On classification of maps of a css complex into a css group

By

Yoshiro Inoue

(Communicated by Prof. A. Komatu, Aug. 8, 1962)

Introduction

Let G be a reduced 0-connected css group (for the definition, see [5]) and (K, L) be a css pair. Denote by e_n the unit of G_n and by e the css subgroup of G consisting of all e_n , $n \ge 0$. The set $\Pi(K, L; G)$ of all homotopy classes of maps $f: (K, L) \to (G, e)$ has a natural group structure. Then, we have a filtration

(1)
$$II(K, L; G) = D_0^1 \ge D_1^1 \ge D_2^1 \ge \cdots,$$

by normal subgroups D_n^1 $(n \ge 0)$ defined in § 3. On the other hand, for each $n \ge 1$, there are sequences of subgroups:

$$\begin{split} H^{n-1}(K,L\,;\,\pi_n(G)) &= {'P_n^n} { \supseteq {'P_{n+1}^n} \ge \cdots \ge {'P_n^n}} \\ &\qquad \qquad \text{(the reduced } (n-1)\text{-st cohomology group),} \\ H^n(K,L\,;\,\pi_n(G)) &= P_n^n { \supseteq P_{n+1}^n} { \ge \cdots \ge P_\infty^n} { \ge {'R_1^n} \ge {'R_2^n} \ge \cdots \ge {'R_n^n} = 0 \,,} \\ H^{n+1}(K,L\,;\,\pi_n(G)) &\geq R_1^n { \ge R_2^n} { \ge \cdots \ge R_n^n} = 0 \end{split}$$

which are defined in §2. Our purpose of this paper is to show that, for $1 \le m < n$, there are homomorphisms

$$\theta_m^{n-m}: P_{n-1}^m \to H^{n+1}(K, L; \pi_n(G))/R_{m+1}^n,$$

$$\theta_m^{n-m}: P_{n-1}^m \to H^n(K, L; \pi_n(G))/R_{m+1}^n,$$

which induce isomorphisms

$$P_{n-1}^m/P_n^m \approx R_m^n/R_{m+1}^n$$
, $P_{n-1}^m/P_n^m \approx P_m^n/P_{m+1}^n$

(§ 2, Theorem 1) and to show that

$$D_{n-1}^{1}/D_{n}^{1} \approx P_{\infty}^{n}/R_{1}^{n}$$

(§ 3, Theorem 2). The homomorphisms θ_m^{n-m} and θ_m^{n-m} are generalized cohomology operations.

In the paper [4] S. T. Hu gave a filtration (1) of $\Pi(K, L; G)$ for a finite cell complex (K, L) and a topological group G. Our filtration (1) is defined by the same manner as that of S. T. Hu, i.e., D_n^1 is the set of homotopy classes of maps which are n-homotopic with 0 relative to L (see (5.2) of [4]). Then, our Theorem 2 corresponds to Theorem (5.7) of [4].

As an application, we derive some results for $\Pi(K, L; G)$ which correspond to those of F. P. Peterson [6] in the case of cohomotopy groups. We assume that (K, L) is of finite dimension and $\Pi(K, L; G)$ is abelian. If $\pi_r(G)$ and $H^r(K, L)$ are finitely generated for $r \ge 1$, $\Pi(K, L; G)$ is finitely generated (§ 4, Proposition 1). Let C be a class of abelian groups in the sense of J. P. Serre [7]. If $H^r(K, L; \pi_r(G))$ and $H^{r-1}(K, L; \pi_r(G))$ belong to C for r < n, $j_n^*: \Pi(K, L; {}^nG) \to \Pi(K, L; G)$ induced by the injection $j_n: {}^nG \to G$ is a C-isomorphism (for the definition of nG , see § 2). If $H^r(K, L; \pi_r(G))$ and $H^{r+1}(K, L; \pi_r(G))$ belong to C for r > n and $\Pi(K, L; G) \to \Pi(K, L; G) \to \Pi(K, L; G) \to \Pi(K, L; G)$ induced by the natural map $p_n: G \to G/^{n+1}G$ is a C-isomorphism (§ 4, Proposition 2).

