i  1).1" ( n - 1 ) G

and hence we obtain

r l (n-2) (P+ Q)1
t-oio; uifn - 1 C oi j k 0,

C iJk P± Q [ 8 -kY.f.Yr+ 8 fi.Y ak 85kYi.V1(n -1 )G
2 (R  R R

n
" i l "

R
Jk l

N
]

It is well known that Gn+1, n 3, is conformally f la t if  an d  only
if  C,0 1 8 = 0 .  We see easily that the condition is given by P-4 )=0
for n 3 in  virtue of (1. 11). On the other hand, G3 is conformally
flat if and only if 10 ; y—  la y,p= 0 * . From (1. 3) and (1.10) it follows
that

/00 ,1 — /o i ,, =   ((n 1 ) Q — P ) + 2%-- (P+Q)] y i

lo i;; 
1
05;i — O ,

1 rG1  l i ; ' o  —  
( n - 1 ) G

L 
G

° (P + Q) —  (Po+
n  

8 u
)  ,

i i k ; 1 1
n(n -1 )G  

[  
G

G r (p d_ Q) (p r  Q r ) ]  ( 8 i i y k - 1 k y i ) .

In the first place, equations (40 ; ; -1 i i ,o)y i = 0  and  ( l i i , k —  l i k , i ) 8 0  =0
g ive  P +Q  =c  G  (c= constant). Hence we have / i —/o i  (Q ,.—
(Gr 1(2G))Q)=0, so that Qr1Q— Gr1(2G), and then we have easily
P +Q =0 ,  the same result a s  derived for the general case n > 3.
The converse is obvious. Thus we have

P ro p o s it io n  2. The necessary and sufficient condition for
to be conform ally  f lat is  th at P+Q =0 .

* Throughout the paper semicolons denote covariant derivatives.
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In particular, we are interested in the case where G"+1 i s  an
Einstein space from the physical point of view . W e have, however,
the following theorem.

Theorem 1 .  I f  Gn+1 , n>__ 2, i s  an E instein space, then G  is
necessarily flat.
In fact, if Gn+1 i s  an Einstein space, that is 1?„,(3-= (RI (n -1-1))go ,
it follows from (1. 6) and (1. 7) that

(n — 1)Q  P —  n  . . _1 [(n —1)Q — P] ,

(P±Q)Y iY ; — Q8 11 = 2n 1 Un — 1 )Q  11 8 i;+  

The first equation gives (n —1)Q — P= 0 and then we have from
the second that R 0i05 = 0.

§  2 .  A G - extension Gn+1 o f  class one.

Since G 4 is  a S ,  space such that A ( t ,  r ) = 1 ,  it is known that
G 4 is  n o t o f  class 1, in  consequence o f the theorem proved by
Takeno [7, III]. However, we generalized the dimensional number
as defined in the introduction, and hence we may expect the
existence of a G n +' o f class 1. In  this section such a  G "± ' will
be considered.

A  space G n "  is o f class 1, that is, G n+' is looked upon as a
hypersurf ace of a pseudo-euclidean En+2 , if and only i f  there exist
e = ±1  and b ( = b ) ,  satisfying the Gauss equation

(G1) eR018 = b„,,b08 — bc a bg ,, ,

and the Codazzi equation

(C1) bcry; — .

The sign e  in (GO is an indicator of the normal of and bo

are components of the second fundamental tensor o f Gn + 1 . By
means o f (1. 4), (GO is expressed

(2.1) eR oioi —boobij— b oib0 i,

(2.2) — bo k bi ;  = 0,
(2.3) bi k bp — bu bi k  =  0 .
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From (2. 3) it follows immediately that the rank of the matrix (1)13 )
is at most 1.

We consider first the case where 1)13 = 0 ,  j ,  j  =1 ,  2, • • • , n.
Making use of (1. 4), the equation (2. 1) is written concretely

(2. 4) (g i; =  (P+Q )y i y i +eb o i bo i .

The matrix, whose elements are right-hand members of (2. 4), is of
rank at most 2. Since we should assume that G '  under consid-
eration be not flat, the quantity Q  does not vanish by Proposition
1. Therefore we know from (2. 4) that n =2  is necessary in this
case.

Contracting (2. 4) by y i  w e  have

Py i +eb o i •bo i y ;  =  0.

I f  bo i y ;  -I- 0, there exists a factor X such that bo i —Xyi . Substitu-
tion o f  this into (2. 4) gives a contradiction n = 1 .  Therefore we
have

(2. 5)b 0 3  y 3 = 0,P  =  0.

Thus (2. 4) is a system o f three equations

Q (F ;  Yi.Y;) — eboiboi j —  1, 2

from which we obtain easily

(2.6)1 4 1 =  X & i f y i  , X = ±N/eQ , 1 , j = 1, 2,

where e ± 1  must be taken as e() >0, and we used skew-symmetric
quantities &i. ; such that 6

12 621 1 ,  6 11 -  
6 22 = 0.

Next we consider the case where the rank o f (1)13 ) = 1 .  Then
there exist bi , 1=1, 2, • • • , n , such that

(2.7)1 , 1 3  =  n bibi , ± 1 .

