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1. Introduction

Let us consider the equation of the form :
a2u

— + f(u) —

au
+ g(u) =  O.at2 ax2 at

Our problem is the so-called initial-boundary problem to this
equation. Namely, we want to show that, under some conditions
on f ( u )  and g ( u )  which will be given later, there exists always a
unique, genuine, global solution u(x, t), (x > 0 , t > 0 ) ,  for any couple
of the initial u(x, E C2 ,  u t (x, E  ( x > 0 )  and the boundary
u(0, t)=*(t)E  C2 ( t > 0 )  data. Of course, we assume the compati-
bility conditions among these data up to order 2 .  Namely, u(0, 0)
= * (0 ) , u(0, 0)= 1 (0 ) and

*AO) =  u (0 , 0 )—  f(u(0, 0))u(0, 0)—  g(u(0, 0)) .

Our first step is to obtain an a priori estimate of the solution
u  and its first derivatives in the maximum norm. It is evident
that without any condition on the behaviors of f  and g ,  we can-
not expect to have such an estimate. W e tried  to  m ake th is
condition less stringent. However, we remark here that from the
first we restricted the type of equation to the form ( 1 .1 ) .  We
could extend our reasoning to another types of equations. How-
ever, we don't insist on this matter.

Our second step is to show the local existence theorem with
respect to both the Cauchy data and the Goursat data, This
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problem is already classical. However, to make this theorem im-
mediately available to the step-by-step continuation of the solution,
we discussed it in detail in section 4.

Now, we state our condition on f  and g.
1 ° .  Differentiability condition.

f(u), g(u) E C 2 f o r  — 00 < u < +  00
2 ° .  f(u ) satisfies an inequality of the following form :

— Lo < f(u )< C (u 2 + F(u) 2) + C „ f o r  —  < u <  + 00

where F (u )=  f(v )dv , L„ C , and C, are positive constants ;
(1.2) 3 ° .  g(u) can be put in the form

g(u) = g,(u)+ g 2 (u) ,
w h ere  g i (u)I < C  u  ( C :  constant),
sign u.g2 (u) > 0  fo r  ul large, and ug2 (u)1 <CG 2 (u)

f o r  u  large»
where G2 (u )=J g 2 (v)dv, C is a positive constant.

Now we state our 0

Main Theorem.
Let us assume the condition (1 .2 ). Given any initial and boundary

data satisfy ing the  dif ferentiability  condition and the compatibility
condition stated abov e, then there ex ists a unique solution u(x, t),
0 < x < 0 0 , 0 < t< 0 0 , o f  class C2 .

2 .  A priori estimate of solution.

In this section, we assume that the solution u(x, t)E C2 exists
for 0 < t< h ,  we fix h. Since the equation has the wave operator
as its principal part, it suffices to assume the Cauchy data has its
support limited to the right, say, for x < L .  Then the solution, as
far as it exists, has its support in x < L + t .  Next, let us recall
that u(x, t) takes the value 'Jr(t) for x = 0 .  We transform u into a
new unknown function y in such a way that it have the boundary
value 0 : y(0, t)= O. For this purpose, we take a function b(X, t) E C 2 ,

1 )  I f  we assume, in addition to the condition 2°, lim F(u)— , we can relax
the condition 3 0 , by

3 ° ) '  0  sign u.g2 (u )< C (u 2
 G 2 ( u ) )  f o r  I u  large.
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defined in 0 < t < h ,  0 < x <  0 0  satisfying

1°. lif.(0, t)=*(t) ,
2 °. * (x , t )  has its support in x <L .

fact, we define an energy form E 1(t) as follows :

(2.3)E 1 ( t )  = 12  (0. ± 14) + G(v + Ajr) C (v 2 ± 1)d x ,

where G(u)= o g(u)du .
Here we take the above positive constant C  in such a way that

G(v + *)± C(v 2  + 1) >  C2   (v 2  + 1) .

