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1 .  F  being an arbitrary open Riemann surface, we consider
an exhaustion {F, } (n =1 , 2, •••) of F  by regular regions satisfying
the conditions :

i) for each n , F„ is a domain in F whose boundary P h  consists
of a finite number of closed analytic curves in F,

ii) for each n,

iii) Fh =F

and
iv) fo r each n ,  any connected component o f F— F„ is non-

compact in F.
Then there exists a canonical homology basis A 1 , B 1 , • ••, A k o o

B  k ( n )  •  •  •  such that A „13 1 ,•••, A k ( n ) ,  B k ( f l )  form a canonical homology
basis o f  F h  (m o d  aF,i )  and A i x B i =8 i i , A x  A i = B i x  B i = 0"
(A hlfors [1], A hlfors-Sario  [2]).

We denote by th e c lass o f  a l l  square integrable harmonic
differentials defined on F .  The relation which expresses the inner
product (0 , u*) for two differentials co, ŒE Ph (o r subclass of Ph ) in
terms o f periods o f co, u  is called the R iem ann's bilinear relation,
where 0- *  denotes the conjugate differential to u .  Some conditions
which insure the valid ity of the Riem ann's bilinear relation are
found by some suthors (Ahlfors [1], Pfruger [3], [4], Kusunoki

1 )  We note, throughout this paper, the intersection number o f two cycles A, B  is
taken such that A x B  has the positive sign when A  crosses B  from right to left as in
[ 2 ]. Hence it has the opposite sign to that in [1].



12 A k ira Kobori and Y oshikazu Sainouchi

D i  Accola N I .  In this paper we shall give some metric criteria
which insure the validity of the Riemann's bilinear relation.

2 .  Let f r  (i =1, 2, •••, m(n)) be components of F n -F1 —  Pn  . The
boundary o f T T ' consists o f  closed analytic curves contained in
r n v r n ±i .  We denote by ct`» the part of the boundary of F;.» on
r n  and  by 3,`,' that on r n , 1 .  Let 1.42 (p) be a harmonic function
in F;,') which vanishes on 4) and is equal to 14» on g» having
a conjugate harmonic function  v » ( p )  which has the variation 27-c
on / S ,  that is,

dv;," = 271-

where the integral is taken in the positive sense with respect to
T V .  The quantity is called the harmonic modulus of the domain
F I f  we choose an additive constant of v;» ( p )  suitably, the
function u ( p ) -F i v , y ( p )  maps conformally .F. ;» with a finite number
o f slits onto a slit rectangle 0 < 4 " < g ) , 0<14 ) < 2 7 r. Similarly,
the harmonic modulus of the open  set F n + 1 —Pn  is defined as
follows. Let u ,. (p ) be the harmonic function in Fn i ,—Fn  which is
equal to zero on r n  and to p n  on and its conjugate harmonic
v„(p) has the variation 27r on that is,

dvn  = 27-t .
rn+1

The quantity 11,,, is the harmonic modulus of the open set
If we choose adequately an additive constant of y ,. (p ) , the function
un (p)+iv n (p) maps conformally f ',"  with a finite number o f slits
onto a  slit rectangle 0 <u n <p„, b i <v n < a i +b i ,  where ai  and bi

are constants satisfying the following conditions

ai  = 27r  /I n2  ai  = 27r
i=i

and

0 , b i  =  a k  (I< m)
k=1

The function un(p)+ ivn(P ) maps conformally F n _1 —F„ with a finite



On the R iem ann's relation on open Riemann surfaces 13

number of slits onto a  slit rectangle 0 < ti n < f t ,  0 < v „ < 2 7 r . The

function u (p )+  iv ( p )  defined by u n (p) + iv n ( p ) + '  ' L i  fo r  each

F + 1 —F„ (n=1, 2, •••) maps F—F, with at m ost a n  enumerable
-

number o f  suitable slits onto a  strip domain 0<u<R=E 11,5 ,
1-1

0< v< 27r with at most an enumerable number of slits one to one
and conform ally. This strip domain thus obtained is the graph
of F associated with the exhaustion IF ,J  in N oshiro's sense (Noshiro
[7 ] , Kuroda [8]).

