On the a priori estimate for solutions of the Cauchy problem for some non-linear wave equations

By
Masaya Yamaguti

(Received Aug. 30, 1962)

For the global Cauchy problem of wave equation, the existence of an a priori estimate of the solution is very useful as we have shown recently in another report [1] [2] for one special type of the non-linear wave equation :

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}+f(u) \frac{\partial u}{\partial t}+g(u)
$$

under relatively weak conditions.
Here, we note that a priori estimate is also obtained for wave equation of a little different type with more than one space dimension which is identical to the equation treated by Konrad Jorgens [3] in the case of 3 dimension and without damping term.

At first we shall treat the case in which the space dimension is 2 . Our Cauchy problem is the following : Find the solution of the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial t^{2}}+f\left(\frac{\partial u}{\partial t}\right)+g(u) \tag{1}
\end{equation*}
$$

satisfying the following initial conditions.

$$
\left\{\begin{array}{l}
u(x, y, 0)=u_{0}(x, y) \tag{2}\\
u_{t}(x, y, 0)=u_{1}(x, y)
\end{array}\right.
$$

where $u_{0}(x, y)$ belongs to C^{3} and $u_{1}(x, y)$ belongs to C^{2}.
Here we do not solve this problem, but we obtain an a priori estimate for the solution of this problem assuming $u_{0}(x, y)$ and
$u_{1}(x, y)$ have compact carriers ${ }^{1)}$ under conditions for functions f and g :

Conditions

i) $f(u)$ and $g(u)$ are continuously differentiable in $-\infty<u<$ $+\infty$
ii) $\operatorname{sgn} u f(u) \geq 0$ and $G(u)=\int_{0}^{u} g(u) d u \geq 0$ for $|u|>M$.
iii) $f^{\prime}(u) \geq-k$ (k is one positive constant) $\left|g^{\prime}(u)\right| \leq$ Polynomial of $|u|$
Before we proceed to write our results, we define two generalized energies $E_{0}(t)$ and $E_{1}(t)$ for our solutions $u(x, y, t)$ of (1) and (2).

$$
\begin{align*}
& \text { (4) } E_{0}(t)=\iint\left[G(u)+\frac{1}{2}\left(\frac{\partial u}{\partial t}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}\right)^{2}\right] d x d y \tag{4}\\
& \text { (5) } E_{1}(t)=\frac{1}{2} \iint\left[\left(\frac{\partial^{2} u}{\partial t \partial x}\right)^{2}+\left(\frac{\partial^{2} u}{\partial t \partial y}\right)^{2}+\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} u}{\partial y \partial x}\right)+\left(\frac{\partial^{2} u}{\partial y^{2}}\right)^{2}\right] d x d y
\end{align*}
$$

and we see
(6) $\quad E_{0}(0)=\iint\left[G\left(u_{0}\right)+\frac{1}{2}\left(u_{1}\right)^{2}+\frac{1}{2}\left(\frac{\partial u_{0}}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial u_{0}}{\partial y}\right)^{2}\right] d x d y$

$$
\begin{equation*}
E_{1}(0)=\iint \frac{1}{2}\left[\left(\frac{\partial u_{1}}{\partial x}\right)^{2}+\left(\frac{\partial u_{1}}{\partial y}\right)^{2}+\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} u_{0}}{\partial y}\right)^{2}\right] d x d y \tag{7}
\end{equation*}
$$

where always integrals are taken in whole x, y plane which is possible, because, $u_{1}(x, y)$ and $u_{0}(x, y)$ have compact carriers and $u(x, y, t)$ also.

Now we estimate the energy $E_{0}(t)$ of the solution by the initial energy. First we transform (1) and (2) into a system of equations.

$$
p=\frac{\partial u}{\partial x}, \quad q=\frac{\partial u}{\partial y}
$$

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=v \tag{8}\\
\frac{\partial v}{\partial t}=\frac{\partial p}{\partial x}+\frac{\partial q}{\partial y}-f(v)-g(u)
\end{array}\right.
$$

$$
\left\lvert\, \begin{aligned}
& \frac{\partial p}{\partial t}=\frac{\partial v}{\partial x} \\
& \frac{\partial q}{\partial t}=\frac{\partial v}{\partial y}
\end{aligned}\right.
$$

$$
\begin{align*}
v(x, y, 0) & =u_{1}(x, y) \\
u(x, y, 0) & =u_{0}(x, y) \\
p(x, y, 0) & =\frac{\partial u_{0}}{\partial x}(x, y) \tag{9}\\
q(x, y, 0) & =\frac{\partial u_{0}}{\partial y}(x, y)
\end{align*}
$$

and

$$
\begin{equation*}
E_{0}(t)=\iint\left[G(u)+\frac{v^{2}}{2}+\frac{p^{2}}{2}+\frac{q^{2}}{2}\right] d x d y \tag{10}
\end{equation*}
$$