This is always possible by virtue of the condition 3° of (1. 2).
Next, recalling that v (= u+ qr) has its support in x  <L + h , this
upper lim it is tak en alw ay s L  + h. Although we write the upper
limit of the integral as CC . Let us remark, in fact, that (2. 3) would
have no sense in we take 0 0  as upper limit.
Now

-
E (t)  = v t v t t + v x vx t + g(v ±Aff)(v t +qr,)+2Cvv,dx

0
Taking into account of

rvx v ,dx  = [v x •v ]—  v x x •v t dx  = vt•v„dx ,. 0 0 0

E ( t )  =  v t (v„— v„)± g(v+11r)(vt+* 1-)+2Cvv t dx0

=  v i {—f (v + *)(v f t ) g (v  + + 1 ,f r + g(v + * )(i), + )
+2Cvv t dx ,

Now set

(2. 1) v(x, t) = u(x, t) —1Kx , t)

then (1. 1) becomes

(2. 2) v„ — vx ,  =  f(v + *Xi + *,) — g(v +40 + (Iirxx — Iktr) •
Now, we want to derive an a priori estimate of v.
Let us proceed in a heuristic way. In the case of wave operatar,

the energy E(t)=1 vx2 dx is constant. Taking account o f this
0
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where 11fi 'irtt,

—f(v + qr)v t (v t + f t ) + g(v+*)*,+v,IP i +2Cvv,dx

(2.4) =  — f (v +lb)(v t+'h -
2  ) 2dx +Ç:f (v + 11P) *2  +g (v +*) , frt +

+ 2Cvv t dx
By the condition 2° of (1. 2), i.e. by the lower boundedness of
f (u ), it sufficeces to estimate the second integral of (2. 4).
By a rough observation, we see that, if the functions f  and g  are
all o f order 2 namely if f (u), g(u) are of 0(u 2 ), the last integral is
estimated by const. E ,( t ) .  However, this condition is relaxed con-
siderably as we shall show it.
Define the second energy form :

(2.5) .E 2(t)= -   1  {v t + F(v +.11P)—  F(*)}  2 + —1 G ( v  + ) +  C ( v 2 +  1)dx
0  2 2

with the same convention on the upper limit, where F(u)=Ç f (u)du.
0

Now,

E (t)  = { v t+ F(v  + Alt) — FM} {v t t + f(v +0(v t + liPt) — f (*) , 1, t}
0

+ vx vx , + g(v+ .0 (vt+*,)+  2Cvv t dx

Since vt i  + f(v+*)(vt+Akt)—vxx — e v +* )+* 1 ,
and since

{F(v + Ifr) — E( ")} v„ = — v  {f(v + *)(v x  +  x ) —  f( » }  d x
0 0

= f(v +11r)(v x  +*2 x ) 2 dx f(v + Ifr) -11rj — f(*)1p,
 xv x dx ,

0 4
we see that

E ( t )  = { F ( v  +1 1 P)—  F(*)} {— g(v + *)+11r,— f(*).Vr t } dx
0

—  f (v + 1 1 f ) ( v  + P
2 x ) 2 d x + t { —  ev  + qr) + —  f (* )*  +

0

+ g(v+1fr)(v,+*t)+2Cvv,d x lf(v  +'11r)V  M P » dx .
0

Now the third integral is

v (*I — fW kirt)+ g(v+ o fr t +2Cvv t dx0
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Now consider, in the first integral, the term

—  {F(v + 'VP) F (JP)} g(v + qP)dx

Let us consider the integrand :

{F(v ++(— F(*)}{,g i (v +,tp-).± g2 (v + Afr)} = {F(v + — F(*)} gi (v + Jr)

+ {F(v F(*)} g2 (x .

Now the first term in the right-hand side is majorized by

{F(v +11,)— F(*)}  2  + c'v 2 .

Next, consider the second term. If v  is  large, F(v +Ak)— F(*)>
—2L,0 (v +*), g 2 (v + ,p,)> 0, and if v tend to  — 00, F(v + Air) — F(*)<

ov, , g2 (v + < 0 . W e  s e e  th a t  — {F(v + —  FM}  g2(v +
2L 0 (v +*)g2(v +*). f o r  v  large.
Let us remark that, i f  we can assume that lim F(u )= 0 0  , we
can deduce that

— {F(v +*)— F(*)} -,g2 (v+ , k) < o .
Summing up these estimates, we see that

(2.6)E ( t )  <  const. {F(v+r)— F(*)} 2 + 4 + v2

0
+ v + qf g2(v +qr) + const. dx .

where constants do not depend on v.
Now, we consider

(2. 7) E(t) = E 1(t) + E2 (t) .