§ 1. Preliminaries

Let G be a css group, N be a css normal subgroup of G, G/N be the css factor group and $q:G\to G/N$ be the natural map. The triple (G,G/N,q) is a principal fibre bundle with fibre N (IV, Definition 2.1 of [1]). Then, there is a dimension preserving function $\beta:G/N\to G$ such that

- (1) $q\beta a = a$, $\beta e_0 = e_0$,
- (2) $\beta s_i a = s_i \beta a$, $i \ge 0$,
- (3) $\beta \partial_i a = \partial_i \beta a$, i > 0,
- (4) if N is (n-1)-connected, $\beta \partial_0 a = \partial_0 \beta a$ for $a \in (G/N)_k$, $k=1, \dots, n$ (IV, 2 of [1]). Then

$$\xi a = (\beta \partial_0 a)^{-1} (\partial_0 \beta a) \quad (\in N)$$

is a twisted function of (G, G/N, q). Let $\overline{W}N$ be the W-construction of N (IV, 5 of [1]). Then ξ induces a map $k_{\xi}: G/N \to \overline{W}N$ defined by

$$k_{\xi}a = \lceil \xi \partial_0^{m-1}a, \, \xi \partial_0^{m-2}a, \, \cdots, \, \xi a \rceil \qquad (a \in (G/N)_m).$$

Consider the case where N is a reduced (n-1)-connected $K(\pi, n)$ $(n \ge 1)$, i.e., $\pi_n(N) = \pi$, $\pi_n(N) = 0$ for $k \ne n$ and $N^{n-1} = \{e_k, k = 0, 1, \cdots, n-1\}$. Let (K, L) be a css pair. Since $\overline{W}N$ is a $K(\pi, n+1)$, there is a natural one-to-one correspondence

$$T: \Pi(K,L; \overline{W}N) \to H^{n+1}(K,L; \pi),$$

which is defined as follows. Let $t: N_n \to \pi$ be a homomorphism defined by

$$t(x)$$
 = the element of π represented by x .

Let $g:(K,L)\to (\bar WN,*)$ (* is the base point of $\bar WN$) be a map. Since N is (n-1)-reduced, $g(\sigma)$ is written by $[e_0,e_1,\cdots,e_{n-1},g_n(\sigma)]$ for $\sigma\in K_{n+1}$. Then the function $tg_n:\sigma\to tg_n(\sigma)$ defines a cocycle of $Z^{n+1}(K,L;\pi)$ which represents T[g]. Then k_ξ induces a transformation

$$k_{\xi}^{\sharp}: \Pi(K, L: G/N) \to H^{n+1}(K, L: \pi)$$

which is defined by

$$k_{\varepsilon}^{\sharp} = T \circ k_{\varepsilon}^{*}$$
,

where $k_{\xi}^*: \Pi(K, L; G/N) \to \Pi(K, L; \overline{W}N)$ is the transformation induced by k_{ξ} .

Lemma 1. The transformation k_{ξ}^{\sharp} is a homomorphism.

Proof. Define a function $\omega: (G/N \times G/N)_{n+1} \to \pi$ by

$$\omega(a \times b) = t\xi ab - t\xi a - t\xi b \qquad (a, b \in (G/N)_{n+1}).$$

Then ω is a cochain of $C^{n+1}(G/N\times G/N, G/N\cup G/N; \pi)$. Define a cochain $c\in C^n(G/N\times G/N, G/N\cup G/N; \pi)$ by

$$c(a' \times b') = t((\beta a'b')^{-1}(\beta a')(\beta b'))$$
 $(a', b' \in (G/N)_n)$.

For $a, b \in (G/N)_{n+1}$, we have

$$egin{aligned} \sum_{i=0}^{n+1} (-1)^i c(\partial_i (a imes b)) &= \sum_{i=0}^{n+1} (-1)^i t((eta\partial_i (ab))^{-1} (eta\partial_i a)(eta\partial_i b)) \ &= \sum_{i=0}^{n+1} (-1)^i t(\partial_i ((eta ab)^{-1} (eta a)(eta b))) \ &+ t((eta\partial_0 (ab))^{-1} (eta\partial_0 a)(eta\partial_0 a)(eta\partial_0 b)) - t((\partial_0 eta ab)^{-1} (\partial_0 eta a)(\partial_0 eta b)) \ . \end{aligned}$$