Differentiating (10) with respect to t and Considering (8), we have
(11) $\frac{d E_{0}}{d t}=\iint\left[g(u) v+v \frac{\partial v}{\partial t}+p \frac{\partial p}{\partial t}+q \frac{\partial q}{\partial t}\right] d x d y$

$$
\begin{aligned}
& =\iint\left[g(u) v+v \frac{\partial p}{\partial x}+v \frac{\partial q}{\partial y}+p \frac{\partial u}{\partial x}+q \frac{\partial v}{\partial y}-f(v) v-g(u) v\right] d x d y \\
& \begin{aligned}
=\iint[-v f(v)] d x d y & \leq \iint_{\left.\right|^{\prime} \leq \mu}[v f(v)] d x d y \\
& \leq L \iint\left[\frac{v^{2}}{2}+\frac{p^{2}}{2}+\frac{q^{2}}{2}+G(u)\right] d x d y+L_{0} l,
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
\frac{d E_{0}(t)}{d t} \leq L E_{0}(t)+L_{0} l \quad 0 \leq t \leq h \tag{12}
\end{equation*}
$$

where l is the area of the carrier of $u_{0}(x, y)$ multiplied by $2 h$.

$$
\begin{equation*}
E_{0}(t) \leq e^{L h} E(0)+e^{L h} L_{0} l h=e^{L h}\left(E_{0}(0)+L_{0} l h\right) \tag{13}
\end{equation*}
$$

Next, we proceed to estimate $E_{1}(t)$. We write

$$
E_{1}(t)=\frac{1}{2} \iint\left[v_{x}^{2}+v_{y}^{2}+p_{x}^{2}+p_{y}^{2}+q_{x}^{2}+q_{y}^{2}\right] d x d y .
$$

Differentiating (8) by x and y, we have:

$$
\left\{\begin{array}{l}
\frac{\partial v_{x}}{\partial t}=\frac{\partial p_{x}}{\partial x}+\frac{\partial q_{x}}{\partial y}-f^{\prime}(v) v_{x}-g^{\prime}(u) p \tag{14}\\
\frac{\partial p_{x}}{\partial t}=\frac{\partial v_{x}}{\partial x} \\
\frac{\partial q_{x}}{\partial t}=\frac{\partial v_{x}}{\partial y}
\end{array}\right.
$$

$$
\left\lvert\, \begin{aligned}
& \frac{\partial v_{y}}{\partial t}=\frac{\partial p_{y}}{\partial x}+\frac{\partial q_{y}}{\partial y}-f^{\prime}(v) v_{y}-g^{\prime}(u) q \\
& \frac{\partial p_{y}}{\partial t}=\frac{\partial v_{y}}{\partial x} \\
& \frac{\partial q_{y}}{\partial t}=\frac{\partial v_{y}}{\partial y}
\end{aligned}\right.
$$

And we obtain,
(15) $\frac{d E_{1}}{d t}=\iint\left[v_{x} \frac{\partial v_{x}}{\partial t}+v_{y} \frac{\partial v_{y}}{\partial t}+p_{x} \frac{\partial p_{x}}{\partial t}+q_{x} \frac{\partial q_{x}}{\partial t}+p_{y} \frac{\partial p_{y}}{\partial t}+q_{y} \frac{\partial q_{y}}{\partial t}\right] d x d y$

$$
\begin{aligned}
& =\iint\left[-f^{\prime}(v) v_{x}^{2}-g^{\prime}(u) p v_{x}-f^{\prime}(v) v_{y}^{2}-g^{\prime}(u) q v_{y}\right] d x d y \\
& =\iint\left[k\left(v_{x}^{2}+v_{y}^{2}\right)-g^{\prime}(u) p v_{x}-g^{\prime}(u) q v_{y}\right] d x d y
\end{aligned}
$$

We consider the integral :

$$
I_{1}=\iint\left|g^{\prime}(u) p v_{x}\right| d x d y
$$

By the condition (iii)

$$
\begin{aligned}
& I_{1} \leq \leq \iint|u|^{\infty}|p|\left|v_{x}\right| d x d y \leq \sqrt{\iint|u|^{2 \alpha} p^{2} d x d y} \sqrt{\iint v_{x}^{2} d x d y} \\
& \leq\left(\iint|u|^{4 \infty} d x d y\right)^{1 / 4} \cdot\left(\iint p^{4} d x d y\right)^{1 / 4}\left(\iint v_{x}^{2} d x d y\right)^{1 / 2} \\
& \leq c\left[\iint\left(p^{2}+q^{2}\right) d x d y\right]^{\alpha / 2} \cdot E_{1}(t) \\
& \leq c E_{0}(t)^{\alpha / 2} E_{1}(t), \\
& \quad\left[\log E_{1}(t)\right]_{0}^{t} \leq c \int_{0}^{t} E_{0}(t)^{\alpha / 2} d t+k \\
& E_{1}(t) \leq E_{1}(0) e^{c \int_{0}^{t} E_{0}(\tau)^{\alpha / 2} d \tau} \leq E_{1}(0) e^{c \int_{0}^{h} E_{0}(\tau)^{\alpha / 2} d \tau+k}
\end{aligned}
$$