Taking into account of

+ (v, + F(v + , k) — F(*))2 >  1 {14 + (F(v +gr)— F() ) 2 } ,
4

and of the condition (1. 2), we see that

(2. 8) E'(t) < cE(t)

where c is a positive constant not depending on v.
From this, we have

E(t) < E(0)e .
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Up to now, we assumed that u(x, t), therefore v(x, t ) exists up
to t = h .  However the reasoning shows the following : As far as
the solution is continued—supposing this upper limit of time less
than h—E(t) is  majorized by E (0 )e .

The Sobolev's lemma implies that max I v(x, t)1 i s  majorized

by co n st. v 2 + vNx, we see finally the

Theorem 2 . 1 .  A ssume the condition (1. 2). Then, there ex ists a
positive constant c such that

(2.9)I u ( x ,  t)l < c ,  0 < t < h

as far as the solution is continued.

Remark 1 .  The above constant c  may depend on the boundary
and initial data and h .  Here, its dependence is not the question.
What the theorem says is the existence of such a finite constant
for each data and h.

Remark 2 .  I f  we consider only the Cauchy problem, the above
estimate is much simplified. In fact, we need only to take the
energy form E 1 (t ) o f (2. 3). Of course, in th is case we need not
change u to v. According to (2. 4), (here A/P, -=70), denoting

c.° 1 2 2E 1 (t) =  L ,(u ,+ u ,),G (u )+ C (u 2 + 1 )d x

with the same convention with respect to the integration, namely,
the integration is taken over only the fixed interval in x  contain-
ing the support of u(x, t).
We have

E at)  = – f(u)I4+2Cu t udx cE ,(t) .

Here we need only to assume that

1 ° .  f (u )> – L.(2. 10)
2 ° .  g(u)= g l (u)+ g(u), I g i (u)1< c lu l

sign u •g2 (u) >_0. fo r  I u

Under this condition, we can conclude (2. 9).

large.
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Remark 3 .  The equation (1.1) does not depend on x, t explicitly.
One could extend our estimate to these cases under some conditions.
A trivial extension is to add the first order linear terms. How-
ever, we don't try here these generalizations.

3 .  A priori estimate of first derivatives of u.

F ig . 1

In this section, we want to show that the first derivatives also
remain bounded as far as the solution exists. For this proof, we
use only the fact that u itself remain bounded. For this purpose
we divide the domain x > 0 , t> 0 , in two domains.

( I) : the domain o f (x, t) such that x> t ;
(II) : the domain of (x, t ) such that t > x .  (See Fig. 1).

In the domain (I), u(x, t) is determined only by the Cauchy data.
Therefore, the boundedness of the first derivatives can be derived
by Haar's Lemma. However, in the domain (II), the direct use of
Haar's Lemma could not be expected.

Here, we want to obtain our results in both domains by the
same principle.

As usual, we take the new independent variables n) by :

=  x + t
=  t—x

Then (1.1) takes the form

(3. 1)9
2tt

 —a(u)
au 

+ b(u) +  c (u )aan. 3 7 . 1
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A )  Now we argue about the domain (I).
We change the unknown function u  to y  in  such a  way that

y  have 0  Cauchy data.
For this purpose, le t u s remark that, from the Cauchy data

we can deduce the 0  data. In fact, from the Cauchy data we can
deduce the 0  data in the following form :

au au— qi()E  C 1 ,- ---. J r ( )  E  C1 a lo n g  the x-axis.a an
Then, the function

n) = 7/0) ±  P()Ck , k(n)dn

satisfies the same Cauchy data on the x-axis and —O.aa n

(3.2)9 7 )  = n) •

Then, (3. 1) becomes

a2y  (3.3)
a

— a(u) +b(u) +c(u )+f
an

w here f=a(u)qrt+b(u)*„.
Now we p u t in  a(u), b(u), c(u), f  the solution /7) then these
functions of n )  remain bounded according to Theorem 2. 1.

Namely

a(u (, 71))! , b ( ta  n ) ) I, I c(u(, n))I <  K ,
I<M  •

Now, let us consider the majorant equation of (3. 3) :

(3.4)a 2 u  — K(u+au +au )- maan

In fact, the Picard's approximation process shows that the solution
U of (3. 4), with 0  C auchy data on  the line ,-1--97= 0 , m ajo rize  u
with its first derivatives :

I

Recalling this fact, we set

v(, ? ) )  <U (, ? ) ), av av
an

au
an •
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Evidently, the solution U ex is ts . This show that, the first deriva-
tives of u  also remain bounded as far as u E C2 is continued.