Since
$$\sum_{i=0}^{n+1} (-1)^i t(\partial_i ((\beta ab)^{-1}(\beta a)(\beta b)) = 0$$
, then

$$\begin{split} \sum_{i=0}^{n+1} \left(-1 \right)^i c(\partial_i (a \times b)) &= t((\beta \partial_0 (ab))^{-1} (\partial_0 \beta ab) (\partial_0 \beta ab)^{-1} (\beta \partial_0 a) (\beta \partial_0 b) \\ &- t((\partial_0 \beta ab)^{-1} (\beta \partial_0 a) (\beta \partial_0 b) (\beta \partial_0 b)^{-1} (\beta \partial_0 a)^{-1} (\partial_0 \beta a) (\partial_0 \beta b)) \\ &= t \xi ab - t((\beta \partial_0 b)^{-1} (\beta \partial_0 a)^{-1} (\partial_0 \beta a) (\beta \partial_0 b)) - t((\beta \partial_0 b)^{-1} (\partial_0 \beta b)) \\ &= t \xi ab - t \xi a - t \xi b \;. \end{split}$$

This shows that $\delta c = \omega$. Let g, g'; $(K, L) \rightarrow (G/N, e)$ be two maps. Then

$$\omega(g(\sigma) \times g'(\sigma)) = \delta c(g(\sigma) \times g'(\rho))$$
 for $\sigma \in K_{n+1}$.

Then k_{E}^{\sharp} is a homomorphism.

Let K be a complex with base point *. The cone CK of K is obtained from $K \times I$ by identifying the subcomplex $K \times I \cup * \times I$ to $* \times 0$. Denote by r the identification map: $K \times I \to CK$. Let (K, L) be a css pair, and π be an abelian group. A natural isomorphism.

 $au^*: H^{q+1}(CK, CL \cup K; \pi) oup H^q(K, L; \pi)$ (the reduced q-th cohomology group) is defined as follows. Let (E, B, p) be a fibre complex in the sense of D. M. Kan [5] such that B is a $K(\pi, q+1)$ and E is acyclic. Then the fibre of p is a $K(\pi, q)$. An element $\alpha \in H^{q+1}(CK, CL \cup K; \pi)$ is represented by a map $f: (CK, CL \cup K) \to (B, *)$. The homotopy $h: K \times I \to B$ defined by $h = f \circ r$ is lifted to $h': (K \times I, L \times I \cup K \times 1) \to (E, *)$. Then τ^* is defined by

 $\tau^*\alpha$ = the element of $H^q(K, L; \pi)$ represented by $h'|K\times 0$.

Let N be a css group. Let $WN = \overline{W}N \times_{\eta} N$ be the twisted cartesian product whose twisted function η is defined by

$$\eta[x_0, x_1, \dots, x_{i-1}] = x_{i-1}$$

(IV, 5 of [1]). The map $p:WN \to \overline{W}N$ defined by p(w, x) = w is a fibre map in the sense of Kan, and WN is acyclic. Then, if N is a $K(\pi, q)$, the isomorphism τ^* is defined by using $(WN, \overline{W}N, p)$.

§ 2. Cohomology operations associated to a css group

Let G be a reduced 0-connected css group. Denote by nG the maximal css normal subgroup of G such that $({}^nG)^{n-1} = \{e_k, k=0, \cdots, n-1\}$. Then we have a sequence of css normal subgroups of G:

$$G = {}^{\scriptscriptstyle 1}G > {}^{\scriptscriptstyle 2}G > \cdots > {}^{\scriptscriptstyle n}G > \cdots$$

We put

$$B_n^m = {}^m G/{}^{n+1}G$$
 $(m \le n+1), B_n^m = {}^m G.$

Let

$$p_{n,m}^l: B_n^l \to B_m^l (l-1 \le m \le n \le \infty), \quad j_n^{m,l}: B_n^m \to B_n^l (l \le m \le n+1 \le \infty)$$

be the natural map and the injection respectively. The map $p_{n,m}^l$ is a fibre map whose fibre is B_n^{m+1} . Especially, the fibre of $p_{n,n-1}^m$ is B_n^n and B_n^n is a reduced (n-1)-connected $K(\pi_n(G), n)$. Let (K, L) be a css pair. The map $p_{n,m}^m$ $(m \le n \le \infty)$ induces a homomorphism

$$p_{n,m}^{m*}$$
: $\Pi(K, L; B_n^m) \rightarrow \Pi(K, L; B_m^m)$.