3 .  Let us consider an open Riemann surface F  and its ex-
haustion {F}, and we shall construct the graph 0 < u < R , 0 < v < 2

of F  associated with this exhaustion. For any r  (0 < r  < R ) , the
locus 7  of points of F  satisfying u ( p ) = r  consists o f  a  finite
number o f  closed analytic curves 7;.i) (i = 1, 2, ••-, m ( r ) ) .  Let
coi =a i dx+b i dy (i=  1 , 2 ) b e  tw o  square integrable harmonic dif-
ferentials. We consider the following integral on the level curve
7 y)

Li(r) . 10 ,1 . 10 210) (,)
7, 7 ,

and put

L(r) =

Further, when ,(..9 < r <  1.9 ,  we put

A (r ) = max dv =  max dv„.
7.1) • 7 ! )

Then we obtain the following

dr
)  .

.LEMMA 1. If th e  integral 
J A
r Is dive rgent, then there exists
o (r

a sequence 1 7 n 1  (n= 1 , 2 ,  • • • )  o f  l e v e l  curves 7 „ ; u (p )= r ,, tending to
the ideal boundary  of  F  such that

lim L (r ,,) = O.
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n-i
Proof. W hen E  pv < r < 'É p v ,  b y  the Schwarz's inequality,

j =i i=1
w e have

Li(r) =
7,7.') 

16°11 1C°21 =
7 v )  

11)11 CIVn
( i )  

(b21C1Vn
71

1/2

Ibi l2 dv„) lb,12dVnY2

1/2 \i/2
A (r)b i r  A n )

r  
(„ b21 2dVn )

7r

Summing up from i = 1  to i =m (r), we obtain

\ i / 2  r
L(r) A (r) " Ibir dv ,z

7
) „)11,212 dv)

i= 17 (1. ' r

)12/
<  A ( r ) ( i ç7 . 0 1bi l 2 A nY2I  b 2  2 dv„

yr

2nf 1/2 21, )1/2
=  A (r ) lb,l2dv) 1b212 dv

Hence, we get

E  Pj 51
f .1=1L ( r )

 d r  =

l(r2lt ,  1/2)

2 d V ) by 21 / 2  (1 2 't d V ) dr
u J i

J n - 1  A  (r) 0
E Jaj
j=1 .1=1

.
i  r 7

1

 I l i  r 2/1 / -, ' - i i  p2 1/2

U -
T,11 1 bi 1 2 dvduy 2

1
0 1

-1
1: 1b y  I  2 dvdu- 1 )

0p v  0 E °
i= 1 . 1 = 1 .

E  111/ 2 ,c

<  0 : 1 1
1( 1 , 2 , 1 2 +  Ibi l 2 )dvdu)

1 / 2

°
i=1

X (YE1 21( )1/2

n:1
(1a212+ 11)21 2) dvdu

E  0

=  l i a ) 111Fn+i-FnIH211Fn4 i-Fn •

Consequently, we have

1/2
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L(r)
11('-'111Fn"-F.11c°2Jo A (r) d r Fn-1-1 - F n

7/2 . 0 ) 7 / 2
12Fn + i - F n ) (E l la ) 2 1 1 2 F n -H ,-F n

71,=.1

1, .211 < — •
R   d r  Since the integral 5

A ( ) is divergent by our assumption, we
0 r

obtain lim L (r)= O. Therefore, we obtained the above-mentioned, ÷R

result.

Since

we have

FLj
1d r  =  L .  m in  

n-1 27tdan
/ h i  max dv

y ( i )

min ,a,T

2 çr d r  >27r d r  (min 14 ))
0  A (r) Jo A (r) i=

for any r  satisfying ,a.K r <  tki . Thus we can say that the
J -1

result o f  lem m a 1 h o ld , if  E—  (min ii,"))  is  divergent.

