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1 .  Introduction. Consider a Markov process x(t) on a locally
compact separable metric space S with right continuous path func-
tions and, given an open set D, let T D  be the first passage time
for the complement o f D .  The main purpose o f this paper is to
establish the following relation

E r (e'D  ; x(7,) E E) = dy)n(y, E) 1 ,

under some appropriate conditions where -0 (x , • ) is  the Green
measure of the subprocess on D :

e (x , • ) =  Ex (5 - 1 ' e- xtX•(x t )dt) 2 )

and n(y, E) is Levy measure o f this process :

n(y,E)At P y (x(At) E E) (t O).

This relation was first introduced by J. Elliott and W. Feller
[4 ] for the Cauchy process on the line ( — 00 , co) and was used for
the investigation of the symmetric stable processes [3 ], [8 ].

It is natural to conjecture that

1) The suffix x o f Ex , Px , etc. refers to the starting point.
2) x i(x )  is the characteristic function o f set E.
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E x (e - ArD ; x(r,—) E F, x(q-,)E E)

=  g f(x , d y )n (y , E )

for F D  and p(E, D)>0 3 ) , and this formula will be proved under
certain assumptions. We shall apply this formula to the one-sided
stable process x (t) to compute the joint distribution of x(T D —) and
x (r , )  for D= [0, b) which was obtained by E. B. Dynkin [1] by a
different method.

2 .  Assumptions. Let M= (S, P ,  x E  S) be a Markov process
on a locally compact, separable, metric space S which satisfies the
following two assumptions.

(A . 1 ) Its semi-group

T t f (x ) L.f(Y)P(t, x, dY)

m aps C(g) into C(g) 4 )  an d  is strongly  continuous in  t >0 .
(A . 2 ) There ex ists a positive kernel' )  n(x, E), x E S,  E E  B (S )"

such that

(i) n(x, E) < +oO i f  p(x, E) >  0 ,
and
(ii) f o r f E C(S) and  a bounded open set D

w ith p (D , S (f))>0 7 ) ,

T, f(x)I t is uniformly bounded in  x E D , t >  0
and

lim  T  f(x )I t =  In n  f(y)P(t, x, dy)I t =  f (y )n (x , d y )4.0 t4.0 s

f o r every x E D.
We shall call n(x, E ) the Levy measure of the process M.

3) p  is the metric of the state space S.
4) S=S i f  S  is compact and ,.-S=S_){« , }  is the one-point compactification o f S  if

S is not compact. C (5 )  is the Banach space o f  all continuous functions on S  which
vanish at co.

5) Hunt's terminology, cf. E n
6) B (S )  is the topological Borel field of S.
7 )  5 (  f )  is the support of f .
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R em ark . We assume as we may by virtue of (A .1 ) that the
path functions are right continuous and have left limits and that,
i f  fo-,J. is an increasing sequence of Markov times, then

lim x( 0 - „ ( w), w) x(lim  o(w), 2v)
?i t + . n t+ o

for almost all w for which 0-„(w) is bounded.

Exam ple 1. Let x (t, w) be a  temporally homogeneous Levy
process on R n  given by

E(exp x ,)) = exp ft,p, ()1
where

* (0 i(m, (/), e)j2+ (ei ( " ) — 1—  °' 
I

)0- (du).
Rn 1 +  U

This process induces a Markov process if  we define the probability
law governing the paths starting at x E R n  by

P ,(B) = P(x + x(• , w) E B) ,

where B  is a Borel subset of the space of path functions". The
process thus obtained satisfies (A .1) and (A. 2) and in this case

n(x , E) =

in fact, putting 7r,(E)=P(x (t, w)E E ) , we have

f  (x ) = f(x + y)n t (dy)

from which (A. 1) follows at once, and using the known fact

71- ,(E )/t o ( E )  ( t  0 )  for any continuity set E

for the measure o-  such that p(E, 0)>O, we have (A. 2).

Exam ple 2. Let x (t, w ) b e  a  Markov process o n  S  which
satisfies the condition (A.1) and (A. 2). We shall denote its transi-
tion probability and Levy measure by Pl(t, x , E ) and ni(x , E) re-
spectively".