From (2. 2) we see also an existence of b0 ,  by means of which 1'03
are expressed in the form

(2. 8) b0; bob;

We substitute in (2. 1) from (2. 7) and (2. 8), and then obtain

(2.9)Q 8 i ;  =  ( P + Q ) y i y i —e(nbo o — mbib i  .
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The process which was used to obtain n = 2 from  (2. 4) applied
equally well to (2. 9), and then we have n =2 as w ell. Further
contraction of (2. 9) by y;  gives

e(nbo o — Mb i •b o ;  = 0  .

I f  (y boo —bg)bi y i + 0, there exists X such that bi =X y i , and substitu-
tion in (2. 9) leads to a contradiction. But, if 0 0 0 — b,1=0, we have
again a contradiction from (2. 9). Hence we obtain

(2. 10) b iy ;= 0, P =  0,

similar to (2. 5). Finally we solve (2. 9) for bi and obtain

(2. 11) bi =a ± - \/  — eQ 1(00 0 — b ) ,i ,  j  = 1, 2 .

Summarizing the results of the above two cases we obtain

Proposition 3 .  I f  non-f lat Gn+1, n  2, i s  o f  class one, it is
necessary that n =2  and the quantity  P = 0 .  Then we have only two
systems of solutions e = ± 1  and bo g ,  of the Gauss equation (G1)  as
follows.

Case 1. bo o is  arb itrary , bi ;  =  0,

b05 — X4 5kYk j ,  k  = 1, 2 ,

= eQ , eQ > 0 .

Case 2. b„ is  arb itrary , bi ;  =
bo ; =  ybob; , =  ± 1 , j ,  j ,  k  = 1, 2 ,

= P4 ikYk = — eQ 1(000 — bg)

The following theorem is a consequence of the above proposi-
tion and Proposition 2.

Theorem 2. I f  Gn±1, n  2, i s  conform ally  fla t, and of class
one, then n =2  and Gn + 1  is  f lat.

In this place we observe that, in both of the above two cases,
the matrix (bo )  is  o f rank less than 3. It is generally known
that, i f  th e  rank is more than 3 , the C odazzi equation (C 1)  are
automatically satisfied a s  a  consequence o f  (G1)  [ 1 ,  p. 281], [6 ].
That is, however, not the case for our problem, and hence we must
treat furthermore the equation (C1).
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Now, (C1)  is, by means o f (1. 3), expressible in the form

Gr G G  r
b00 , 1 b01,0  b00 2 G 2 0,

(2. 13) b01,3—b05,1—b01  y i +b o i y i  — 0,

Gr  (2. 14) 17015-1)15,0 V O , 2 G 0 ,

(2. 15) b i k , j  =  0.

Case 1 .  We shall first treat the case 1  in the proposition 3.
Since bi ;  = 0, (2 . 15) is trivial. We see easily from (2. 5) and (1.2)
that

b 0 5  0 y 5  =  0, b0 5  1 y 5 b o i  •

Accordingly, applying contraction of (2. 14) by y i ,  we obtain

(2. 16) Gr 1
2G r •

It is easily verified that the condition P =  0  as shown in the above
proposition is obtained as direct result o f (2. 16).

We now return to consideration o f  (2 . 1 4 ) itself which is
written

1bo i j +b a ;   r  y i  =  0.

Substituting from (2. 6), the above equation can be rewritten

X  ( F(2. 17) V i k Y k  r  \ - i ;  -ik Y k Y i+ 6 .m.Y kY i) — 0 •

It is easily seen that identities

(2. 18) 6 1j — E ilaY k Y 5± 6 5/z Y kY 1 = 0

hold, and hence (2. 17) gives X ;  = 0 on ly . On the other hand, we
have from (2. 16)

(2. 19) G = r 2g ( e ) ,  Q  =  g ( e ) ,

where g  is a function o f x ° alone. Therefore X.=0 a re  automa-
tically satisfied.

(2. 12)
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Equation (2. 13) is clearly obtained from (2. 14). Finally we
are concerned with (2. 12), which, in virtue o f (2. 6) and (2. 19), is
rewritten as follows.

booyi = 0,

and hence we have bo o =rb (x ° ) , where b  is an arbitrary function of
x°. Consequently, in the case 1 ,  we obtain e  and bo  satisfying
(C1)  as follows.

b „ =  r b ( e ) ,  b i ;  =  0,
(2. 20) b05=X &1kY k,

X ± -\/eg(x °), eg(x .°) >  0 , w h e re  G =  r 2g (x ° ).

C ase 2 . I f  follows from (2. 10) that

bi ,o y ;  — 0 , b5 1 y  —  

With the aid o f (2. 11), equation (2. 14) is written

(A , j +/-6.;b0) 6ik.Yk + bo (6 i; ElkYkY;)
(2. 21)

, G r
— 2 1-61-0 ik k 6

g ' u o  2 G  Y i ' j k i / k

In applying contraction by y 1 , we have

(Gr  1 \
thb0615Y1 G r ) — u .

These equations lead us to classify this case into

Case 2 - 1 :  b0 = 0 .  In this case (2. 21) gives p o = O.

Case 2 - 2: b o +  0 , and G r / ( 2 G ) = r ' .  In this case, making use
o f (2. 18), we have from (2. 21)

(2. 22) I./1)0,5+145b0 2ua 0Ej , y .