Next, we suppose that the exhaustion {F, } is canonical, that
is, each contour r ;»  ( i=1  , 2, •••, m (n)) o f 17„ is  a dividing cycle.
Let D„”) (i=1, 2, •••, m ) be annuli each of which includes a contour

i r  and are disjoint each other. We put D„=-'0 DW ) and assume
j =1

that D„ (n=1, 2, • ••) are disjoint each other. We constructe the

graph of ÇJD„ associated with the sequence {D, }  of open sets D„

and denote the harmonic modulus of D N D „) by !4,"(u„). Also we
-

denote the function which maps I D  onto th e  strip domain

0 < u < R = E-
 n 0< v< 27t by u (p )+iv (p ) . W h en  11).; .<

I

we put

A, (r) = max .ç dv. .

<



16 A k ira Kobori and  Y oshikazu Sainouchi

We point out that in  th is case each component of the level curve
i s  a  dividing cycle. Then, b y  the sam e w ay a s  w e d id  in the
proof of lemma 1, w e have

C R  d r  . .LEMMA 2. I f  the integral   is divergent, then there exists
o A o (r)

a  sequence o f  level curves tending to ideal boundary o f  F  such that
each component of the curves is a  dividing cycle and lim L (r„)= O.n.+00

In the sam e w ay as the remark in  lemma 1, we can conclude

that the result of  lem m a 2 holds, i f  E-  (min vn  is  divergent.

4 .  Let us denote by l' h „  ( r a s ,) the class of semi-exact harmonic
(analytic) differentials in 1', and by Ph e  th e  class of exact harmonic
differentials in  r  h  and further by r h o the orthogonal complement in

of 1 . Then 1 r110 hse • Now let c be a cycle, then there exists
a  harmonic differential cr(c) so  that ,Ç 6)—(0), 0-(c)*) for co G Ph . S u c h
a  o- (c) i s  unique, real, of c lass F „ .  I f  c  and c ' are two cycles,
then (c) (c'), ( c ) * )  i s  an  integer, that is, the intersection number
c'x c  of c ' and c  (Ahlfors-Sario [2]).

LEMMA 3. Suppose n is  a com pact bordered surface and co and
0- are in r„, (n). L et {A i , (i=1 , 2, •••, k) b ea canonical homology
basis o f  S2, (mod an ) . T h e n

(co, cr*) = co S — 6-- co)
-1 A i Bi A i Bi

— ucr ,

JkO

where u (p )  is  a function defined separately  on each contour of  an.
I f  a  is  a contour o f  a n ,  then u ( p ) =  c o  where p ,  is a fixed point

Po
on a  and the integration is in the positive sence o f  a.

P ro o f. L e t ai  = (0 a n d  bi  = ). L e t  co' (b i ( A i )
A i Bi

—  a i o-  (BO), then co' has the same periods as co and co' belongs to
P „(s2 ). Since co—co' has no periods, we have co— co'=du, w here u
is  a  harm onic function. By the Green's formula w e have

(co — 6° '  0 -* )  = (du, cr*) = —
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Therefore

(6 ) , a 4 ) cr*)— L uo

=- (i) Cr — CO) —u .
Ai B i A i B i an

e

THEOREM I. If  the in te g ral 
R   d r   is divergent f or a canonical

J o A 0 (r )
ex haustion, then for a  corresponding canonical homology basis the
Riemann's bilinear relation

(1)
pCn')

(C O , 04 ) E co w)
k=1 Ak Bk Ak Bk

holds for two differentials co, cr E P h s e •

Proof. We shall take the sequence {7, } of level curves satisfy-
ing lemma 2  for two differentials w  and Œ . Since each component
ry ( i =1, 2, •••, m ) of 7 „ is a  dividing cycle, if ry„ D„ , ,  we may
suppose that Fa ,  and the relatively compact domain „f2„ bounded
by level curve 7 „ have the same homology basis A„ B„ •••, A p ,„/„
B p ( „,) . By the application of lemma 3  to /2„ ,  we have

g e n
(C e ), e r* ) 0 .  = wE 6-- co) — u .