8) C f. [6].
9) I f  lx (t, x , E) —o(t), uniformly in  xE D, p(E, D)> 0, (A.2) is trivially satisfied

an d  ni(x, 0,
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Let 0(t, w ) be a  one-dimensional Levy process with increasing
paths given by

E fexp  [-70 (t)]} = exp {—tqr(y)} , y >  O ,, 0 (0 ) =  0,
where

qr(7) = + 5 -  (1— e - 7 ")n(du) ,
0

c 0 , u n(du) < +00
0 1+u

Further we assume that these two processes x (t, w) and 0(t, w ) are
independent. Then the process y (t, w ) defined by

y(t, w) x(0(t, w), w)

is a  Markov process on S which satisfies (A.1) and (A. 2) and the
Lévy measure n(x , E ) is given by

-
n (x , E )  = c n '(x , E )+ P 1(7, x, E)n(dT) .

0
F o r  th e  proof, putting F t (dT )=P(O (t)E dr) a n d  T lf (x )—

Ex { f (x (t))1=L f (Y )P l (t, x , dy ), we define P(t, x , E) f ( x )  by

P(t, x , E ) = Pier, x , E)F t (ckr)
0

c-
T tf (x ) = L f (Y )P(t,  d Y ) ) of ( x ) F t ( d T )  .

Then it is easy to show that

Ttfl
7;.+ 0  =

t 1 0 ,
and
Px(Y (ti) Y (tn)E En)

= P(t„ x , dx ,)P(t 2 — t„ x „ dx 2) ••• P(t n —t n _„ x„_„ dx„).
E i

Hence y (t, w ) is a  Markov process on S  which satisfies (A. 1), (cf.

1 0 )  I I I  is  th e  norm o f C ( S )  1 If I =m ax I f ( x )  I.
xE S
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Now (A .2 )  can be proved by using th e  method given by
K. Ito  [ 7 ] .  Since it was published in  Japanese only, we shall
reproduce here some of his argum ents. We have

( 1 _ e _x T ) F t (tdT) (1— E(e - " t) ) I  t  = {1— c t }  It

*(X ) = cX  +S  (1—  e 'r)n(dT ) , (t  O ) .
0

Put
Gt(dT) = (1—  e - r)Ft (dT)1 t , t  >  0  ,

and
G(dT) = (1—  e — )n(dT)+c8 o (dT) .

We shall prove that for any bounded and continuous function pH,
O < T < + 0 0 ,

per)Gt(dT) p ( T ) G ( d T ) ,  t  0 .

For this it is sufficient to show that considering G t (dT) and G(dT)
as measures on [0 , +  00] G t (dT) converges weakly to G(dT), since
G ({ ±  co} )= 0 . Take any sequence f t ,J  tending to ze ro . Since the
total measure of G t „ is bounded in n, there exists some subsequence
{s }  of { t„} such that

Gs n - -  G* weakly for some measure G* on [0 , +  co] .

Define h ( T )  by

h,(T) = X , T  =  ,

=  1  —e - '11(1— e - - - ) ,  0  <  T  <  0 0

=  1, =_ oo

then hx (T)E C[O, + c o ] and hence

So h x (T)Gs n (dT) --> hx(T)G*(dT) .
fo, + 0 0 ]

On the otherhand

oc's hx (T)G.s.„(dT) = 5 -0 (1—  eT )Fs (dT)/ sf l

cX + 0 (1—  e'T)n(dT) = S:hx(T)G(dT)
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and hence we have

1fo _1 h(r)G* (dT) h,(7)G(dT) .

Letting X 0 we have, since 1 z ,(T ) -->  0 (7 + DO ) and 11,(+ 00) =-1,

G *(i+ 001) = G ({ +00} ) =  O .

Now 11,(T)G* (dr) = XG*({0})+ (1- c 4 T)G*(dT)1 (1- e - T)
[0,-) (0,.°)

=  CX ( 1 -  e')G (dT )I (1 - e - r)

= h4(T)G(dT)
[0,-)

-
and putting H*(0- ) = G * (d r) I  (1 -  e - T) and H(Œ. ) =  G (dr)I (1- e - T),

we have from this

-
G * ( 1 0 1 ) + H * ( 7 - ) e 'd r = c +5H( T )e ATdT .