Next we consider (2. 15), which, making u se  o f (2 . 18), is
expressed in the form

2 (pk6 5hY n Pi8 kh.Y) 6 i/Yr +  (Eik6 pi 6 ii8 kh)Yh 0 .



106 M . Matsumoto a n d  S . K itam ura

Since n =2 , this is equivalent to the single equation

(2. 23) 2/ziyi+1;- =  0 .

It is clear that (2. 13) is automatically satisfied from (2. 14).
Finally we shall deal with (2. 12). In the case 2-1, the equa-

tions are of the form
G,11

00 ,1  ' 0 0 2 G  y i ,
Gr

'

and hence we obtain b0 0 = (G) 112 1, (x °), where b  is  an arbitrary func-
tion of From the definition of p  w e  have

_  e Q  
TIN / G b(e)

Because of [60= 0 as above obtained, Q  is expressed in the form

(2. 24) Q  

where h(x i) is independent o f x °. Now (2. 23) is written h i x i = - h,
from which it follows that h(x l, x 2)  is homogeneous function of
degree -1. By means of P=0  and (2.24), we have rh(x i)=1Ib(x °)=c
( = constant). Consequently we have, in the case 2-1

(2. 25)

- " c  eikYk6 ;1311,

•VG b0 5  =  0 ,b 0 0 - w here  G r=2V G

W e now turn to a  consideration o f  (2. 12) in the case 2-2.
Equation (2. 12) is written

G(2.26)b 0 0 , 1 -  h
uo0 

1

r Yi 9')Ei; (boot, + uotto 2 6 voich)

Since the condition (2. 19) has been imposed as well, we obtain
from the definition of ,c6

(2. 27) ( bg — eg ( x°) )

In order to find solutions of (2. 22), (2. 23), (2. 26) and (2. 27) con-



A  special class of spherically symmetric space-times 107

cretely, we now suppose that both of  bo (x°, x ', x 2 )  and 1.6(x°, x', x 2 )
depend upon x ° and r  o n ly . Then (2. 23) is w ritten in the form
2g,r + (a/r)—  0 , and hence w e have pt,= f ( x ° ) /  r  ,  where f  i s  a
function of x°. Next (2. 22) is expressible as

(2. 22') ( a b o ) r y ;  =  2,w606; k y k

Contraction of these by y i  g ives pb o =h(x °), where h is  a function
of x°. Hence (2. 22') gives itz,= 0 only, from which it follows that
the above function f  is necessarily constant. If we denote by c
the constant f ,  then  w e obtain  ,u, = c h rr - , b ,= \ / r h ( x ° ) I c .  In
virtue of (2 .2 7 ) w e  have b„---nr(h 2 —eg)1c2 . I f  we substitute the
expression of bo ,  into (2. 26), and integrate the resulting equations,
then we have h =e \ / - -g ,  where ± 1 ,  - g > 0  and e is an another
constant. Finally we obtain

b  =  Yr g (x ° )
 ( -e-e) ," c2

   

b„, =

(2.28) b13 = &ikYk6 Jr.Yr 37, e —  ±1 ,>  0  ,

c(-t- 0), =  constants, where G = r 2g(x°),

in the case 2-2 , under the restriction that both o f b , and 1.6 are
function o f x° and r.

Thus we obtained three systems of solutions (2. 20), (2. 25),
and (2. 28). W e observe th a t  (2. 20) and (2. 28) were obtained
under the condition th at the function G  is expressed as r 2g(x°).
On the other hand (2. 25) was found when G satisfies the equation
Gr = 2V G , from which G (r + g(x°)) 2 , where g depends on x° alone.
Furthermore it is observed that there remain some freedoms of
determinations of e  and ,  and hence G3 as a hypersurface of E 4

is not rig id . Summarizing those results we have established

Theorem 3 .  A G-extension G n ± ', rt  2 , i s  o f class 1  i f  and
only  if  n =2  and the function G (x °,r) is  of the form

G = r 2g(x°) or G = (r+g(x °)) 2

T hen G3 o f  class 1  is  n o t rig id  as a hy persurface o f  a  pseudo-
euclidean 4-space.
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§ 3. The Gauss equations o f Gn+1 o f  class 2, I.

In this and the following sections we shall be concerned with
a  space Gn+1 ,  n 2, o f  class 2 .  Since Gn+' is looked upon as a
subspace of a pseudo-euclidean (n+ 3)-space, we take two mutually
orthogonal unit vectors normal to Gn+1 . Then we denote by e  and
e '(=±  1 ) indicators o f normals and b y  k o a n d  c.,0  the second
fundamental tensors with respect to these normals. These quantities
should satisfy the Gauss and Codazzi equations.

In this and the next sections we shall deal with the Gauss
equation

(G2) Ra,m,8 = e(bb p 8 —ka bo .,,)+ e '( c c p 8 —cc a c " ) .

W e observe that this equation is algebraic in  character. It is
clear that a  system of solutions e, e', b c o  and co o  o f (G2)  will be
uniquely determined, because two mutually orthogonal unit normals
may be chosen arbitrarily, and hence a system of solutions will be
transformed to an another one according as normals are changed
[ 5 ].