Then we obtain by the Sobolev's lemma

$$
\begin{aligned}
\mid u(x, y, t) & \leq C\left|E_{0}(t)+E_{1}(t)\right| \\
& \leq C\left\{\left(E_{0}(0)+L_{0} l h\right) e^{L h}+E_{1}(0) e^{c\left(E_{0}(0)+L_{0} l h\right)^{\alpha / 2} e^{L \alpha / h} h+k}\right\} .
\end{aligned}
$$

This is our desired results.
We proceed to show that similar results can be obtained for the
case of 3 space dimension under more stringent condition. We replace condition iii) by,

$$
\text { iii) } \quad f^{\prime}(u) \geq-k, \quad\left|g^{\prime}(u)\right| \leq c|u|^{2}
$$

Our equation is the following:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{\partial^{2} u}{\partial t^{2}}+f\left(\frac{\partial u}{\partial t}\right)+g(u) \tag{16}
\end{equation*}
$$

We can estimate the energy $E_{0}(t)$ by the same argument of the preceding case, where $E_{0}(t)$ is defined.

$$
\begin{equation*}
E_{0}(t)=\iiint\left\{G(u)+\frac{1}{2}\left(v^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)\right\} d y \tag{17}
\end{equation*}
$$

where $v=\frac{\partial u}{\partial t}, p=\frac{\partial u}{\partial x}, p_{2}=\frac{\partial u}{\partial y}, p_{3}=\frac{\partial u}{\partial z}$. Then we have

$$
\begin{equation*}
E_{0}(t) \leq e^{L h}\left\{E_{0}(0)+M_{0} l\right\} \quad 0 \leq t \leq h . \tag{18}
\end{equation*}
$$

$E_{1}(t)$ is the integral:

$$
\frac{1}{2} \iint_{x, y, z} \sum_{x}\left\{v_{x}^{2}+p_{1 x}^{2}+p_{2 x}^{2}+p_{3 x}^{2}\right\} d V
$$

We obtain by the condition iii).

$$
\begin{aligned}
\frac{d E_{1}(t)}{d t} & \leq-\Sigma \iiint f^{\prime}(v) v_{x}^{2}+\Sigma \iiint 3 u^{2} p_{1} v_{x} d V \\
& \leq k \Sigma \iiint v_{x}^{2}+\Sigma \iiint 3 u^{2}\left|p_{1} v_{x}\right| d V
\end{aligned}
$$

We treat the last term by the similar inequality as we have used in (15) :

$$
\begin{aligned}
& \left|\iiint u^{2} p_{1} v_{x} d V \cdot\right| \\
& \quad \leq\left[\iiint u^{4} p_{1}^{2} d V\right]^{1 / 2}\left[\iiint v_{x}^{2} d V\right]^{1 / 2} \\
& \quad \leq\left[\left(\iiint u^{6} d V\right)^{2 / 3}\left(\iiint p_{1}^{6} d V\right)^{1 / 3}\right]^{1 / 2}\left[\iiint v_{x}^{2} d V\right]^{1 / 2} \\
& \quad \leq\left(\iiint u^{6} d V\right)^{1 / 3}\left(\iiint p_{1}^{6} d V\right)^{1 / 6}\left[\iiint v_{x}^{2} d V\right]^{1 / 2} \\
& \quad \leq\left[\iiint\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right) d V\right]\left[\iiint\left(p_{1 x}^{2}+p_{1 y}^{2}+p_{1 x}^{2}\right) d V\right]^{1 / 2}\left[\iiint v_{x}^{2} d V\right]^{1 / 2} \\
& \quad \leq E_{0}(t) E_{1}(t)
\end{aligned}
$$

Just similarly we can estimate other terms. It is easy to see that the maximum norm of $U(x, y, z, t)$ for $0 \leq t \leq h$ is majorized by $E_{0}(0)$ and $E_{1}(0)^{2}$.

NOTES

1) We assume also that the solution $u(x, y, t)$ and its derivatives of 3 rd order with respect to x, y and t are square integrable in $x y$ space for all t. By the Sobolev's work [4], we can find always this solution for sufficiently small t, for our Cauchy data.
2) We could not find the bound for $\frac{\partial u}{\partial t}$ by $E_{0}(0)$ and $E_{1}(0)$, therefore the existence of a global solution of the Cauchy problem is not proved for the equation (1) and (16). But if $f\left(\frac{\partial u}{\partial t}\right)$ is linear for $\frac{\partial u}{\partial t}$, we can easily prove the global existence of the solution of the Cauchy problem.

BIBLIOGRAPHY

[1] M. Yamaguti: On the global solution of the Cauchy problem for some nonlinear hyperbolic equation (Mem. of Faculty of Engineering Kyoto University 1962 No. 4 Vol. 24).
[2] S. Mizohata and M. Yamaguti : Mixed problem for some non-linear wave equation. (Journal of Math. Kyoto University 1962 Vol. 2-1 61-78).
[3] K. Jörgens: Das Anfangswert Problem im Grossen für eine Klasse nicht linearer Wellengleichungen. (Math. Zeitschrift 77. 295-308. 1961).
[4] S. L. Soblolev: Sur les équations aux derivées partielles hyperboliques nonlinéaires (1961, Edizioni cremonese ROMA).