Ak Bk Ak Bk bfan

Since ŒEr h s e  we have er- =O. Hence for a fixed point p0 E7„")
7 W)

= (1 4 (P )—  U (P 0 ) ) (7 <L„) !( A )  , ) , ( i )  I
)

therefore

   

Uff
alan <21.1 0 . j 00).1-1 ,4,0

 

Thus the proof is completed.
By the remark in 3, we get the following

C O R O L L A R Y . I f  E-  (min vW)) is  divergent, the Riemann's bilinear
PO
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relation (1 ) holds f o r tw o dif ferentials co, 0- E
Thus we know that on such a surface every

termined uniquely by its A-periods.
By the definition of the modulus we have

1 1 1— . + + (n o

w e r a s e  i s  de-

hence 2.) <m in 24,". If vy,  is divergent, F  belongs to OG and so
n=i

r hs e - - - - r h . Thus we have

COROLLARY (K usunoki [5 ]). I f  c 'Ê v „  i s  div ergent, th e n  the
n =1

Riemann's bilinear relation (1 ) holds f o r two co, 0- E l' h •

5 .  Next we choose annuli RW ' (i= 1, 2, •.•, m ) in  canonical

region F„ so that 1V , r\ .12;',J)  ( j )  (i j ) .  Let R„=\j R;»

and ,a(Rn )  and pt,(/?,' ) )  be the harmonic modulis o f R „  and RW ,
respectively.

Define ILF „  to  be the supremum of ,a(R„) as R „  ranges over
all possible choices. Accola [ 6 ]  has given the following sufficient
condition for the validity of the Riemann's bilinear relation :

I f  P F „> M > 0  f o r n—> 00 (M; constant), then

(co, 0- *) =  lim co co)
n+0. k=1A h Bk A h Bk

holds f o r 0-  E  ' h s e  an d  f o r all  wE rho

We shall remark that the above sufficient condition can be
extended to the following form :

I f  sup (min ,u,(1?;»)) > M > 0  f or n—>00 , then the bilinear relation
n l l

holds f o r cr E r hs ,  and  f or co E 1 h.0 •

This can be proved, with a slight modification, b y  the same
way as in [ 6 ]  and so we shall omit its proof.

In [6 ] , Accola has constructed a Riemann surface for which
the bilinear relation holds. His example is the symmetric hyper-
elliptic Riemann surface. Let lc/X = 1 b e  a  strictly increasing
sequence of positive number such that a k —> 00 (k 0 . ) .  Denote
by a y, the segment between a 2„_1 and  a2 „. Cut the plane along
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the slits. T a k e  tw o  copies of s lits  plane 7-r ,  and 7 t  and cross
along the slits  in  usual way. The surface thus obtained is of
infinite genus and parabolic . W e exhaust it by the portion F n

lying over the open disk with center at zero and radius a 2 n . Let
R„ be the ring domain lying above the annulus a2n-1< lz1< a2 .•

1Then the harmonic modulus of R„ is log  a 2 n . According to
471. a , „ _ ,

Accola's condition, for the validity o f th c bilinear relation it needs
th a t  a 'n > p > 1  fo r  a  subquence a n 's. But, according to the

corollary to theorem 1, we know that, for the validity of the bilinear

relation, it is sufficient to hold fi  a 2n —co.
n = i  a,„_,

6 .  Ahlf ors [ 1 ]  has constructed a  canonical homology basis
w ith  respect to  an exhaustion {F ,J of F  such that the cycles on
aF n are weakly homologous to a linear combination of only A-cycles
and if the index n o f aF n  i s  large, each of index of corresponding
A-cycle i s  la rge . In  fo llow ing w e shall use such a  canonical
homology basis.