In this section we shall assume that there exists a system of
two normals such that

(3. 1) boo  i   0,c o, — 0

hold, while we shall consider, in the next section, the case where
there does not exist such a system of norm als. For details on a
transformation of the second fundamental tensors corresponding
to  a transformation of normals, we refer to a forthcoming book

Now, when (3. 1) is satisfied, (G2)  is of the form

(3.2) Rao; = e(b„„bii — boiboi) —  ei coico;
(3. 3) e(bo ibik—bo k bi;)+e'(c o jeik—co keii) = 0
(3. 4) e(b i k bp  b i i bi k )+e'(c i k ci , c u ci k ) — 0 .

The first of them is rewritten as

(3. 2') bi; = if o (Ra 0 5 +eb 0 i b0 i +e'c 0 i co 5 ) .

We substitute in (3. 3) from (3. 2'), and obtain
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(3
q \ 1  ( h  p h \ e'

. h  v-, 0jALm k ■-,0k," ow ) – r h  c oi (u ojC ok bok C0j)±  e (e m eik e o keii)— O.
U00 UO0

Multiplying (3. 3') b y  c „ and summing three equations obtained
from it by cyclic permutation of indices j ,  k  and 1, we have

(3. 5) R0105 (bokcor — bo i co k ) + Roiok (borco; boicoi)+ Rau (boicok bok coi) =  O .

It follows from (1. 4) that the det. R 0105 =P(— Q)" 1 . S in ce  w e
are concerned with non-flat Gn+1,  the quantity Q  does not vanish
b y Proposition 1. It w ill be convenient that det. R 0105 does not
vanish, and hence we will assume P +  0  for a while. Then there
exists an inverse matrix (S ii) of the (R 0105 ) ,  and we see easily

( 1 1Si' =  7 5 +   
Q

- -
1

•

In applying contraction of (3. 5) by Shi, we obtain

(3. 6) ( n  2) (bo i cok b o k co i )  — 0 •

Therefore, i f  we suppose

(3.7)P , a n d  n >  3 ,

then we have bo i co k  — bo k co ;  = O. F ro m  th is w e see  th at th ere  are
only two possible cases as follows.

I. b05 = 0 ,  j =  1, 2, •••, n.

II. A t least one of b,5 does not vanish.

In the latter case there exists a factor p  such that

(3. 8) c,5 = pb, 5 , j  = 1 ,  2, •••, n .

(3.

Case I.

2 ")

Equations (3. 2') and (3. 3') are of the simple forms

ebi; = (4•0105 – r e ' CoiCoi)

(3. 3") CojC ik Co k C ii  —  O ,

respectively. We shall show that co ; a re  all equal to  zero . For,
otherwise (3. 3") gives immediately

(3. 9) C15 = X C oi C
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where X is a  function. Substituting in (3. 4) from (3. 2") and (3. 9)
we obtain

(3. 10)
R o j okRO jo l  R 0 1 0 1 R 0 5 0 k  e i ( R 0 i0k60 j601+  R 0 j 016 0iC0k

R oiolCojCok R 0j0kCoiCo l )  =  O ,

and contraction by S i' gives

(3. 11) (n-1)R 010k  e'Roiok • co ica Sil + e'(n— 2) co icok =  0  .

Furthermore, contracting by Sik  we obtain

n(n-1)+2e' (n— l)e 0 ; co i S il = 0.

It follows from this that c0 5 c01 Sli = —  nl (2e), and hence we have
12,1 0 5 = —2e' ec i eo ;  from (3. 11), where we made use of (3. 7). It implies
that the det. R 0 1 0 5 =0 , contrary to our hypothesis.

Therefore we have all of co ;  =  0  in  this c a se . Then (3. 3")
holds good and (3. 2") gives b1 5 = eR 0 1 0 ; I bo o . Hence, because of our
assumption the det. bi ;  does not vanish also. Now (3. 4) and the
uniqueness theorem [6 , 1 , p. 2 0 0 ]  lead u s  to  ci ;  =  pb1 5 ,  p = ±  1.
Substituting in  (3. 4) we see that e'= —e. T h u s  w e  have arrived
at the conclusion for the case I  as follows.

b00 --1= 0,e 00 = 0,1 ) 05 =  e 0 5 =  0,

(3. 12) b i; = —e R0105 c i i  =  pbi ;

e ' = — e, p  = ± 1 , j  =  1, 2 , •••, n .

C ase  II . We substitute in  (3. 2') from (3. 8), and obtain

(3. 13) bi; = if o (R 0 1 0 5 +(e+10 2 e')b 01 b0 5 ) •

On the other hand, we substitute in  (3. 3') and obtain

1)0 5 ( it o Roiok e ' PCik) b o k ( -1
b
—

o R 0105+ e' pei 5 )  =  0,

from which it follows that there exists a factor X such that

1 R • • + e' pc. • = Xb •b • .0i0.1 O t  0.7

Since an  assumption p =  0  leads immediately to a contradiction
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det. R 0 1 0 5 =0 , the above equation are written in the form

(3. 14) c ,  = b  b  R  ..7 ot ob.