0

Letting X f  + 0 0  w e  have

G*({0 }) = c = G({0})

, - H*(T)e'rcbr =- H(r)e - Tdrr
0 0

This proves H*(7)=1-1(T) and hence

G* = G,
that is

Gsn G  weakly on [0, + •

Now returning to (A.2), take f  E C (S ) with (S( f), D)>O, then

T t.f (x )/t T U(x )Ft(dT ) I t

=
T (x )  G

t 
(ch-)

•0 1 - e

Since x t -process satisfies (A.2), V f (x ) /T  is uniformly bounded in

xE D, ,r> 0  and lim T lf ( x ) I T = f(y )n '(x , dy), where ni(x , dy) is the

Lévy measure of xt-process.
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Defining (per) as

p(r) = f(x)1 (1— , 0  <  < +  Go ,

= f  (y )& (x , dy ) , T  =  ,

p(r) is a  bounded and continuous function on [0, + 00) and hence

p(r)Gt(dT) L per)G(d ,r) ,

this means

T f (x) I t c f  (y )ni(x , dy )+ ,:* f  (x )n (c k r)

f (y ){ cni(x , dy )+Vo Pi(T, x, dy)n(c1T)} .

This proves that y t -process satisfies (A. 2) and the Lévy measure
is given by

n(x , E) c n i ( x ,  E ) +  P A T, x, E)n(dT) .
0

3 .  The joint distribution of 7 ,  and x(TD ). Let M -= (S, Px, W)
be a  Markov process on S  which satisfies (A. 1) and (A. 2) and let
D  be an open set in S  such that D is  compact. Define 7.,,,(w ) for
any path function x (t, w) by

= inf {t ; t 0, x (t, w )  D}
=  +  0 0  if  there is no such t .

The subprocess MD = (D, PP„ x E D ) o f  M  on  D  is  a  Markov
process on D obtained from M  by killing the paths of M  at time TD " .

Its transition probability PD(t, x , E) is given by

1 1 ) The precise definition is as follows : we take as the probability space W of
M  the set of all functions w; [0, col which are right continuous and have
left lim its and further i f  w (t)---co then fo r  any w (s)=0 ,, where co is an extra
point (killing point) which we add to S  as an isolated on e. Define a mapping w—>
from W into itself by

w 0 ( t )  w ( t ) , f < T D (w ) ,

=  w , t ._._.rn(w) •

Then M D —(D, x E D )  is defined from the process M  by P, D (B )=Px (w  ; B),
xE D.
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PD(t, x, E) = P x (x(t , w)E E, D (w) >  t )  ,  x E D ,  E E B (S ).

Also we put

(x, E) = 1: e'PD(t , x, E)dt = E x r  e - "X E (x(t, w))dt}, X > 0  • 2 )

0

T h eorem  1 .  I f  p(D, E)>0, we have for every x E D and X>0,

(1 ) Ex{e-4TD ; x(7-
 D ) G E l =  Lef(x, dy)n(y, E) ,

and this form ula holds also f o r X=0 i f

(A. 3) EX(TD) < •
Proof. Take any f E C(S") such that it has the compact sup-

port and f 0 on some neighborhood of D.
Put

nG„f(x) un(x) .
Then it follows immediately from the assumption (A. 1) that un (x)
converges to f  (x )  uniformly in  x E S. In particular,

lim un (x) = 0, uniform ly on D .

Now

nun(x) = n 2 e - ntT, f(x)dt
0

=5 e - t tTanf (x)I tlndt
0

By the assumption (A. 2), we have that

Ttin.f (x)/t/n is uniformly bounded in  xE D, t >  0, n 1 ,

and for fixed t

lim tinf (x)I t In f(Y)n(x, dy), x D

Hence by Lebesgue convergence theorem
-

lim nun (x) = e- ttdt f(y)n(x, dy)
0

=  f  (y )n (x ,  dy) , x E D ,

1 2 ) If E (T D ) < xE D , then e x) (x, E ) can be defined including =0.
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and the above convergence is bounded on D.
Let 0  be the generator of M , then if  xE  D,

Ou n (x) nu n (x)— nf(x)
= nu n (x) .

Hence

lim O u n (x ) = f  (y )n(x , dy ),
' , t o o

x E D ,

and Ou n (x ) is bound on D  uniformly in  n .  Hence it follows from
the Dynkin formula (c f. N I.

E x (e'D u n (x(r,)))— u n (x)

= — E TD  e - xt(X -03)u n (x(t))dt}

- (x , dy )(X -0)u, i (y) , x  D ,  X> 0 .
D

Letting n  + 0 0 ,  w e  have

E x  fe'D f (x (r,) ) ) . =  Le(x, dy ) f (z )n(y , dz )

f  (z )0 D ef (x , dy )n(y , dz )) ,

since u n (x ) converges uniformly to f ( x )  and f ( x )  0 on D. This
proves the theorem.