Now le t {F„} be an exhaustion of F  by regular regions and
fo r  each n , i n ( t )  b e  a  s e t  o f  finite number o f  level curves

u (p )= t ; t , < t , < •  •  •  < t ; <•• • < t,= ,k )  such that at least

one critical point of u (p) is contained in  1.'„(t3 )  U  I 1 ,  0 ,  where
u  (p ) is the function defined in 2. We shall consider the relatively
compact regions bounded by  F n (t5 )  (n = 1, 2, •••, j = 1 , 2 , ••• , (n)),
then we may suppose that those regions construct an exhaustion

Let us introduce a canonical homology basis with respect
to this exhaustion, then the region bounded by I-  n (t) (t i < t < t i + ,)
h as the same canonical homology basis as th a t o f th e  region
bounded by l'„(t i ) (c f . A h lfo r s  [1 ] ,  H ilf s s a tz  5 ) . F or such a
canonical homology basis we have the following

dTHEOREM II. I f  t h e  in te g ral :e A (r ) i s  d iv ergent f or an  ex-

haustion { F,.} , then there ex ist an  exhaustion and  a corresponding
canonical homology basis such that the Riemann's bilinear relation
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(2) (0, 04) E — er- w ) (a finite sum)
k A k Bk A k Bk

holds f o r two co, a- G having only a finite number of non-vanishing
A -periods.

Proof. We consider the relatively compact subregion S2„ which
are bounded by the level curves which were constructed in  lemma
1. 0 )  and 0. have only a finite number of non-vanishing A-periods,
hence also have vanishing periods on each contour of af2„, for
sufficientlt large m .  Therefore c0 and 0-  belong to Ph s e (r2,„,), because
any dividing cycles in f 2,n  are  homologous to a  linear combination
of cycles on 3r2,n . Let ce  ( j =1, 2, •••, 1(m)) be contours of af2,n .

Since ( j
)
 0=- 0 ,  We have anologously in  theorem Iam

 

j )  U6'

tft m
S v,) I co I Lrp I 0-  I

Hence

  

( i)  c °  I ( i ) H 0 ( m oo )
.frt 1  am a ,ttt

Thus the proof is completed.
-

C O R O L L A R Y . I f  E (min ,ce )  is divergent for an exhaustion {F,,} ,
tt = 1

then the Riemann's bilinear relation (2) holds.
For such a  canonical homology basis, on such surface every

E  a „  is determined uniquely by its A-periods. Thus we have
R   d r  COROLLARY. (Sario I f  th e  integral

A ( r )  i s  divergent,

then Riemann surface belongs to OAD.
-

Since min /.6,' ) >,u,n , if  E  ,u,n = 00 , then theorem II holds. If F
t1 = 1

belongs to 0 , ,  then there exists an  regular exhausion such that

pn = 00 (Noshiro [7]), hence we have the following

COROLLARY (Ahlfors [1]). I f  F  belongs to OG, then there exist
an  exhaustion an d  th e  corresponding canonical homology basis such
that

140
Om
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0-*) E — (7- co) (a finite sum) .
k A k B k A k Bk

holds fo r two co, crE r h  hav ing only  a finite number of non-vanishing
A -periods.

7 .  L e t G  be any reg ion  on F  whose relative boundary c
consists o f at m ost an enumerable number o f  analytic curves,
compact or non-compact and clusters nowhere in F .  If there exists
no non-constant, single valued, analytic function f ( p )  which has
the finite Dirichlet in tegral over G  and i t s  r e a l  part vanishes
continuously at every point of c ,  then G is called the subregion

dr of the class SON , .  We now suppose that the integral
Ç?
0 A ( r )  .

divergent for an exhausion {F, } o f  F  by regular regions. W e
consider the subset G,. o f G;

Gr =  G r' { p :  u ( p ) < r  (0  < r < R )}

where u ( p )  is  the function defined in  2 . I f  some components of
G -0 ,. are relatively compact, we consider the union of these com-
ponents and G,.. For sim plicity, we denote it by G ,. again. Let
f ( p )— u (p )+ iv (p )  be a single valued analytic function in G whose
real part U (p )  vanishes at every point of the relative boundary
c  of G .  Then two differentials dU  and dV belong to l '„ (G ) and
dU  vanishes along c. Thus we have by lem m a 3  and U (p )= 0

(P G
(dU, dU) G r = —(dU, dU**)G r = —(dU, dV*)G r = UdV

We set er =aGrr■G and denote components of Or  b y  e;» (i=1,
2, •••, l(r)). Then, b y  the sam e w ay as in the case of the proof
o f lemma 1, we can conclude that there exists a  sequence {Orn}
such that

ev)I j—> 0 (n ) .