We substitute for bi ;  and ci ;  in  (3. 4) expressions of the forms
(3. 13) and (3. 14) respectively, and the resulting equations are of
the form

(3. 15) K  (R oiok R ojo l R o io1 R O jok ) (Roiokbo jb ol

R o jo lb o ib ok —  Roiabobok — Rofokboiboi) = 0

where putting
e e' e (e + p2  e')e / X= 0- —

,b,10 p 2 bg. ' bgo p2boo

The process by means of which we obtained the det. R 0 1 0 5 = 0  from
(3. 10) is applied to (3. 15) as well, and it is easily seen that
K =0-  = O. Hence we have X = 0 , p = ± 1  and e '= — e . Consequently
we have arrived at the conclusion in the case II as follows.

b0 , - j-  0,c „  =  0, co ; =p b o ;  , p  =  ± 1 ,

(3. 17) bi; = R 0 1 0 ; , ci ;  = pb i ;  , e ' = — e,

j= 1 ,  2, • • • , n ,  where at least one of 1)0 ;  does not vanish.

Thus we obtain only two system of solutions (3. 12) and (3. 17),
under the hypothesis (3. 7). We can, however, see that those are
still solutions, even i f  n = 2  or P = 0 .  Furthermore, i f  we take
bo ;  = 0, j=  1, 2, • • • , n , in (3. 17), then we have (3 . 12). Therefore we
conclude that

Proposition 4. T he G auss equation (G2)  f o r  a  space Gn",
n > 2 ,  of  class 2  hav e a system  of  solutions

co; = pb o ;  , c15 — pbi ;  , p  =  ± 1 ,
(3. 18) bi l  — Rojoi e' = — e , j  =  1, 2, •  ,  n ,

prov ided that b0 0 + 0  and c 00 = 0.

§  4 .  The Gauss equations of Gn+ 1 o f  class 2 ,  II.

In the preceding section we dealt with a general case where,
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there exists a system of two norm als such that b„ - 1- 0  and c 0 0 - 0 .
This is, however, not always the case En  T h a t  is, we have first
a case where both o f bo o and co, vanish, and secondly a case where
e '= — e  and No = c 0 ± O. But we shall show that the first does not
take place, provided (3 . 7 ) . In fact, in this case (3. 2) gives

R 0 1 0 ; =  — eboib05 — e i coico;

from which it follows that the rank of (R0105) is less than 3, contrary
to (3 . 7 ) . In  this section, we shall continue to suppose (3. 7) for
a while.

Now we shall consider in the following the second case, namely

(4. 1) e ' =  — e , c „  p b „ +  O , p  =  ± 1 .

Then equation (GO can be written

(4. 2) eRoio; (b u — P cii)b o o  b o ib o i+  cox();
(4. 3) boibik b o k b i ;  — co i cik cokci ;

(4. 4) bikbir — b i l b j h C ik C jl C i l C j k  •

We have first from (4. 2)
1b i ;  = (e.,010; coicoi) •

Substitution of this into (4. 3) gives

(4. 3')
C i k ( P b o j  C o j )  C i j ( P b o k  C o k )

+ eb„ "(boiRo.oi b o k R o jo 5 )  1
7, co i(b o icok  b ok co i) —  0  •
.00

We multiply (4. 3') by b„ , and sum three equations obtained from
it by cyclic permutation of indices j ,  k ,  1 .  Then we have

(4. 5) ci;  (b o kc o ( borcok) + c ik ( b o iC o j  b 0 5 C 0 1 ) + C i l ( b o j C 0 k  bok Coj) —  0 •

Next multiplying (4. 3') by c a  and using an entirely similar way,
we have in virtue o f (4. 5)

(4. 6) R0105 (bokco/ — b o i c o k ) +  R oiok (boico ; bo ico l)+  R o io l ( b O j C ok b o k e 0 j )  =  .

By means o f our hypothesis (3. 7), we can make use of contraction
o f (4 . 6 ) by S i l ,  and it follows that b o i c o k  — b o k c o ;  =  0  from (4. 6),

(4. 2')
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Similarly to the classification in the last section, we have the follow-
ing two cases.

I. b"—  0 ,  j =  1, 2, • • • , n.

II. A t least one of b "  does not vanish.

In the latter case, there exists a factor X  such that

(4. 7) c " = X b " , j  =  1, 2 , •••, n .

Case I. Equations (4 . 2 ')  and (4 . 3 ') are written

(4. 8) _L 1bi ;  = p c i ;  G (eR,105 — coicv )

(4. 9)c 0 5 5cik— C ok C i j =  0

respectively. The process which was used in the last section to
obtain c0 5 =0  from  (3. 2"), (3 .9 ) and (3 . 4) is applied to this case
as well, and we see then c " = 0 ,  j  1, 2, • • • , n ,  from (4. 9). Thus
(4 . 8) is rewritten

(4. 8') pcii+ be
, , R0105 •

We put (4 . 8 ')  into (4 . 4), and obtain

b„ (RoiokR0501
—

RoiorR03ok)+eP(Roiokcil+R05a c i k  ROiolC jk —  R cy o k C i i )  =  O.

Contraction of this by S i' and furthermore by S u' leads us to the
following two equations.

1
( n - 1 )  R o i„ k +  epR o io k • c p S " +e p ( n - 2 ) c i k  =  0,

1
 n ( n - 1 ) + e p 2 ( n - 1 ) c 5 1 S i' 0.

From the above three systems of equations and (4 . 8 ')  we obtain

coo = p b 0 0 +0  ,  p  =  ± 1 ,
(4. 10) b "  =  c, 5  =  0 e i ;  —  pbu  ,

v i i  — 2
e
boo Roo, e ' = — e ,i , j  =  1 , 2 , • • • ,  n .