B )  N ow we pass to the domain (II). B y v irtue o f  (A), 27)

and its first derivatives have an a priori estimate on the x-axis.
Hereafter we write (x, y ) in  the  p lace  o f 27).

Problem . Let us consider the solution u(x, y) of

(3. 1) a2u
—  a(u)

au 
+b(u)—

au 
+c(u), w ith  the boundary data u(x, 0)

axay ax ay
= 1(x), u(Y , Y )  P2(Y).
Obtain an a priori estim ate o f  first
derivatives o f u, by means of that of
u  itself and of p i (x ) and P2(Y).

We reduce this Goursat-type pro-
blem to zero boundary value. Name-
ly, by defining,

*(x, = Pi(x)+P2(Y ) - 931(Y)

we set
v= u --11", then (3. 1) becomes

a2v (3.3)—  a(u) —
a v 

+ b(u) —
a v 

+ c(u)+ f .ax ay ax ay
w here f =

 a (u ) r , , ,+  b(u)lfry •
w here v(x, 0) --= v(y, y)=0.
It suffices to prove the following lemma.

Let us consider the solution u(x, y) of
a2u au(3. 5) (— a(x, y)

au
+b(x , y )—  c x , y )u+ f (x , y)ax ay ax ay+

defined in (II), with zero Goursat data : u(x, u( y, y)= 0
We assume

(3.6)a(x , y )1 , lb (x , y )1 , Ic (x , y ) l< K  , f (x , y ) l< M  .

Now we consider the following auxiliary equation :

a a(3.7) 2U — lc( u+ 2- u + u ) + m ,axay a x  ay



au,
ax

au,
ay

aun

ay

It is evident that

u „ < U0 ,

In general we have

n(3.8) I  un <  KnU
au 

n ax

< au,
— ay  •

<  K n (
au

n +
au„

— ax ay )

— ax

K n  
aun

—  a x

70 Sigeru M izohata and Masaya Y amaguti

whose U(x, y ) is considered in { x > 0 , y  >
with zero boundary data :

U(x, 0) = U(0, y) = 0 .

Lem m a 3. 1. u(x, y ) is majorized by U(x, y) in the following form:

u(x, y) I <  U(x, y) , au
ax

aua u  a u
<  — ax ay a x  a y  •

 

P r o o f .  Picard's successive approximation itse lf shows the above
inequality.
Set

uo(x, y) 7.1)dcin , u i (x, y) = (a au °+b a-A ,+cu„)ckcln •--
R a x ay

where R  denote the rectangle showed in Fig. 2.
Set

x

u o(x, y )  =  
x 

M cidn , U,(x , y) =
y  

(U 0 + 2au 
 +

au 
0 ) d un , •  .

0 0 0 ax ay

This relation can be shown by induction on n. In fact, recalling
the relation

(3.9)u ( x ,  y) = f ( , f(x, 71)4  ,ax 0

ra
 = Y )ck— 

Y

 AY,a;  77)dil0

and supposing (3. 8) valid for n =n , we have

a au,z+ b aun ± c u

ax ay "

 

3'
(2  

au„
+

au
" +  U

0 ax ay n

 

= K n+1 11.+,
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a au n +b  u n+cu na cln <K n+iS y  2 au n+
au 

n

0
Lin dyax  ax ay ax ay

 

auK n+1  n + 1

ax

  

rYY
a U n + i  < ••• )0ay

( a u , i+ i+ a u i )
ax a y  I  •

 

(3. 8) shows that

 

au -  au au-  a u— —E n —E n are majorized byax n = °  ax ay ay
au au

 +
au respectively, whereax ' ax ay

u = u 0 +Ku 1 +K 2 u2+ ••• +IfnU„+

where existence theorem is already classical. (cf. E. Picard [2],
p. 106-113). Summing up the above results, we have

Theorem 3. 1. Under the same assumption as in Theorem 2. 1, the
first derivatives o f  u (x ,t)  have also an a priori estimate. Namely,
there exists a constant C such that

t )ax

 

< C < + 0 0

    

as far as the solution u  o f (1. 1) is continued.

4 .  Local existence theorem.