We introduce the following assumption (A. 4).
(A. 4 )  For every point x o G S , i f  f  EC (S ) vanishes on some neighbor-
hood o f  x , then

f  (y)n(x, dy)

is continuous at x = x o .

R e m a r k . Every process of Example 1 satisfies this assumption.

C o ro lla ry  1 .  I f  the process M  satisf ies (A. 4) and every point
i s  n o  trap , then putting 7run(x, dy)=Px (x (r u n )E dy ) f o r a  neighbor-
hood Un  o f  x , we have

zun(x , dy) — > n(x, dy), w h e n  Un  x ,
E X  (T  un)

o
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in the sense that f o r  any  function f E  C(S ) which vanishes on some
neighborhood o f x ,  we have

u n(x, d.Y )f (Y)
lim  —  n(x , dy)f  (y ) .

U n “ E(T u)

Proof. We remark first that by Lemma 4  of Dynkin [2] there
exists a neighborhood U of x  such that Ey (r u )< + co, y  E  U .  Then
from (1 ) we have for every U < U  and U'

P x i(xer E) .ç (x ' , dy)n(y , E) .

Hence

u n 7run(x , dy)f (y ) ting-Vn(x, dz) n(z , dy )f  (y )

E ( - ) d z )

E x r  "  n ( x  d Y ) f  ( Y ) I d t )
_ 0

E x ( T: " dt)

n(x , dy)f  (y ) , U n  x  ,

from the continuity o f  n (z , dy )f (y )  a t  z  = x  and the right-con-

tinuity of the path functions.

4 .  The joint distribution of  T D ,   x (T ,— ), and x(TD ). Define
x er,(w )—  , w )=x (7 D — ) by

X  (T  D (W ) —  , 1()) = liM  X  ("1" D ( W )  
n

We want to obtain the joint distribution of TD ,  x(TD — ) and x(q-
D ).

For this purpose we introduce the following assumption (A. 5).

Put D =  ; p(x , D C )> } ,  then

D2 D. an d  Ern Dn = D .

(A. 5). T here ex ists a f inite Borel m easure m  on D such that the
Green measure e ( x ,  • )  is absolutely continuous with respect to m :
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(x, E )  = f(x, y)m(dy) .

Further the operator

: C ( D )  f ( x )  u ( x )  = x)f(y)m(dy)

maps C(D)" )  into C(D) and the range Gt(C(D)) is dense in each C(ii ),
n =1 , 2, • • • .

Theorem  2. I f  the process M  satisfies (A. 5 ) ,  then we have,
X > 0 , x E  D,

( 2 ) Ex { e'D  ; x(T D — )e F, x(T D )E El

= f (x , dy )n(y , E)

=  gf(x , y )n(y , E)m (dy) ,

f o r E, FE B (S ) such that p (E , D )>0  and F E D ,
 and the form ula

holds also f o r X = 0  i f  (A. 3 )  is satisfied.

Proof. It is enough to prove (2 )  for a closed set F D  such
that m (3F)=0, since both sides are Borel measures with respect
to the set

Now take such F  and X > 0 .  Put for xE D

u(x ) = E x (e'D  ; x (T E ,) E E, x(9 - D — )E F)
v (x )  = E x (e'D  ; x (T D )E E, E F)
v(x) = E x (e'T D ; X ( T D ) E E ,  x(TD — )E D— F) ,

and
w (x ) = E x (e - x'D ; x(7- D )E E) .

Then it is obvious that v, < v 2-.< • •• and lim  vn = v  on D .  W e have
also

w(x) u ( x ) + v ( x )  on D .

For this it is sufficient to show  that

P x (x(rn — )E ap, x(T D )E E )  = O.

1 3 )  C ( D ) — { f ; f  is bounded and continuous on D}.
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Put E t ,= D— D„,

0  En(w) = in f it 0, x f  E En}
=  +  co  i f  there is no such t,

and
œn(w) = min ( 7- D (W ), E n (W )) •

Then o (w )  is an increasing sequence of M arkov times and it
is easy to see that if  x(r,(w )— , w)E ap, then

a- n(w) =  °".on(w) <  To(w)

for large n and x(lim a-
n (w), w)= lim x(crn (w), w) E aD . This implies

that Ern o n (w )=T D (w ) and x(rp (w ), w ) E .  Hence

Px(x(7,— )E3D, x(T D ) E E ) =  0.