1

b(),

b00

This is the conclusion in the case I.
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Case II. The equation (4. 2') is then written

(4. 11) , 1 , D , „  , \ h h \bi ;  = p c i ;  —r T. — 1 ,,2 )u o iy o ji
uoo

where (4. 7) w as used. On the other hand, substituting from (4. 7)
in (4. 3'), we deduce equations, which mean that there exists a
factor ,a  such that

-e— Ro i c •+(p— X )c i ; , a b o t b o i
boo

The assumption p — X (-0 -) 0 leads us to a contradiction, namely
det. R0 103 =  0 . Thus 0- does not vanish, and hence the above equa-
tion gives

(4. 12) c .  —  
1-6 b a bc  —  e .
œ ato

Substituting in (4. 11), we obtain

(4. 13) (P0.1-6 + 1
b o

X2 ) b o ibo, Œ
e

b
X Rozof •

Substitution of these expressions (4. 12) and (4. 13) into (4. 4) gives

K (RoiokR050( Roio/Roiok)

T (Rojokbojbo/ Rojo/bozbok R o i a b o jb o k  R o j o k b o i b a )  =  0

where coefficients K  and T  are

X2 - 1 e p ,  (1 — X p) X  (1  —  e
lc 0-2bgo0 - 2 b 0 0 Crbg0

Equation (4. 14) h a s  th e  sim ilar form  w ith  (3. 15), and hence
K-= =  0  is obtained as well, from which it follows that X= ±1,

(1 — Xp) = O .  The supposition it --1= 0 gives, however, X = p ,  that is
o-=0.0. Therefore we have ia = 0. S ince both  p  and X are equal
to ±1 and p— X -0- +  0, we have X  —p, O E -2p. Thus (4. 12) and
(4. 13) give the final equations :

e „ =  O . +  0 ,  p  =  ± 1 ,

co; =  — Pboi, e i; = ,
(4.15)

b i, = 2
e
boo R 0,05 , e ' = — e ,z ,  j  =  1, 2, n ,

at least one  o f  bo ;  does not v anish.

(4. 14)
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We should notice the fact that, i f  a ll o f  bc y are put to  be zero,
from (4. 15) we have (4. 10). Further, we see that those are still
solutions, even i f  our assumption (3. 7) is removed. Therefore we
establish

Proposition 5. The equation (GO has a  system  of solutions

co ;  = — pb o ; , ci ;

(4. 16) e' = — e,j  =  1, 2, •.•, n ,

provided that c o o = Pboo = ]-0 , p =± 1 .
The following proposition is a consequence of the above two

propositions.

Proposition 6 .  Let Gn+1 be such that n > 3 ,  and the quantity
P  0. Then Gauss equation (G2)  has only  two system s of solutions
e , e ', bo,0 , c a,0 ,  those given by (3. 18) and (4. 16).

On the other hand, if n =2  or P =0 , we may think that there
exists a  lo t of solutions of different type. However it seems
us to be complicated to discuss such a special case completely.

§  5 . Codazzi and Ricci equations of Gn+ 1 o f  class 2 , I.

Quantities e, e', b o ,  and co  satisfying the Gauss equation (G2)
were found in  th e  preceding sections. We know that a  space
G"±' under consideration is o f class two, if and only if there exist
e, e', b o , c c o  and further v„ satisfying (G 2 )  and the following two
systems o f equations. The first is Codazzi equation

f CceY,13 e ( 17.3') ba71)(3)

and the second is Ricci equation

(122) v0— v0+g78(buc8p— b.ipc80 = 0 .

This and the following sections are devoted to the study of (C2)
and (R2) for solutions (3. 18) and (4. 16) respectively.

We shall be concerned here with (3. 18). By means of (1. 3),
equation (C 2)  is written

(C
 —  e /  ( C af32" 7 c w Y 1) (3)
2)
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G r G ,  _L A  G r(5. 1) h h b v  + b_00 ,1 — _ o i ,o0 0  2 G  - i ot 2 G  -r- vij  2  .Y1 — ePl'oboi

(5.2)b 0 1 , 1 —  bo1,i— b G,oi 2 G

G,(5. 3) b10,5 — bi 5 +  boi 2-6  Yi eP ( -'51) 10- 1 , 01, 15),

(5.4)b i j , k — b i k j  =  e p ( v k b i i — v ib ik ) ,

(5.5)— b o i , o +  b „  2
G6 2+ 1)1 ;

 G r y i- -= eP (v ib o o — voboi) •

It is easily seen that the other equations among (C 2)  are automa-
tically satisfied by the above and c0 5 = pbo i , c 15 =p b 15 . Furthermore
(122)  is written

1). 0 + P  booboi 0G

wij j ,i =- O .

Now, in the first place, from (5. 1) and (5. 5) equation

(5.8)
Crb 0 0 , 1

e Pv i —  2G Y i

is obtained. Then we define I), by (5. 8), and hence (5. 1) is a
consequence of (5. 5). I f  we substitute (5. 8) and bi i = eR o i v  b o o in
(5. 4), the resulting equations are satisfied, as  will be easily seen
from equation

R 0 1 0 5 ,k —  R ozok ,1    ( v4rG s 8ik- 8 " y °

which follows from (1. 4) immediately. Next, equation (5. 7) is
evidently satisfied in  virtue of (5. 8).