In  this section, we shall consider mainly Goursat's problem.
Let us consider

(4.1)a 2uf ( x ,  y ,  u ,  a u  au) o r  = f (x , y , u, p, q) .
ax ay ax ' ay)

 assume that f E C 2,  fo r  all arguments. Our problem is the
following : Find a solution u(x, y ) o f  (4. 1) in  the domain (II) :
0 G y < x G a ,  which vanishes on the boundary : u(x, 0)= u(x, x)=0.

We use Picard's method. (cf. Picard. En
Define
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uo(x, y ) = v, 0, 0, 0)dUy ,

u,(x , y ) = f 71, uo(, 9i) au° 71) ,  

au° 71) ) d u y  ,ay

U n ( X 7  .Y) 017 Uts+1 qn_i)dchl •

A t first we restrict the domain as follows : Define

(4.2) ( D ) fx , y ,u, p, q ; 0 < y < x < a  ,  u ,  p , <b}.

Denote
=  max f(x, Y , P ,  0 1  •

We take p  in  such a  way that

(4.3)M p  < b  ,  M p 2 <b  ,  p  < a  .

We see that for x , y <p, u n , p„, qn (n=1, 2, ••-) are remaining in (D).
Now we want to prove

Proposition 4. 1. Goursat's problem  to (4 . 1 )  of  abov e ty pe h as  a
unique solution u(x , y ), 2  times continuously differentiable including
the boundary", in  the d om ain  0<y <x <p , p  satis f y ing  (4. 3).

P r o o f .  A t first we remark that
a

Un
f ( X 7 oj , U n -1 (X 7  11 )7  Pn-i(x, 71), q,(x, 91))dyox

Y
, y, U n -1 7 p u - 1 , y, 21, U n - 1 7  •  • ) d y

Jody Y

There exists a positive constant K  such that

f(x, y, u, p, q)—  f(x, y, u' , pi , qi)j < K(lu — u' I + I I +14 —  4 1 )

for any pair in (D) .
Denoting v„(x, y) I un —  un -1  +  I 1) —  14-11 + 9,11
we have

2 )  This means the following :  u(x, y )  has continuous derivatives up to order 2  in
0 < y  < x ,  and each of these derivatives has a (unique) continuous extension up to the
boundary.
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un + , — u„ K ,27)d dy

Y

P P. K ç v„(x , 71)4
.0

Y
q „1  <1 1 -y)d K  v , , ( y ,  n)dy .

0

A s  w e  have shown in  the proof o f  lemma 2. 1 , we consider a
majorant equation :

U(4.4)a 2 U   — K ( u + 2
a  F

aU 
)+ m , f o r  x, y > 0  ,

axay a x  ay

with U(x, O)= U(0, y) = O.
Then, the sequence of successive approximation (cf. section 2),
U0 , U„ ••• majorize u 0 , u1 , • • • as follows :

un — u„_ 1 1<  If "Un

p , ,

—
K n a U nax

lqn
—

qn-il < K
"

(
aun

+
aun

)ax ay

where U= Uo +K U i +K 2 U2 + ••• ,
Now, we know that, the solution u(x, y, k ) of

a2ti — k(u+2au+--au)+M, w ith  0  data on the x  and y axes,
ax ay a x  ay

is holomorphic in k  for all values of k  (complex), and continuous
au auin x, y, k , and this is also true for — ' —  (cf. Picard En  112-113).ax ay

Now, take a positive a, which is less than 1. Then there exists a
constant c(a , p, K )  such that

"(4.5) a n ,  au,, a,   ( I n+
a

 U n < ( - - )  c ( a ,  p ,K )  f o r  0 < y < x < p
ax a x  ay K

This implies that

(4.6) v n (x, y) = lu n — u n - + + qn_il <e an  ,  n = 1, 2, • • •
f o r  0 < y < x < p  ,  0 < a < 1 ,  and c  is a positive constant.
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(4. 6) shows that u0 + (u ,— ;)+ (u 2 —u1) + • •• is a normally convergent
sequence with its first derivatives. Namely {u„(x, y )}  converges
uniformly with its first derivatives. This limit function u(x, y) E C'
is a solution of (4. 1).