We shall now prove that u (x ) is X-excessive with respect to
MD-process, that is" )

e- "É T (u (x (t ) ) )< u (x )

and
e- xtE5)(u (x(t))) u(x) ,  t 0

at every point x  E D " ) . For, using M arkov property,

u(x)—e - x tET (u (x (t))) =  u(x)—e - "E x (u (x (0 )  t <  T o )

=  E x (e'D  ; x(r —)E F, x(TD )E E )

e'tE x(E x(t)(e - x r  ; x (7 ,— )E  F , x (r D )G E ), t <  TD)
=  E x (e'D  ; xe r D —)E F,x(T D ) E E )

—E x (e't+Tncwi') ; x((t+TD(wi f )) — ) E F , x (t +  D (w )) E E ,' 6  t < T D )
=  E x (e - xTD ; x(TD —)E F, x(TD ) E E )

—E x (e'D ;  x (T D —)E F, X (T D )E E , t D)

=  E x (e - x T D ; X (7 D — ) E F, x(TD ) G E, t > TD)

and this decreases to zero with t 0  by th e  right continuity of
path functions.

14) E x n ( )  is the expectation with respect to Mn-process, thus k x n(u(x (t)))—
E,(u(x (t)) ; t D ) ,  cf. foot note 11).

15) Cf. [5].
1 6 )  w t is defined by w t(s)— w (t+s), cf. [6].
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Let G  ( .0 D )  b e  an open neighborhood of F  and
first passage time for G :

0-
G (w ) = inf {t O; x ( t , w) E ,

=  +  00 , if there is not such t .

Then

a-G  be the

u(x ) = E x (e'D  ; F, x (rD )E E)
E x (e ; x(rp— ) E F, x(1-

D )  E E, T D >  0 - G)

+ E ( e  x T0 ; x(rD —) E F, x (r D )  E E, T D < a - G)

and the second term  is zero since if crG > r D  x (T D — )  F.

u(x ) = E x (e D ; X(TD - )  E F , x(TD ) E E , CTG < T D )

= E x (e — A ( " + . 7 . D ( " 6 ) )  ; x((o- G + T D (w % )) — ) E F ,
x(0-G + 7 -13(w%))e E ,  0 -G  < T D)

Ex(e - X 6 a -Ex(o-, ) ( e  X T D ; X (rp - ) E F, x (T D )  E E); crc < T D )

.02(e'ra u(x , 0 )) ,

by strong Markov property and hence from a theorem of Hunt
[5 , Th 6. 6.] there exists a  sequence o f functions { f „}  ( f „>0 )

each vanishing outside G such that gf (x , y )f„(y )m (dy ) increase
G

to u(x ) everywhere on D as n t  +D o . Take p o E C(D) such that

=  G tp 0(x) > 1 , x EG ,

(such a function exists by virtue of (A. 5)). Then

L.f,,(Y) m(dY) G I (.Y)f,i(Y)m(d.Y) L u(x )P0(x )m (dx )< + 0° ,

and hence there exists a bounded measure on C; such that some
subsequence o f {f„(y )m (dy )}  converges to  f t .  Then for 9) E C(D)
we have

D 
u(x )p(x )m (dx)

= .111171L1Le(x, y)f„(y)m(dy)} (p(x)m(dx)

=L rf ({L x, y )p(x )m (dx )}  f (y )m (dy )
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= 1 , g--;!(x, y)(p(x)m(dx)},u,(dy)

= L p ( x ) ( L g - If(x, y)p(dy)}m(dx) .

Hence

u(x ) = _ gtx , y ),a(dy ) , a.a .x  (m(dx)) ,
G

and since each function of both sides is X-excessive with respect
to MD-process the above equality holds for every x E D .  From the
assumption (A. 5) we can easily see that the measure ,u, is uniquely
determined by u(x) and since G  is  an  arbitrary neighborhood of
F, it follows that the support of p  is contained in F :

u(x) = 
F

gf(x, y)p(dy) .

Now a  similar argument applies to v ( y )  and we can prove
that for each n  there exists a  measure 2., „ such that

v ( x )  =   Z-Ax, y)v„(dy) .
Dn-F

It is easy to see that

P I  < 2  <
and hence

v(x) = lim  v(x) = ogf(x, y)v(dy) 1 ",
nt+- D-F

where
1) =  lim vn .