Let $U: \Pi(K, L; B_m^m) \to H^m(K, L; \pi_m(G))$ be the natural isomorphism. Then

$$p_{n,m}^{m *} = U \circ p_{n,m}^{m *} : \Pi(K, L; B_n^m) \to H^m(K, L; \pi_m(G))$$

is a homomorphism. Denote by $\tau_m^n: B_{n-1}^m \to \bar{W}B_n^n \ (m \le n < \infty)$ the map defined by a twisted fluction ξ of the principal fibre bundle $(B_n^m, B_{n-1}^m, p_{n,n-1}^m)$ (see § 1). Then τ_m^n induces a transformation $\tau_m^m : \Pi(K, L; B_{n-1}^m) \to \Pi(K, L; \bar{W}B_n^n)$, and the transformation

$$\tau_m^{n \, \sharp} = T \circ \tau_m^{n \, *} : \Pi(K, L; B_{n-1}^m) \to H^{n+1}(K, L; \pi_n(G))$$

is a homomorphism by Lemma 1. Denote by $P_n^m = P_n^m(K, L)$ the image of $p_{n,m}^m$ and by $R_m^n = R_m^n(K, L)$ the image of τ_m^n . Then we have a sequence of subgroups:

$$H^{m}(K, L; \pi_{m}(G)) = P_{m}^{m} \geq P_{m+1}^{m} \geq \cdots \geq P_{\infty}^{m},$$

$$H^{n+1}(K, L; \pi_{n}(G)) \geq R_{1}^{n} \geq R_{2}^{n} \geq \cdots \geq R_{n}^{n} = 0.$$

The subgroups P_n^m and R_m^n are natural, i.e., if $f:(K,L)\to (K',L')$ is a map of css pairs, then

$$f^*(P_n^m(K', L')) \le P_n^m(K, L), \quad f^*(R_m^n(K', L')) \le R_m^n(K, L).$$

Theorem 1. For m < n, there is a natural homomorphism

$$\theta_m^{n-m} = \theta_m^{n-m}(K, L): P_{n-1}^m \to H^{n+1}(K, L; \pi_n(G))/R_{m+1}^n$$

such that the kernel of θ_m^{n-m} is P_n^m and the image of θ_m^{n-m} is R_m^n/R_{m+1}^n .

Proof. Consider the folloging commutative diagram:

Proof. Consider the folloging commutative diagram:
$$\Pi(K,L\,;\,B_n^m) \xrightarrow{p_{n,m}^m \sharp} \prod_{k=1}^{m} p_{n,m}^m \sharp \prod_{k=1}^{m} \prod_{k=1}^{m} \prod_{k=1}^{m} p_{n-1,m}^m \sharp \prod_{k=1}^{m} H^m(K,L\,;\,\pi_m(G)) \xrightarrow{T_m^n \sharp} H^{n+1}(K,L\,;\,\pi_n(G))$$

whose row and column are exact (see $\lceil 3 \rceil$). Define a homomorphism θ_m^{n-m} by

$$\theta_m^{n-m}\alpha = \tau_m^{n\,\sharp} \circ (p_{n-1,m}^{m\,\sharp})^{-1}\alpha \quad \text{mod. } R_{m+1}^n, \ \ \alpha \in P_{n-1}^m.$$

This is well defined by the exactness of the row. It is clear that the image of θ_m^{n-m} is R_m^n/R_{m+1}^n and $P_m^m \leq \text{kernel } \theta_m^{n-m}$. If $\theta_m^{n-m}\alpha = 0$ for $\alpha \in P_{n-1}^m$, there are elements $\beta \in \Pi(K, L; B_{n-1}^m)$ and $\gamma \in \Pi(K, L; A_n)$ B_{n-1}^{m+1}) such that $P_{n-1,m}^{m} \sharp \beta = \alpha$, $\tau_m^{m} \circ j_{n-1}^{m+1,m} * \gamma = \tau_m^{m} \sharp \beta$. By the exactness of the column, there is an element $\delta \in \Pi(K, L; B_n^m)$ such that $\beta = (j_{n-1}^{m+1,m*} \gamma)(p_{n,n-1}^{m} \delta)$. Then

$$\alpha = p_{u-1,m}^m \beta = p_{n-1,m}^m \circ p_{u,n-1}^m \delta = p_{u,m}^m \delta$$
.