In such Gr „ , we have

= UdV .
J i 1 ern
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I f  0;!;,) i s  a closed curve, a s  , i ( „ dV= 0, w e have

(i) UdV
Or n e r  n

I f  8;..in ) i s  a cross cut, let p 'E c b e  a  en d  po in t o f 0;:n), then
u(po= 0, hence

U d V  —

Consequently,

(i)(u (p)— u(pwvOrn

< a l l dVi
OT

 

UdVOr IdUl 0  (n 00) .
Or,, Or,,

 

Hence, G  belongs to SO „ . I f  w e denote by WA ,  the c la ss  of
Riemann surfaces each  o f which has no subregion not belonging
to S O „ , w e have the following theorem proved by Kuroda [8] :

Ç
R  1

if the integral 
J o  A r )

 dr is  divergent, then F  belongs to 0 0
4 , .

Since 0 °
A , 0 „ ,  (Kuroda [8]) , th is  is  an improvement of the

Sario's sufficient condition. Moreover, by the sam e w ay as above,
we can generalize the above theorem in the following form.

d • •THEOREM III. I f  the integral A
r

)  z s  divergent fo r  a n  ex-() (r
haustion o f F  by regular regions, then

0), (T* )c ,

w here Œ E 1 h 8 (G) and co belongs to r„(G), that is , co = d f  and the
harmonic function f (p )  vanishes at every point of the relative boundary
of  F .

8 . The special bilinear relation is  sa id  to  h o ld  on F  if the
fo llow ing is true (Accola [6]) : i f  co e r", 0 -  E  F „ , and co has a
finite number o f non-vanishing A  and B-periods, then

(co, 049 E co — ty- co (a finite sum) .
k A k  J B j , A k B k

Let r h „, be the orthogonal complement in of . In  [6 ] the
following theorem is proved : validity  of the special bilinear rela-
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tion on F is equivalent to 1:1h m  =  ho f."\ r  he • Also a surface on whichr  
F i t e  n  r ho r h m  =  (15 holds is constructed. The surface evidently does
not belong to 0 „ • Since (co, OE* ) = (OE* , ( ) = (OE** , ° ) =  — (OE, (1)* ) ,  if
CR  d r  
J o A o ( r )

=  00  and ® E  l' h o has a  finite number o f non-vanishing A-

and B-periods, then by theorem I we have

(o) ,  O E * )  =  E co (,) (a finite sum) .
k B k Ak Bk

C R  drTherefore we know that i f th e n  r P— he r\ rho •
Jo A 0 (r )

Kyoto University and
Kyoto Technical University

REFERENCES

[ 1 ] Ah lfors, L.; Normalintegral auf offenen Riemannschen Fldche. Ann. Acad. Sci.
Fenn. Ser. A. 1. 35 (1947).

[ 2 ] Ahlfors, L . and Sario, L ;  Riemann surfaces. Princeton. (1960).
[ 3 1

 

Pfruger, A.; Theorie der Riemannschen Flachen. Berlin. (1957).
[ 4 ] Pfruger, A .; U ber die Riemannsche Periodenrelation auf transzendenten hyperel-

liptischen Filichen. Comm. Math. Helv. vol. 30 (1956) 998-106.
[ 5 1

 

Kusunoki, Y.; On Riemann's period relations on open Riemann surfaces. Mem.
Coll. Sci. Univ. Kyoto Ser. A. Math. Vol. 30 (1956) 1-22.

[  6  ]  Accola, R .; T h e  bilinear relation on open Riemann surfaces. Trans. Amer. Math.
Soc. vol. 96 (1960) 143-161.

[ 7 ] Noshiro, K .;  Cluster sets. Berlin (1960).
8  ]  Kuroda, T.; O n  some theorems of Sario. Bull. Math , d e  la  Soc. Math. Phys.

de la R.p.R. Tom 2 (50) n 4, (1958) 411-417.
[9 ]  Sario, L.; Uber Riemannschen Flachen mit hebbarem Rand. Ann. Acad. Sci. Fenn.

Ser. A. 1 50 (1948).