Now, we want to show that u(x, y )  is  2  times continuously
differentiable. At first, let us remark that each un (x, y ) is of class
C2 including the boundary. In fact, recalling the formulae :

u(x, y) 97)d dn, a
a2:(x , y) —  f x (x, n)dn , aa

x
2ua y — f(x , y) ,

r x
a
a

2
 y
u,(x, y) = — 2f(y, y)+ y)ck— o f.(Y , 97)4  ,

Y

we have

(4. 7) 0 U nç x t  x ,  2 7 ,  u n i y  g n  i )

aX 2o f  \

+ f u  autz _i +  f  a 2un_, f g a2un_i d ,,7
ax P aX 2a X a  y

a 2 t f n y ,  u n - i ,  P s - i ,  q n - 1 )ax ay
a2un — 2 f(Y, Y), Pn-i(Y,Y), Y))ay 2

fy+ fu
au

n - 1 ±  f

a2u

p   f  auf l l d

Y ay axaya y
Y f x a U t t - 2 ±  f p  

 a 2 U ts- 1±  f q   '9 2 1 41 - 14

0 ax ax2 axay

u
Realling that 

a 2

 a r e  uniformly bounded, le t  u s  consider a  se-
ax a y Y

quence of functions A (y )  by A (y )= c  {1 +  A n _,(n)} ,  for y > 0 ,
with sufficiently large c. If we take

A o(x )= -N >  m ax a
a

2
x
u :  I ,  take we shall have in general A n(Y )>

132u

a x '
n ( X  y )

It is easy to see that A (y )  are uniformly bounded for 0 < y < p .

At first, we shall show that 
a

ax"
2u

n  a
ay
'u

n a re  uniformly bounded.2
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a zu
In the same w ay, we see that, "  are uniformly bounded.

Now, we want to show th a t E  a2( u n  un -  ,  E  a2 ( i`n un- i)ax2 ay2
a re  uniformly convergent. Denote by K ,  a  common Lipschitz
constant, with respect to u, p, q , of the functions f ,  f x , fy , fu , f p ,
f q , when (x , y , u, p, q) in  (D ) .  Denote by M , a positive constant
which m ajorizes 1 0  all these functions when (x, y , u, p, q) in  (D),
2 °  all derivatives of un(x, Y) (n=0,1, 2, ••-) up to order 2.

Then, taking into account of (4. 6), (4. 7) implies

a2
(

U
n + 1  Un) (x,

aX2

Y
<  K iC a n  W a n  4 M 1K 1can + M,

  

a2( en—un_i)
ax2

dn

    

Namely, if  we denote p n (y)—  max
Y P

we have

 

a2(i‘n U n -')  (X , y)
aX2

  

Y

(4. 8) q +1(y) <  cian+ M i(7).(?7)dy , where c, is a positive constant.
0

In the same way; we shall have

a2
(

U
n + 1  Un) (X , y)
ay K i can c2cen + M,

Y

a2 (un— un-1)
ay 2

a2
(

U
n 1 4 1 - 1 )  (y, 97 )
aX2

Denote by '4r„(x)—  max
0• Y x

 

a2(un —un, ) ( x ,  y )
a y 2 ,  then we have

   

Y
<  K i Can C 2 a n  Miljrn ( )d+ c,an +111,P.(77)dn

0
Taking into account of y < x ,  we shall have

(4.9)A k + 1 ( x )  < I f iccen+  (c,+c,)an +M 1 (.1frn ( )+(p n ())ck  .0

Now, let us consider a  series of functions (1 (x ) defined by

gl n (x ) =  c oc e n - +  coct" — +M i (Dn- ,(0 d ,
0

M, dn

w here c o —max Ec„ K i c, c 2 +c 3 ]
Then evidently, both p ( x )  and Ilf.„(x) are  m ajorized b y  (I (x ) if
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we define

(150 (x) N >  max p 0 (x)1 +max 11P-
0 (y)1 .

W e see  easily  th at E 4(x) <  +  0 9 .  This shows a fortiori that
E  

a2 (un— u
n

-
i

)  
a n d  E  

a2(u
n  

—

 u
n -

)
a re  uniform ly convergent.ax2 ay2

This shows that the solution, lim it o f un (x, y ) , i s  2  times conti-
nuously differentiable.