This shows that kernel $\theta_m^{n-m} \leq P_n^m$. The naturality of θ_m^{n-m} is clear.

Corollary 1.
$$P_{n-1}^m/P_n^m \approx R_m^n/R_{m+1}^n$$
.

The homomorphism θ_m^r $(m, r \ge 1)$ defined in the proof in the above is a generalized cohomology operation associated to G. We say that R_m^{m+r} is the image of θ_m^r . If the dimension of (K, L) is s, i.e., $H^k(K, L; \pi) = 0$ for each k > s and for any abelian group π , then θ_m^r is trivial for $m+r \ge s$ and $P_{s-1}^m = P_s^m = \cdots = P_{\infty}^m$. If G is t-connected $(t \ge 1)$, θ_m^r is trival for $m \le t$ and $R_1^n = R_2^n = \cdots = R_{t+1}^n$ for n > t.

Let $\tau^*: H^{q+1}(CK, CL \cup K; *) \rightarrow H^q(K, L; *)$ be the natural isomorphism defined in § 1. We put

$$'P_n^m = \tau^* P_n^m(CK, CL \cup K) \subseteq H^{m-1}(K, L; \pi_m(G))$$

 $'R_m^n = \tau^* R_m^n(CK, CL \cup K) \subseteq H^n(K, L; \pi_n(G)).$

We define the suspension

$$\theta_m^{n-m}: P_{n-1}^m \to H^n(K, L; \pi_n(G))/R_{m+1}^n$$

of θ_m^{n-m} by

$$\theta_m^{n-m} = \tau^* \circ \theta_m^{n-m} \circ \tau^{*-1}$$
 (see [2]).

Corollary 2. ${}'P_{n-1}^m/{}'P_n^m \approx {}'R_m^n/{}'R_{m+1}^n$.

§ 3. Classification of maps of a complex into a css group

Let G be a reduced 0-connected css group and (K, L) be a css pair. Denoting by $D_n^m (m-1 \le n)$ the kernel of $P_{\infty,n}^m : \Pi(K, L; {}^mG) \to \Pi(K, L; B_n^m)$, we have a filtration

$$\Pi(K, L; {}^mG) = D_{m-1}^m \ge D_m^m \ge D_{m+1}^m \ge \cdots$$

of $\Pi(K, L; {}^mG)$ by normal subgroups. For $m \leq n \leq l+1$, since D^n_l and D^m_l are the image of $j^{l+1,n}_{\infty}*$ and $j^{l+1,m}_{\infty}*$ respectively, $j^{n,m}_{\infty}*$ induces an epimorphism $\bar{j}^{n,m}_{\infty}*: D^n_l \to D^m_l$, and $\bar{j}^{n,m}_{\infty}*$ induces an epimorphism

$$\alpha_{i+1}^{n,m}: D_i^n/D_{i+1}^n \to D_i^m/D_{i+1}^m$$
.

Since the kernel of $p_{\infty,n}^{n,*}: \Pi(K, L; {}^nG) \to \Pi(K, L; B_n^n)$ is D_n^n and the image of $p_{\infty,n}^{n,*} = U \circ p_{\infty,n}^{n,*}$ is P_{∞}^n , $p_{\infty,n}^{n,*}$ induces an isomorphism

$$\beta_n: D_{n-1}^n/D_n^n \approx P_{\infty}^n$$
.

Then the homomorphism

$$\gamma^{n,m} = \alpha_n^{i,m} \circ \beta_n^{-1} : P_{\infty}^n \to D_{n-1}^m / D_n^m$$

is an epimorphism.

Lemma 2. The kernel of $\gamma^{n,m}$ is R_m^n , then

$$D_{n-1}^m/D_n^m \approx P_{\infty}^n/R_m^n$$
.