, t+00
Now using (1) we have

w(x) = u(x)+ v(x) = S glf(x, y)n(y, E)m(dy)
D

=  L , g °,(x , y)p,(dy)+0 (x, y)v(dy) .
D-F

Noting the assumption m (F )=O , we have

1 7 ) P is the interior of F.
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u(x ) = a( x , y ) n ( y ,  E ) m ( d y )

V ( X )  = a(x , y )n(y , E)m (dy ) ,
D - F

since the measure of a potential is uniquely determined by virtue
of the assumption (A. 5).

This proves our theorem.

C orollary 2. I f  th e  process M  satisf ies besides (A. 3), (A. 5)
the following condition (A. 6)" ),

(A. 6) x (x (r,)E aD) = O,

then we have f o r EE B (S ), p(E, D)>O,

( 3  ) Px(x(TD)E Eix (rn —  )  =  Y) —  n ( Y  ' , yE D .
n(y, S— D)

Proof. Put Un = Ix ; p(x , D )>—n
1 }  , then Un  t S — D  and

Px (x(TD — )E F, x (r2-,)E U = dy)n(y, U n ) .

Letting n t + 00 , we have, noting (A. 6)

13,(x (r,— )E  F) = dy)n(y, S— D)

n(y, E )_ n(y , S — D )g(x , dY )
F n(y, S— D)

=  
F

n(y , E )e(x , dy )

=  ) ,(X (r D - ) E F, x(TD ) E E) .

C orollary 3. Under the same assumptions as in Cor. 2, T ,  and
x ('r,) are independent under the condition that x (r,,— ) be given.

Proof. By (3)

Px (x(TD ) E El x(9- D— ) = Y )
n ( y

'

 E )

-n(y, S— D)
ye D.

   

and

1 8 )  This condition is satisfied, e.g. in the case that M  is  the symmetric stable
process on R " with exponent 0 < a < 2  and D  is a sphere in  R"'
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Similarly, we can prove

E x (e - À TD I x (T „,_) _  y) gif(X , y)
gf?(x, y)

and also
E x (e 'D  ; x (rD ) C E 1 x(r D — )  =

n(y, E) y) y E D .
n(y , S— D) g- 6) (x , y )'

Hence

E x (e'D  ; x (T D ) E El x(rD — )  =
= E x (e'D  I x (rp — ) = .Y )P.(x (rD)c x ( T D — ) = y )

y E  D,

y E D .

Remark. Cor. 3 may be considered as the continuous analogue
of the well known fact for the Markov process with discrete states
and right continuous paths that T a  and x(T 0 ) are independent where
T o  is  the holding time at a  state a.

5 .  Application. Here we shall give an application of Theo-
rem 2.

Example 3. Consider a  one-sided stable process given by

E(e - lx" ) )  = exp , 0 < a  < 1 , x (0 ) =  O .

This process is a  special case of Example 1 and  a Markov
process on (— co, 00) is induced from it. Its transition probability
P(t, x , d ) is  p(t, — x)d, where

=  exp  {— tf}

and
p(t, ) =so , if< O .

Now

gg) = Er (") 1 - 1 - ' > 0 .

Since

ry°'  =  (1— c")
0

the Lévy measure is given by

du
['(1— a) u '+'
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n(x , dy) = [al l'(1—ce)](y— , y > x  ,
= 0 y  <x

Let D = b ) , b >0 , then

0(x , dy )= (F(a))'(y — x )' - 'dy , , — 1 <x  <y  <b
= 0 otherwise .

In  this case, taking m(dy)= dy, (A. 3), (A. 5) and (A. 6) are satis-
fied and so we have for 0 <e <b <9 7 ,

Po(x(TD— )E d , x (T D )E
= 0(0, d) n(71 —  )dn ,

(a sin 71- a / 7 c ) e - l(9) — ) - " + ' ) d d ? )  .

Now put

Yi(w) b —  x (T D (w)— , w) ,
y 2 (w) x ( T  D (w), w)— b,

then the joint distribution of y 1 , y 2  is given by

P(YiE du, Y2 E dv) P b (u, v)dudv
0 < u < b ,  v > 0 ,

where

Pb(u, y) (a sin nahr)(b— u ) ' ( u  +v) - "+ ' )  .

This formula was obtained by E. B. Dynkin E ll.
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