The uniqueness of solution is ev iden t. In fact, let u , and u,
b e  tw o  solutions. Denoting v= u i -  u2 ,  v  satisfies the following
linear equation :

a2v - - av -  a v-  f u v + f paxay ax ay

L , / 1 ,, T., denote the mean values. If y has boundary value 0, then
Our proof is thus complete.

Now, we return to non zero Goursat data. Namely, given two
functions q'1 (x) and q)2 (x) which are 2  times continuously differenti-
able for x > 0 ,  find a solution u(x, y) of (4. 1) in  the domain (II) :
0 < y <  x  < a ,  such that u(x , 0)-(p 1(x), u(x, x)=q),(x).
Then we have

Theorem 4 . 1 .  T he above problem  has a unique solution u(x , y ), 2
times continuously differentiable including the boundary, f o r 0 <y <
x <p '. H ere , a positiv e  constan t p ' m ay  depend on the maximum
norm of q, 1(x ) and qi,(x ) up to their f irst derivatives, but it does not
depend on the m axim um  norm o f  their second derivatives.

P roo f. This is an immediate consequence of the above proposition.
In fact, defining

ax ay

where y  vanishes on the boundary. c.q.e.d.
As regards to the Cauchy problem, the same proof can be carried

=  Pi(x)+P2(Y ) - Pi(Y)

set y(x, y )-u (x , y )-* (x , y), then (4. 1) becomes

a2y -  f ( x ,y ,v +* , v x +qr„, v y -Fiky ) ,
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out literally , even  sim pler". W e re stic t ourselves to state the
following.

T heorem  4 . 2 . L et us consider the equation

(4. 10)
a2u

—
 0 2 u  

— f ( x ,  t ,  u ,  
au

,

 a u

ax ay )
where f  E C ' ( f o r all argum ents). Given the Cauchy data

u(x , 0) = p o (x)G C2 , a n d  u t (x , 0) = (p,(x)G ,

then, there ex ists a unique solution u(x, t) E C2,  in  th e  domain de-
fined by Ix —t < p, I x + t <p .  p  may depend on the maximum norm
of  p o , q ) ,  and (p„ but it does not depend on that o f  p g  and (A.

5. Final re m a rk s .

a )  S m ooth  continuation a lo n g  a c h a ra c te r is tic .
Let us consider the following situation :  u, and u, are solutions

of

(5.1)a 2 u _  f ( x ,  y ,  u ,  a u  au
ax ay ax ay)

in the domain (I) and (II) respectively. (See Fig. 1 )  (We write
here x, y in place of 17). W e assume u ,  and u ,  are two times
continuously differentiable including the boundary (cf. foot note 3)).
Let us assume that, at the origin, the two functions have the same
derivatives up to order 2, moreover ui =u 2 along the x -a x is . Then,
u , and u , are continuously connected up to second derivatives along
the x -a x is . In other words, the function u(x, y ) defined in (I)+ (II)
by joining u l and  u , i s  o f  class C2 . This is  a well-known fact.
However, since this is a important fact, w e give here the proof.
Denote by y the trace operator on the x-ax is. W e have evidently,

aui d a2ud  (
ax 7  ax a y  d x \ay  i

Hence, taking the trace of the7
dx7ui 

,

y=o
functions o f (5. 1), we have

3) Here we use the transformation (3. 2), and reduce the problem to the zero
Cauchy data.

4) Recently, R. Courant showed this fact fo r  general semi-linear hyperbolic
systems ([1])
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d (aui ) —  f (x ,0 ,y u i, 
d

 y u „ ( °11 '
dx \ay dx ay)y-o

Taking the difference, denoting

au,) au2)
\ay / y = o  \ ay  l y = o

*(x ) 
,

we have
d f e lk (x ).
dx

Since, at x=0, *(x)= 0, we have *(x )=- 0.
Starting from the derived equation

a ( a2u) au au a2u
ax\ay2 

=  f y + f u —

ay
+  f p

axay
+  f ,

a2ui a2u,and using the above result, we have moreover (
)ay2 y=0— 

(
 a y ' •

b )  Since our equation is semi-linear, to prove the Main Theorem
in the Introduction, it suffices to prove it supposing Cauchy data
has compact support. Then, under this assumption, an a priori
estimate o f u  and its first derivatives (Theorem 2. 1, and 3. 1),
connected with the local existence Theorems (Theorem 4. 1, and 4. 2),
enables us the step-by-step construction of the solution in any
finite interval o f t.
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