Proof. Consider the following commutative diagram:

$$\Pi(K, L; {}^{n+1}G) \rightarrow \Pi(K, L; {}^mG) \rightarrow \Pi(K, L; B_n^m)$$

$$\downarrow j_{\infty}^{n+1,n} * \qquad \downarrow \approx \qquad \downarrow$$

$$\Pi(CK, CL \cup K; B_{n-1}^m) \rightarrow \Pi(K, L; {}^mG) \rightarrow \Pi(K, L; {}^mG) \rightarrow \Pi(K, L; B_{n-1}^m)$$

$$\downarrow p_{\infty,n}^{n} *$$

$$\Pi(K, L; B_n^n)$$

whose rows and column are exact. Here, ∂ is defined as follows. Let $f: (CL, CL \cup K) \to (B^m_{n-1}, e)$ represent $\alpha \in \Pi(CK, CL \cup K; B^m_{n-1})$. The homotopy $h = f \circ r : K \times I \to B^m_{n-1}$ is lifted to $h' : (K \times I, L \times I \cup K \times 1) \to ({}^mG, e)$. Then $\partial \alpha$ is represented by $h' | K \times 0 : K \to {}^nG$. Now, by the diagram in the above, we see that the kernel of $\gamma^{n,m}$ is

$$p_{\infty,n}^{n,\sharp}(\partial\Pi(CK,CL\cup K;B_{n-1}^{m})\cdot f_{\infty}^{n+1,n}*\Pi(K,L;^{n+1}G))$$

$$=p_{\infty,n}^{n,\sharp}(\partial\Pi(CK,CL\cup K;B_{n-1}^{m})).$$

Then, the proof is complete, if the following diagram is commutative:

$$\Pi(CK, CL \cup K; B_{n-1}^m) \xrightarrow{\tau_m^n *} \Pi(CK, CL \cup K; \overline{W}B_n^n)$$

$$\downarrow \partial \qquad \qquad \downarrow \tau^*$$

$$\Pi(K, L; {}^nG) \xrightarrow{p_{\infty,n}^n *} \Pi(K, L; B_n^n).$$

Let α , f, h, h' be as above. Then $p_{\infty,n}^n \circ (h' | K \times 0)$ represents $p_{\infty,n}^n (\partial \alpha)$. Let $\tau_n^n : B_{n-1}^m \to \overline{W}B_n^n$ be defined by a twisted function ξ of $(B_n^m, B_{n-1}^m, p_{n,n-1}^m)$ and ξ be defined by a function $\beta : B_{n-1}^m \to B_n^m$ (see §1). Then the map $l : B_n^m \to WB_n^n = \overline{W}B_n^n \times_{\eta} B_n^n$ defined by

$$l(b)=(au_m^n\circ p_{n,n-1}^m b,(eta\circ p_{n,n-1}^m b)^{\scriptscriptstyle -1}\!ullet b)$$

is a fibre preserving map, i.e., $\tau_m^n \circ p_{n,n-1}^m = p \circ l$. Since

$$p \circ l \circ p^m_{\infty,n} \circ h' = au^n_m \circ p^m_{n,n-1} \circ p^m_{\infty,n} \circ h' \ = au^n_m \circ p^m_{\infty,n-1} \circ h' = au^n_m \circ h$$

 $l \circ p_{\infty,n}^m \circ (h' | K \times 0) = l \circ p_{\infty,n}^n \circ (h' | K \times 0)$ represents $\tau^* \circ \tau_m^n * \alpha$. Then

$$p_{m,n}^{n,*}(\partial \alpha) = \tau^* \circ \tau_m^{n,*} \alpha$$
.

This completes the proof.

By Lemma 2 together with the definitions in §2, we have the following theorem.

Theorem 2. Let G be a reduced 0-connected css group and (K, L) be a css pair. Then, there is a filtration

$$\Pi(K, L; G) = D_0^1 \ge D_1^1 \ge D_2^1 \ge \cdots$$

by normal subgroups such that

$$D_{n-1}^{1}/D_{n}^{1} \approx P_{\infty}^{n}/R_{1}^{n} \qquad (n \ge 1)$$
.