I f  we substitute from (5. 8) in  (5. 2), th e  resulting equation
is written in  the form

(b 00 b01 '\b o o k ,  
G  J , j G

from which it follows that there must exist a function X such that

G(5.9)b „  = X 1 .
000

Gr
Y.; + bo, 2 G  .Y1 = eP (I) iboi — vib0;)

(5. 6)

(5. 7)



Making use of these expressions, (5. 3') is then written

[ X rr —  + Gt  x r —  G ( P 0 + ( 2 0 ) - F e  ( P ± Q )

(5. 11)
x

G ,
 eX + f j y i y;  + [

r
r +

 G 2 G2G
(  Go e x +  e Q  

G
= 0 .X e 
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Substituting from (5. 8) and (5. 9) in (5. 6), we have

/G , b„ 0\
e l9v0,1 k 2 G b 00 ) , •

Integration of this gives

1. b„
(5. 10) e'"° — 2G —  boo, 

eX+ f(x°) ,

where f(x °) is  a function of x° only.
We have already (5. 8), (5. 9) and (5. 10), and we are now in a

position to treat remaining equations (5. 3) and (5. 5). Inserting
these results in (5. 3) we have first

Gr e e G ,(5. 3') R
( X d j ° ' ` ) " ) +

 ( eX+ f)R, 105 =  0 .G .
_

 G  2G

It seems us to be difficult to find a general X satisfying (5. 3'), and
in  order to obtain a concrete form of X, we will assume, hence-
forth, that X is a function of  x° and r. Then it is easily seen that

X i = X rY i X i j  = ( X rr" - - ) . )

from which it follows evidently that

(5. 12) Xr + X  + Q2GG0 f ) '
,,
p °

 + Q v +  e (p+ o (Go e x  ± f ) 0(5.13) X ,  ± (G r 1 ) x 
G  r G k2 G

eG, f ,. / 6 \ _ 0,The first (5. 12) gives immediately (\/G X +
2

e
N/G v , r

and hence we obtain
1(5. 14) X — — 

e G

° + ef (x°) +  _ g (x°) ,2G .\/ G
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where g(x °) i s  an  arbitrary function o f x " .  It is easily verified
that (5. 13) follows from (5. 14). Substituting from (5. 14) in (5. 9),
we obtain expressions of bo ;  a s  follows.

(5. )
b

15 e Go r _L GoG, _  eG,   g (x 0))
o f  b 0 0  \ 2 2 G  2N/ G

y j

Finally we consider (5. 5). These are now written

(b2t ) [ x o r  +  ( e x  f )  x r  (eg)y i

The fact that b 0 /(2G) is  a  function of x° and r is easily verified
from the above, and hence we have by integration

= 2G (X„,+  e2  x 2 x  f  + e8GGrz h  x  )bgo 

where h ( e )  i s  a s  w ell an  arbitrary function of x°. Substitution
of (5. 14) into the above equation gives

b 0 e  ( —  Go o +
5
4

G
G

°
 +GI )  +2eG fo + 2.\/G g o

— eGf 2 + eg2 g+2Gh .

Therefore we have arrived at the end . That is , (5. 16) gives bo„
(5. 15) bo5 , (5.8) v . ; , and (5. 10) vo. The final (5. 10) is

G , b „ oe
(5. 17) ePv° — G boo

'N /  G g ,

where we put (5. 14) into (5. 10).
Three functions f ,  g  and h  of one variable x ° are taken arbi-

trarily, and hence i f  we take those equal to zero, then we have
the simplest expressions as follows.

1),F; = e  (  G o o +  54G1G,+

Go • G o G;b„bo ;e ( —

2 2 G  )  ,
Gi • G i G;

(5. 18) b„bi; = e(— 21  4 -  4G  ) ,
Gob 0 0 , 0

G ; bo0,1
e l"° —  G boo '  e Pv i —  2G b „  •

(5. 16)
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We can state this result as follows.

Theorem 4 .  Let a space Gn+1, n>_ 2, be non-flat and the quantity
—G00 + 5

4
G
G

° + G1 + 0 .  T hen there ex ists an imbedding o f  Gn+1 in  a

pseudo-euclidean (n+3)-space  such that b„  I  0 and c „ = 0 .  Equations
(3. 18) and (5. 18) give such an imbedding.

§  6 . C o d azz i a n d  Ricci equations o f  Gn + ' o f  class 2 , II.

We now turn to a consideration o f equations (C2) and (R 2) for
solutions (4. 16) o f (G O . In this case, equation (C2)  is

Gr G o(6.1) b „ , 5 —b05 ,0 b „  2 G  y 5 + b„ Gr
2 G +  b i k   2   y k = ep(v ; b„+v o bo ; ) ,

L G r L  G(6.2) h 0 i , 5 — — uo ,  2 G  y ; + u o ;  2 " y i — — ep (v./btu — vi be ] ) ,

(6. 3) b i o j — bi i ,o +b o ; y i — —ep(v ; bi o —vo bi ; ) ,

(6. 4) bi l k  — bi k ;  = — ep(v k b,; —v i bi k ) ,

(6. 5) 1 ) 00,5 + b05 ,0 —b„ 2. -G  y 5 — bo ; — b Jk —G ry k  = ep(v 5 bo o —v0b05 ) ,

and the orther equations among (CO are satisfied as a consequence
of the above equations and c05 =—  pb05 , c i ; =—  pb i ;  . Further, the
Ricci equation (R 2)  is of the form

(6. 6) 2p
G   bo o k ;  =  O ,

(6. 7) = O .