If (K, L) is of finite dimension, $P_{\infty}^{n} \subseteq H^{n}(K, L; \pi_{n}(G))$ is the intersection of the kernels of the cohomology operations θ_{n}^{l} , $l=1, 2, \cdots$, associated to G. If G is (m-1)-connected $(m \ge 1)$, then $D_{0}^{1} = \cdots = D_{m-1}^{1}$, $R_{1}^{m} = 0$, and $R_{1}^{m} = \cdots = R_{m}^{m}$ (n > m) is the image of the suspension θ_{m}^{n-m} of the cohomology operation θ_{m}^{n-m} associated to G.

§ 4. Application

Let G be a reduced 0-connected css group and (K, L) be a css pair of finite dimension. We assume that $\Pi(K, L; G)$ is abelian. Let G be a class of abelian groups in the sense of J. P. Serre [7].

Proposition 1. If $H^r(K, L; \pi_r(G)) \in C$ for $r \ge 1$, then $\Pi(K, L; G) \in C$. Especially, if $\pi_r(G)$ and $H^r(K, L)$ are finitely generated for $r \ge 1$, $\Pi(K, L; G)$ is finitely generated.

Proof. The first part follows from Theorem 2. The second part follows from Theorem 2.2 in Appendix of [6].

Let $p_n: G \to G/^{n+1}G$ be the natural map and $j_n: {}^nG \to G$ be the injection. The maps p_n and j_n induce homomorphisms $p_n^*: \Pi(K, L; G) \to \Pi(K, L; G)$ and $j_n^*: \Pi(K, L; {}^nG) \to \Pi(K, L; G)$ respectively.

Proposition 2. (i) If $H^r(K, L; \pi_r(G)) \in C$ for r < n, j_n^* is a C-epimorphism.

- (ii) If $H^{r-1}(K, L; \pi_r(G)) \in C$ for r < n, j_n^* is a C-monomorphism.
- (iii) If $H^r(K, L; \pi_r(G)) \in \mathbb{C}$ for r > n, p_n^* is a \mathbb{C} -monomorphism.
- (iv) If $H^{r+1}(K, L; \pi_r(G)) \in C$ for r > n and $\Pi(K, L; G/^{n+1}G)$ is abelian, p_n^* is a C-epimorphism.
- **Proof.** (i) Since the squence $\Pi(K, L; {}^nG) \xrightarrow{j_n^*} \Pi(K, L; G) \xrightarrow{p_{n-1}^*} \Pi(K, L; G)$ is exact, the image of j_n^* is D_{n-1}^1 . Then the proposition follows from Theorem 2.
- (ii) Since the sequence $\Pi(CK, CL \cup K; G/^nG) \xrightarrow{\partial} \Pi(K, L; ^nG) \xrightarrow{j_n^*} \Pi(K, L; G)$ is exact, the kernel of j_n^* is $\partial \Pi(CK, CL \cup K; G/^nG)$ and $\Pi(CK, CL \cup K; G/^nG) \in C$ by Theorem 2.

- (iii) Since the kernel of p_n^* is D_n^1 , the proposition follows from Theorem 2.
- (iv) Denoting by D'_m the kernel of $p_{n,m}^{1,*}: \Pi(K, L; G/^{n+1}G) \to \Pi(K, L; G/^{m+1}G)$ ($0 \le m \le n$), we have a filtration

(1)
$$\Pi(K, L; G/^{n+1}G) = D_0' > D_1' > \cdots > D_n' = 0$$

such that $p_n^*D_r^1 \subseteq D_r'$ and $P_n^r/R_1^r \approx D_{r-1}'/D_r'$ by Theorem 2. From the definition, the diagram

$$P_{\infty}^{r}/'R_{1}^{r} \xrightarrow{\gamma} D_{r-1}^{1}/D_{r}^{1}$$

$$\downarrow \eta \qquad \qquad \downarrow p_{n}^{*}$$

$$P_{n}^{r}/'R_{1}^{r} \xrightarrow{\gamma'} D_{r-1}^{\prime}/D_{r}^{\prime}$$

is commutative. Here, γ and γ' are isomorphisms induced by $\gamma^{r,1}$ defined in § 3 and η is the injection. Let $S = p_{\nu}^* \coprod (K, L; G)$. Then

$$(2) D_r' \cap S = p_n^* D_r^1,$$

(3)
$$D'_{r-1}/D'_r + p_n^* D_{r-1}^1 \approx P_n^r/P_\infty^r,$$

$$(4) P_n^r/P_\infty^r \in \mathbf{C} \text{(by Corollary 1)},$$

From the filtration (1), we have a filtration

$$\Pi(K, L; G/^{n+1}G)/S = D_0' + S/S > D_1' + S/S > \cdots > D_n' + S/S = 0$$
.

Since $D'_{r-1} + S/D'_r + S \approx D'_{r-1}/D'_r + D'_{r-1} \cap S$, the proof is complete by (2), (3) and (4).

Let $\pi_r(G)$ be finitely generated for $r \ge 1$. We assume that $\pi_r(G) = 0$ for $1 \le r < m$, m < r < n and $H^r(K, L) = 0$ for r > n. Then, in the exact sequence

$$\Pi(CK, CL \cup K; G) \xrightarrow{p_m^*} \Pi(CK, CL \cup K; G/^{m+1}G) \xrightarrow{\partial} \Pi(K, L; {}^{m+1}G)$$

$$\xrightarrow{j_{m+1}^*} \Pi(K, L; G) \xrightarrow{p_m^*} \Pi(K, L; G/^{m+1}G) \quad (see [3]),$$

 p_m^* is onto and $U \circ (j_{m-1}^{m,1}*)^{-1} : \Pi(K,L;G/^{m+1}G) \longrightarrow H^m(K,L;\pi_m(G))$ is an isomorphism by Proposition 2, and in the commutative diagram

the homomorphisms denoted by \approx are isomorphisms by Proposition 2 or by definition and the map

$$\tau^* \circ \tau_m^{n,\sharp} \circ (\not\!\! p_{n-1,\,m}^{m,\,\sharp})^{-1} \circ \tau^{*-1} : H^{m-1}(K,\,L\,\,;\,\pi_m(G)) \longrightarrow H^n(K,\,L\,\,;\,\pi_n(G))$$

is the cohomology operation θ_m^{n-m} by definition (see §2). By putting

$$egin{array}{l} 'p^* = au^* \circ p^m_{n-1,\,m} \circ (p^m_{n,\,m+1})^{-1} \circ (j^{m,\,1}_{m+1})^{-1} \circ 'p^*_m \ j^* = j^*_{m+1} \circ j^m_{n,\,m+1} \circ (p^{n,\,*}_{n,\,n})^{-1} , \quad p^* = U \circ (j^{m,\,1}_{m+1})^{-1} \circ p^*_m , \end{array}$$

we have the following exact sequence:

$$\Pi(CK,\,CL\cup K\,;\,G) \xrightarrow{\ 'p^* \ } H^{m-1}(K,\,L\,;\,\pi_{\mathit{m}}(G)) \xrightarrow{\ '\theta^{n-m}_{\mathit{m}} \ } H^{\mathit{n}}(K,\,L\,;\,\pi_{\mathit{n}}(G)) \xrightarrow{\ 'p^* \ } \Pi(K,\,L\,;\,G) \xrightarrow{\ p^* \ } H^{\mathit{m}}(K,\,L\,;\,\pi_{\mathit{m}}(G)) \longrightarrow 0 \;.$$

(cf. Theorem 3.8 of [6]).

Kyoto Technical University

REFERENCES

- [1] M. G. Baratt, V. K. A. M. Gugenheim and J. C. Moore: On semi-simplicial fibre-bundles, Amer. Jour. of Math., 81 (1959), 639-657.
- [2] A. Douady: Opérations cohomologiques, in Séminaire H. Cartan, 11 (1958-59), Exp. 9.
- [3] B. Eckmann and P. J. Hilton: Groups d'homotopie et dualité, Suites exacts,C. R. Acad. Sci. Paris, 246 (1958), 2555-2557.
- [4] S. T. Hu: Extension and classification of the mappings of a finite complex into a topological group or on n-sphere, Ann. of Math., 50 (1949), 158-173.
- [5] D. M. Kan: A combinatorial definition of homotopy groups, Ann. of Math., 67 (1958), 282-312.
- [6] F. P. Peterson: Some results on cohomotopy groups, Amer. Jour. of Math., 78 (1956), 243-258.
- [7] J. P. Serre: Groupe d'homotopie et classes de groupes abélinien, Ann. of Math., 58 (1953), 258-294.