We can first derive from (6. 1) and (6 . 5) the following two
equations.

boo Gr
(6.8)b o O 2G Y-9 —

GoG r(6.9)b 0 5 , 0 — b 0 ; — b i k  -y  y k = — epv obo ;

We notice that u;  o f  (6. 8) have the similar forms as one of (5. 8).
It is easily verified that (6. 4) holds good as a consequence o f (6. 8)
and bi ;  e R o i o i / ( 2 b 0 0 ) .  S im ilarly (6. 7) is obtained in virtue of (6. 8).
Next, in similar manner as in the last section, (6. 2) gives



(6.13)X  + r ( 2 X + e r
r G 2 G  °

x r  + (G r

\ G  r

QG0 +  ( I f )  0,2G
e (Po + Qo) _ e (P+ Q) ( Go

2G 2G 2G
(6. 14) —  2eX —  f  =  0 .
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(6. 10) bo• = —
G  

X •

Now, substituting from (6. 8) and (6. 10) in  (6. 6), the equa-
tion

b00,0(6. 11) e PP ° = - k„ 2G +  2 eX ± f  
(
e )

is obtained, where f  (x °) i s  an arbitrary function. Then (6. 3) is
rewritten in the form

(6. 12)

eXi  • +
G r

 (XiY i + X i Yo—
R

 2G2G

e  ( G
0 —2eX— f) R010 = 0

2G  2G

By the same reason as in the last section, we assume that X i s  a
fu n c t i o n  of x ° and r .  Then we obtain from (6. 12)

The first (6. 13) gives by integration

eGe 1 (6. 15) X  —  —  °  —  f (x °)+
-\/  _  

g(x°) ,4G 2 G

where g(y ") is  an arbitrary function. Further, it is easify verified
that the second is  a consequence o f (6. 15).

The preceding process is form aly analogous to the one used
in  the la s t section. We have already seen there that (5. 5) gave
the quantity bo o . On the other hand, (6. 9) is not so . In  fact we
obtain from (6.9)

2
X0+ eX2 + fX + 

e G
h  ( x ° )

where h(x°) is another arbitrary function. Substitution of (6. 15)
gives then

(6. 16) 
4

e

G
( — G00+ 5G° +  e fo+ 1— g o  f  2 + e  g 2 g  h  •4 G  4 2  \ /  G 4 G Gy G
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Therefore we know here that f ,  g  and h  are no t arb itrary . It is
concluded that there must exist three functions f ,  g  and h  of only
one variable x° such that (6. 16) holds, in  order that (4. 16) satisfy
(C2)  and (R ,), provided that X i s  a  function o f x° and r. Thus
(6. 16) is thought of as a restriction for the function G.

However it may be, we have now quantities e, e', b c o , c co , and
v„ of the type (4. 16) satisfying (C2)  and (R2), as follows.

e G ii G i G;

b„bi; 2 2 + 4G )

(6.17)
booboi = 2

e  (  Go ;  G o G i)   x o )
- 2 ± 2G 2  G '

b„ G, 2 e 0
e01)0  = b o, G ±  G  g ( x )

1,
00 ,5G 5

b„ 2 G '

where b00 ( 0) rem ains still arbitrarily. Thus we have

Theorem 5 .  Consider a  non-f lat Gn±', n 2, such that there
ex ist three functions f ,  g  an d  h  of  only  one variable x ° satisfying
(6. 16). The Gn+' can be imbedded in a pseudo-euclidean (n+3)-space
such that e '= - e ,  co , -  pb„+ 0, p =  ± 1 .  Such an  imbedding is given
by (4. 16) and (6. 17).

We saw that Theorem 4  was not applicable to those spaces
for which the quantity

5G2H =  - G „+ 
 4 G

° + 
 4

vanishes. On the other hand, Theorem 5 is fortunately applied to
those exceptional case. In fact, if we take f = g =h = 0, then (6. 16)
is  redued to H = 0 .  Then (6. 17) is  as follows.

e Gi ;  G i G;
boobi ,  --7 2 2 + 4G )

e G0; G,G .;(6. 18) b„b0; -  2 2 + 2G
boo o Go b„, G5

e l"n b„ G ' e f "i 2G•
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Thus we have the following, a  supplement to Theorem 4.

T h eorem  6 . L et Gn+', n>2, be such that the  quantity  H=0.
Then Gn + 1  is imbedded in  a pseudo-euclidean (n+3)-space, especially
to satisf y  e'= — e, coo= Pb00+0, p=±1. Such an  imbedding is given
by  (4. 16) and (6. 18).

We consider the imbedding vector z  and denote by m  and n
orthogonal unit normals to Gn+1. Then we have the Gauss formula

z„„3 =  eko m+ e' c c o n .

In the case of Theorem 6 , these are written

2 . 0,0 eboo (m  P n )
zo ,.; = eb, ; (m+ pn) , z1,5 = eb i i (m+ pn).

It will be easily verified that norm als m—pn and m +pn  are  not
orthogonal to each other, but both are null vectors.
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